. A Estimating unknown parameters and functions

The forward and backward probabilities a;(s;) = Px ((pu, Pat)i_y, s;) and

B;(s5) = Px ((pre; p2t)i_;41 | 8;) can be calculated recursively using the forward-backward pro-
cedure (Baum et al.[1970). Specifically, we initialize o (s1) = 7, f©V (p11, po1) and By(sy) = 1.
We have

ajr1(sj41) = Py ((pltap%)gi_lla 3j+1)
3
- Z PA((Pres P2e)is (D115 Po,jr1)]855 S741) P (5541155 P(s;)

5;=0

3
= > Pa (1 p20)i—115) P(s)PA(P1 115 P2 ]5511) s,
5;=0
3

= Z 0 (5)) ;5500 O (D1 g1, P2jr1),

s;=0

where we use the Markovian property in the third equation and the definition of «;(s;) in the

fourth equation. Note that

Bi(sj) = Px ((plt,p2t)%]:j+1’5j)
3
= Z Py ((p1t>p2t);5]:j+1v 3j+1‘5j>
8j+1=0
3
_ J
= Z Py ((p1t7p2t)t:j+1|5j+17 5j) P(sj41]s5)
sj+1=0
3
= Z Py ((p1t>p2t>;§]:j+1|5j+1> P(sj41]s5)
8j+1=0
3
= Z Px ((p1t7p2t);5]:j+2‘5j+1) Px(p1j1, P2 je1lsi11)P(8541]55)

8j+1=0

3
= > Bisa(sis) L (D11, p2,41) sy

8j+1=0



> where we use the Markovian property in the fourth equation.

The marginal probability density function of the observations (p;, ps) at SNP j given A is

Px(p1, p2) = Pa ((Pljapzj)}]:l)

3
= Z Py ((puapzj)}]:la 33’)

5;=0

= Z Py ((p1j,p2j)3]=1|3j) P(s;)

SjZO

3
= Z Py ((Plt,p2t)g:1|5j) P(s;)Px ((pltap%);f]:j—i-llsj)

5;=0

3
= Z Py ((pu,th){:u Sj) Py ((p1t7p2t);5]:j+1|5j)

5;=0

= a;(s;)B;(s5).

5;=0

The posterior probabilities v;(s;) and &;(s;, sj+1) can be obtained by the forward and

backward probabilities at SNP j. Specifically,

7(85) = Pa(s;|p1, p2)
_ Px(sj, 1, P2)
Px(p1, p2)
__a(s5)Bi(s5)
> =0 @i(s5)Bi(s5)

and

(55, 8541) = Pa(s;, sj41|p1, P2)
P)\(Sj7 5j+17p1,p2)
]P)A(pl, pz)
0j(87)Bj41(841) s, S (Prjs1, 2gi1)

3 3 :
Zsj:o 25j+1:0 @ (57)Bj41(8j4+1) s s FED (1, pajat) ’




where the numerator is derived by

P(sj; 41, P1, P2)
=Px (3j7 (pu,mt){:l) Py (Sj—i—l; (p1t7p2t)2]:j+1|8j)
:aj(Sj)PA ((p1t7p2t>;§]:j+2‘5j7 5j+17p1,j+17p2,j+1) Py (5j+1>p1,j+17p2,j+1|5j)
=a;(5;)Pa (16 D20)i=jialSj1) Pa (8540, P1gi1s Dl s))
=;(87)Bj+1(85+1)Pa (8j11187) Px (P1j+1, P2,j1]855 Sj41)
=aj(87)Bj+1(8j41)Px (8j11185) Pa (p1,j41, P2jr18541)

ZOéj(Sj)BjH(8j+1)asj,sj+1f(sj+1)(pl,j+1; P2,j+1),

where we use the Markovian property in the third and fifth equation.

In the M-step of the EM algorithm, we update A+ alternatingly by

A — arg max D (m, A, fl,f2|)\(t)) :

A, f1,f2

Recall the definition v;(s;) = Px(s; | p1,p2), we first update w1 by

3 3 3
7D — arg max {Z > > (log nsl)]P’,\@)(s\pl,pz)}
51=0 s2=0 s7=0

10g7r51 Z Z Prw (1, s 8711, P2)

= arg max

51=0 s2=0 s7-1=0

3
= arg max {Z log 7, ]P’)\(t)(51|p1,p2)}
0
{ (log s, ) yf },st Zwsl—l

s1=0

S1

= argmax

Mw

s1=0



We use the Lagrange multiplier to solve the maximization. Specifically,

1=0

Le(m,m) = _(logm)” (3) +1 (Z mi - 1)

By taking a derivative with respect to m;, we have

OL(m,n) 1)

= =0=
87@' T +n
;= —7(0) =
3 3
Ny m=—3 n)=
=0 =0
n = _17

where we use the property that 30 m = 327 yft) (i) = 1. Consequently, we have

Next, we update A+ by
J
A = arg max {Z Pyo (s|p1, p2) 2; log asj—lsj}
s J=

= arg max {Z Py (8|p1, p2) log as s, + - -+ + ZP)\(t)(S|p1,p2) log alesJ} :

S

The target function is the summation of J — 1 terms with the same form. For the first term,



we have

Z Pk(t) S|p1a p2) log Qsys9

_ZZ ZPA@) 51,...,SJ|p17p2) logaslsz

51 S92
= Z Z Py (51, s2|p1, P2) 1og s, s, -
S1 S92

Hence the problem can be represented as

3 3 J
A = arg max {Z Zlog ag ZP}\(t)(Sj_l =k,s; = l|p1,p2)} :

k=0 1=0 7j=2

3
st. > aw=1ke{0,1,2,3}.

1=0
Using the Lagrange multiplier, we have the objective function

3 3 J 3 3
a(Asm) = ZZIOga’“lZPA(”(Sj—l =k,s; =l|p1,p2) + an <Z A — 1) .

k=0 1=0 j=2 k=0

Taking a derivative with respect to ay;, we have

OL.(A,
—n_—zp)\(t) SJ 1= -=l|p1,p2)+77k:0:>

aakl (275

o Pyw(sj—1 = k,s; = l|pa,
= _Z]_z A0 (5 177 i =lp1.p2). s1)
k

3
As > jaw =1, we have

i P Z?:O Z;']:2 ]P))\(t)(sj—l = kv Sj = l|plap2)
kKl — —

Nk

=1=

J
- Z Pro (sj-1 = k[p1, p2).

Jj=2



Recall the definition &;(s;, sj+1) = Pa(s;, Sj+1 | P1,p2) and take into account Equation (S1)),

we obtain @Eflﬂ) by plugging in 7,

al(ctlﬂ) _ Z}]:Q [EA@ (sj-1 =k, s; =|p1,p2)
Yo Paw (sj-1 = k|p1, p2)
D SR
S Yo (kD)

Finally, we update fl(tH) and fz(tﬂ). Note that
J
(fl(t+l)> fz(tH)) =arg fj{lla;; {ZPA(w(S\Pl,pQ) Zlog f(sj)(plj,pzj)}
) s le
= arg max Py (8|p1, po) log &) (pry, NENE
gmax {;[ A0 (8[p1, p2) log £ (p11, p1)]

Z [PA(t) (8p1, p2) log f(sJ) (P17, sz)} }

Recall the definition 7;(s;) = Px(s; | p1,Pp2), for the first term, we have

> [Paor (slp1, p2) log £ (pj, pay)]

S

3 3 3 3 3
:Zlogf(sj)(plj7p2j)z... Z Z ...Zpl\m(sh_‘_,sj|pbp2)

5;=0 s1=0 5j-1=05;41=0 sj=0

3
= 1og £ (p1;, p2;)Par (3511, p2)
5;=0

3
=D, 10 (s7) log f9) (pr7, pay).

5;=0



The target function to maximize becomes

J 3

() =) A (s) log £ (1, pay)

j=1 s;=0

<

_Z [%(‘t)(o) log fo(p1;) fo(p2;) +7] ‘(1 )1og fo(p1j) fo(p2s)+

J=1

7 ( )logfl(plg)fo(p2])+7] (3 )logfl(plg)fz(ng)}

Then f; and f, can be updated by

J
fi™ = arg ma {Z [ 2) + 7" (3 )] log fl(plj)}

Jj=1

and

J
A = arg ma {Z [ ) +90(3 )] log f2(p2j)} .
7j=1
. . t t t
We provide specific steps as follows. Denote Qgtj) = 7}”(2) +7§t)(3) and ng) = 7](. )(1) +7j(- )(3),
where j = 1,...,J. Let 0 = pyo) < pia) < -+ < pigy be the order statistics of p; and denote
Qgt()j) as the corresponding Qg?. Let 0 = pa0) < p21) < -+ - < pa(y) be the order statistics of p;
and denote Qét()]) as the corresponding Qg;) Define y1; = fi (pl(j)) and yo; = fo (pQ(j)), then

we can write (2) as

eEM
Yij 1 =1 =1
J

- subject t0 3 gy () — o) = L
j=1

J J
Y = arg max {Z Q1 log yU} . subject to > _yi;(pigy) =~ Pr-n) = 1, and

f2(t+1) = arg max {Z Q2 log 2

y2]

+ where My = {(y11,--,y17) 1 ynn = --- > yoy > 0F and My = {(y21, -, %27) 1 Y21 = -++ >

5 yQJZO}.



Using the Lagrangian multiplier, the objective functions we want to maximize are

J
ZQ logy1j+771 {Zylg plj)_pl(j 1))_1} nd

7=1

J
ZQ%) log 125 + 12 {Z Y2j(P2(j) — P2j-1)) — 1} .
j=1 j=1

Taking derivatives with respect to yi;,n1 and ys;, 12, respectively, we have

J
A t) - 1(4)
7712—2@1”, ;= — , and
= QV (1) — Prg-1)
(t)

Z Q y2j - 20) )

Q 2 (p2( jH — p2(j71))

s where Qﬁt) = Z}le Q%) and Qét) = Zj:l Qg})

To incorporate the monotone constraints on y;; and ys;, we minimize

—Q(t) Pi1G) — P1(j—1
Qit()j){—logylj— 1 ( J()t) U ))ylj
Qi)

J

> {—Qﬁ?j) log y1; + QY (p1) — Pl(j—l))yu} =

Jj=1 J

M-

1

subject to y11 > -+ > y1s, and minimize

J J
—Q P25y — P2(j-1
E { 10gy23 +Q2 (p2 p2(j71))y2j} = Qg(j {—1Ogy2j 2 ( (t) U ))?/2]'

7 subject to yo1 > -+ > Yoy.

Let

U _Qgt) (pl(j) —p1(j,1)) ’
(Q11,...,U1y) = arg min ZQl uyj — 0

U1l,---ULJ



10

11

12

13

14

15

subject to w11 > uje > -+ > uyy, and

4 ) QY (p2(j) — P2(i—1) :
(l21, -y oy) = arg | min > @y | vi = ®
=1 @s(j)

subject to ugy > uge > -+ > ugy. The solutions take the max-min form

t b
~QV S (may — Prge-)

@1 = max min

RS WO
X QY (P2(ky — P2(k-1))
U5 = I?EX m<1n b 0) )
=1 = D hea @ai)
which can be obtained by PAVA (Busing 2022)). Our final estimates are given by ¢, = —ﬁ%j

and fjy; = —== for j = 1,...,J according to Theorem 3.1 of Barlow & Brunk] (1972).
j T2

B Methods comparison

To evaluate the performance of ReAD. We compare the FDR and power of ReAD with several
replicability analysis methods, including STAREG, ad hoc BH, MaxP (Benjamini et al.[[2009),
JUMP (Lyu et al.|2023)), radjust (Bogomolov & Heller|2018)) and MaRR (Philtron et al.|[2018]).

We review the details of these methods as follows.

B.1 The STAREG method

Let 7; = (64;,604;), 7 = 1,...,J denote the inferred association status of SNPs across two

studies. Then 7; € {(0,0),(0,1),(1,0),(1,1)} with P(r; = (k,{)) = &g for k,l = 0,1 and



16

> w1 &m = 1. Assume a mixture model for p-values in the two studies. Specifically,

iy | 015 ~ (1 —64;) fo + 61 fa,

paj | 05 ~ (1= b5) fo + b25fo, j=1,...,J,

where fy is the density function of p-values under the null, f; and f, denote the non-null
density functions for study 1 and study 2, respectively. Then the local false discovery rate

(Lfdr) is defined as the posterior probability of being replicability null given data. We have

Lfdr]<p1j7p2]) =1- IPJ(HIJ = 92j =1 ’ p1j7p2j)

_ £00fo(p17) fo(p2;) + o1fo(p1z) f2(P2)) + 10.f1(p1s) fo(p2))
€00f0(p17) fo(p2;) + o1 fo(p1s) f2(P2j) + E10.f1(p1s) fo(pa) + &1 fi(pry) fa(pag)

Assume the monotone likelihood ratio condition (Sun & Cai 2007, Cao et al.| 2013, [2022)):

fi(z)/ fo(x) and fo(x)/ fo(x) are non-increasing in x. (S2)

We have that Lfdr; is monotonically non-decreasing in (pi;,ps;). The rejection rule based
on Lfdr; to test the replicability null is §; = I{Lfdr; < A}, where X is a threshold to be
determined. We write the total number of discoveries as R(\) = Z}]:1 I{Lfdr; < A}, and the
number of false discoveries as V(\) = ijl I{Lfdr; < A}(1 — 6y,65;). In the oracle case that

we know (&o0, o1, §10, €115 1, f2), define

J
- Lidr; J{Lfdr; < A
)\J:sup{)\e[o,l]:z]_l  H{Lidr; }Sq}.

S I{Lfdr; < A}

Reject Hy; if Lfdr; < A;. Then the FDR is asymptotically controlled at level g.
Assume fo follows a standard uniform distribution. Let p; = {py;}/_, and py = {ps;}7_,

denote p-values from study 1 and study 2, respectively. Denote 6, = {91]-}3]:1 and @y =

10



{02 }3]:1. The unknown parameters and functions are estimated by maximizing the following

log-likelihood function

R

(p1,p2,01,05) = > [log{(1 —601;) fo(pry) + 015 f1(p1;)} + log{(1 — ba;) fo(pa;) + ba; fa(p2;)}

1

+01,;(1 — 655) log E10 + (1 — 64)025log Eo1 + (1 — 61;)(1 — B5;) log Eno

<.
Il

+ 913"92;' log fn},

where 61 and 6, are latent variables. For scalable computation, we utilize EM algorithm (Demp-
ster et al.||[1977) in combination of pool-adjacent-violator-algorithm (PAVA) (Robertson et al.
1988)) to efficiently estimate the unknowns (&g, €01, €10, €11, f1, f2) incorporating the mono-
tonic constraint 1} for f; and fo. With the estimates (500,501,510,511, fl, fg), we obtain the

estimated Lfdr as follows.

Tfdr, — ] goofo(pu)Jfo(ij) + €01f0(p1j)f2(122j) + élofl(plj){o(p?j) _ .
T Coofo(pij) fo(pay) + Eorfo(pay) fopag) + Evo fr(p1y) fo(pay) + & fi(pay) fo(pay)

An estimate of \; is

;o
R . Lidr: J{Lfdr; < \
)\J:sup{/\E[O,l]:ZJ_1 s I{Lidr; < }Sq}.

S/ I{Lfdr; < A}

The replicability null hypothesis Hy; is rejected if L/farj < \,. This is equivalent to the step-up
procedure (Sun & Cai [2007)): let ITfEr(U <... < I;”aru) be the order statistics of {L/farj}}]:l

and denote by H(y),..., H(j the corresponding ordered hypotheses, the procedure works as

11
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29
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follows.

k
N 1 —
Find k:= max{kz e [l,m]: z g Lfdr(; < a} , and
=1

~

reject Hiyy, j=1,...,k.

B.2 The ad hoc BH method

BH (Benjamini & Hochberg1995) is the most popular multiple testing procedure that conser-
vatively controls the FDR for J independent or positively dependent tests. In study i, ¢+ = 1,2,

the BH procedure proceeds as follows.

o Step 1. Let pi1y < pi2) < -+- < py(y) be the ordered p-values, and denote by H(ij) the

corresponding hypothesis;

e Step 2. Find the largest k such that p;g) < %q, le., k= max{l <k < .J:pig) < §Q}’
and k = 0 if the set is empty;

~

o Step 3. Reject H{;y,j =1,... k.

The ad hoc BH method for replicability analysis identifies SNPs rejected by both studies

as replicable SNPs.

B.3 The MaxP method

Define the maximum of p-values as

max

p] :ma’x{plj7p2j}7j: ]-7"'7<]'

p;* follows a super-uniform distribution under the replicability null. The MaxP method

directly applies BH (Benjamini & Hochberg||1995)) to p7**,j =1,...,J for FDR control.

12



a2 B.4 The JUMP method

The JUMP method (Lyu et al.[2023) works on the maximum of p-values across two studies.

Define

max

pj :max{p1j7p2j}>j: 17"'7‘]'

Let 7; = (64,04;), 7 = 1,...,J denote the inferred association status of SNPs across two
studies. Then 7; € {(0,0),(0,1),(1,0),(1,1)} with P(r; = (k,1)) = & for k,l = 0,1 and

>k Sk = 1. It can be shown that

P (p];“ax <t | Hy;is true)

_oP(p <t |7 =1(0,0)) n EnP(pi™ <t |7 =(0,1)) . §P(pf™ <t |7 = (1,0))
N oo + o1 + &0 oo + Eo1 + &10 oo + o1 + €10
oot + (o1 + &1o)t <4
Soo+ &1 +&o0 T

which means that p;** follows a super-uniform distribution under the replicability null. De-

note

 &oot® + (o1 + o)t
clt) = foo +&n +&o

For a given threshold ¢ € (0, 1), a conservative estimate of the FDR is obtained by

FDR*(t) = J(&oo + Eo1 + £10)G (1)
S H{pr<tpvil

Following Storey| (2002)), Storey et al.| (2004)), the proportion of null hypotheses in study @

can be estimated by
_ Sl Hpig > i}
J(1—N) ’

i=1,2.

13



Similarly, &y is estimated by

Z}]:1 I{p1j > X3, p25 > A3}
T(L— )2 ’

Eoo(Ng) =

where \1, Ay and A3 are tuning parameters that can be selected by using the smoothing method

provided in [Storey & Tibshirani (2003). Then we have
o1 = ﬁél) —foo, 0= ﬁég) — &oo-

With these estimates, we have a plug-in estimate of FDR,

s J(Eoot? + Eort + Exot)
FDR (t) _ JOO 01 10 .
Zj:l I{p?“ax <t}vi

22 The JUMP method works as follows.

33 o Step 1. Let p?f)‘x <. < p‘(‘}%x be the ordered maximum of p-values and denote by H;
3 the corresponding hypothesis;

e Step 2. Find the largest k£ such that the estimated FDR is controlled, i.e.,

k=max{l1<k<J: Pﬁ*(p%‘x) < q};

35 o Step 3. Reject H(y), j=1,... k.

s B.5 The radjust procedure

w  The radjust procedure (Bogomolov & Heller2018) works as follows,

14



e Step 1. For a pre-specified FDR level ¢, compute

rq rq
pu— : / ’ < 2[Sy| 2|8 -
R = max [7‘ E f{(plg,pza) > (2|32\’ 2\51|>} 7“] ’

JESINS,

38 where S; is the set of features pre-selected in study ¢ for : = 1,2. By default, it selects

30 features with p-values less than or equal to ¢/2.

o Step 2. Reject features with indices in the set

, Rq Rq ,
{j (p1]7p2]) = (2|82”2’51|) ) GSI 82}

40 In this paper, we implement an adaptive version of the radjust procedure Bogomolov &
a |Heller| (2018)) in the simulations, which first estimates the fractions of true null hypotheses

22 among the pre-selected features. The fractions in the two studies are estimated as follows.

~(1) 1+ ZJ'ESM L(py; > q) ~(2) L+ Zje&,q I(p2j > q)
7T0 — S 1 _ s 7'{'0 frnd S 1 — 7
[S24/(1 =) S14l(1 =)

(S3)

s where S, = SN {1 <j < J:py <gq}, i =1,2. The adaptive procedure with a nominal

s FDR level g works as follows.

e Step 1. Compute 7?(()1) and 7?(()2) using . Let

rq rq
R =max |r: I3 (p1j,p25) < , =r|,
2 { U TSl 2SR

JES1,4NS2,4

o Step 2. Reject features with indices in the set

. Rq Rq )
R =47 (py:p2y) < NOE " JE€ESIgNSayp-
{ 218,45 2/ |75

15



s B.6 The MaRR procedure

The MaRR procedure (Philtron et al.|2018) uses the maximum rank of each feature. The
null hypothesis is that Hp; : pi1; and py; are irreplicable. Denote (R, R2;) as the ranks of

(p1j:p2;),J = 1,...,J within each study. Define

Mj = maX{le, jo},i = 1, ey J.

Let 7 denote the proportion of replicable features. Under the assumptions:

(I1) if gene g is replicable and gene h is irreplicable

Rig < Rin, Ry < Rop;

N

s (I2) the correlation between the ranks of replicable features is non-negative;

7 (I3) the two ranks of irreplicable genes are independent.

N

S

s Under these assumptions, irreplicable ranks R;; and Ry; are uniformly distributed between

s |Jm] +1and J. Denote the conditional null survival function of M;/J as

N

Sym(x)=P(M;/J > x| gene j is irreplicable)

=1— P (Ry;/J <z, Ry;/J < x| gene j is irreplicable)

2
=1 - H P (R;;j/J <z | gene j is irreplicable)

i=1

16



where j, = [Jz] and iy, = |Jm;|. The limiting conditional survival function of M,/J under

the null is

SJJU (ZL‘) — Sm(x) =31- (z—m)? m<x<1

The empirical survival function can be estimated by S (z) = 1 ST I(M;)J > x), x € (0,1).

By strong law of large numbers and the Bayesian formula, we have

Sy(x) =P(M,/J > x)
=(1—m)P(M;/J > x| gene j is irreplicable) 4+ m; x 0

=(1 —m) Sy (x) for x € (m, 1).
If we estimate m; by j/J, we can define the mean square error (MSE) as follows.

MSEG/ ) = (7~ )73 (S (k1) — (1= 31008, (k1)

k=j

k is chosen to minimize the MSE in the range between 0 and [0.9.]].

k= argmin {MSE(j/J)}.
5=0,1,...,[0.9)

Thus /%/ J serves as a good estimate of m;. To control the FDR at level ¢, MaRR generates

the rejection threshold as follows.

k<j<n

Define N = max {j : mF/D\R(j) = —]%) < q},

17
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where Q(j) = Zi:l I(Mj, < j). Reject features associated with M; < N. [Philtron et al.
(2018)) relaxes assumption (I1) to (R1): P(Riy < Rij) > 1/2 and P(Rey < Rap) > 1/2, which

is more plausible in practice.

C Simulation details

In simulation I, the hidden states of SNPs, (s;)7_, € {0, 1,2,3}, are generated from a four-state
Markov chain, where the initial probabilities of the four states are 7% = (0.9, 0.025, 0.025, 0.05),

and the transition matrix is

apo (1-&00)/3 (1—(100)/3 (1-@00)/3
(1 —CL11)/3 a1 (1—&11)/3 (1—&11)/3
(1 —ag)/3 (1—ax)/3 ago (1 —ag)/3

(1—(133)/3 (1-&33)/3 (1-@33)/3 ass

0ij,i = 1,2,j = 1,...,J, can be obtained from (s;)7_;. Denote N(u,¢?) the normal dis-
tribution with mean g and variance o?. We generate z-statistics from a mixture model
Xij |05 ~ (1 —0;;)N(0,1) 4+ 6;;N(u;,1) for i = 1,2 and j = 1,...,J, where y; represents the
signal strength of study ¢. Corresponding one-sided p-values are calculated by p;; = 1—®(X;;),
where ®(+) is the cumulative distribution function of the standard normal distribution N (0, 1).

In addition to ad hoc BH, MaxP, and STAREG, we also compare the performance of
ReAD to more replicability analysis methods, including JUMP (Lyu et al.|[2023), radjust
(Bogomolov & Heller||2018) and MaRR (Philtron et al.2018). Let J = 10,000, u; = 2 and
apo = a11 = ags in all simulations. We vary agg, aszz and ps to evaluate the FDR and power of
different methods in different simulation settings. Empirical FDR and power are calculated

from 100 runs for each setting. In Fig. (left: FDR; right: power), each row corresponds

to a different agy, and each column corresponds to a different as3. In each panel, we set po
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to be 1.5,2, or 3. At FDR level 0.05, we see that the ad hoc BH fails to control the FDR

in many settings. STAREG has a slight FDR inflation in some settings. The other methods

control the FDR at the target level across all settings, in which MaxP and radjust are overly

conservative, and rLIS shows substantial power gain. In addition, the power of all methods

increases with increased signal strength (pus).
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Figure S1: FDR control and power comparison of different methods
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