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SUPPLEMENTARY METHODS 1 

Sex phenotypic differences 2 

We used a linear model including sex and other covariates to test sex differences. Sex was the term of 3 

interest (males coded as 1 and females coded as 2) and the significance was tested via an F test. The 4 
covariates we adjusted for were the same as used in the dosage compensation and heritability analysis. 5 

We want to emphasize that we also adjusted the interaction terms between sex and age (and squared of 6 
age). Therefore, we focused on the main effect of sex on traits. 7 

 8 

Detailed preprocessing for genetic data 9 

We used the UKB imaging data released up to February 2020 (phases 1-3) for discovery (n = 36,000) and 10 

used the phase 4 imaging data (n = 3,100) for replication in X-chromosome association analysis (XWAS). 11 
Version 3 of imputed genetic data was downloaded from UKB. We processed the imputed genotype data 12 
with PLINK21 (v2.00a3LM, https://www.cog-genomics.org/plink/2.0/) separately for each set of imaging 13 
traits.  14 
 15 

For the discovery data, we focused on the subjects with non-Hispanic white ancestries (Field 21000). 16 
Based on the quality control information provided by UKB investigators, we removed subjects with 17 
excessive heterozygosity (Field ID 22027), mismatched self-reported sex and genetic sex (Field ID 18 

22001), putative sex chromosome aneuploidy (Field ID 22019), and missing genotype rate over 5% (--19 
mind 0.05). We excluded SNPs with an imputation score less than 0.3 (Resource 1967), a minor allele 20 
frequency (MAF) less than 0.0003 (--maf 0.0003) for dosage compensation (DC) and heritability analysis 21 
(more on this later), and further excluded SNPs with an imputation score less than 0.6, a MAF less than 22 

0.005 for XWAS. Moreover, SNPs with a Hardy-Weinberg equilibrium test p-value less than 1	 ×	10!" 23 

(--hwe 0.000001) and multiallelic sites (--snps-only just-acgt) were also excluded.  24 

 25 

We pruned subjects in terms of relatedness by GCTA2 (v1.93.2 beta, 26 
https://yanglab.westlake.edu.cn/software/gcta/#Overview). We first computed the genetic relationship 27 

matrix (GRM) for each autosome and merged them (--mgrm). Then we removed one of a pair of 28 

individuals with estimated relatedness larger than 0.05 (--grm-cutoff 0.05), which corresponds to 1st 29 
degree relatives. Approximately 1,800 subjects were excluded. The final discovery data had 33,591 30 

subjects (with a minimum of 29,078 for tfMRI and a maximum of 35,793 for SA) with 15,939 males and 31 

17,652 females. 289,866 NPR SNPs and 11,508 PAR SNPs on the X-chromosome were included in the 32 
analyses. The genetic data for the Y-chromosome was not imputed, and subject to the above processes, 33 

140 SNPs were remaining for association analysis. 34 



 1 

The genetic data for replication included UKB phase 4 non-Hispanic white subjects (UKBE, n = 4,181), 2 
UKB phase 1 to 4 South Asian and Chinese subjects (UKBSAC, n = 462), and UKB phase 1 to 4 African 3 

subjects (UKBA, n = 295). To maximize the sample size, we merged white subjects that were excluded 4 

due to relatedness in the discovery phase and the phase 4 white subjects. Then we did another round of 5 
pruning for relatedness (--grm-cutoff 0.05). Asian and African subjects were also subject to relatedness 6 

pruning at the same level. Other QC steps were the same as before. 7 

 8 

Adjusting for multiple hypothesis testing in XWAS by wild bootstrap 9 

Suppose we have 𝑄 traits in total, we want to adjust for multiple hypothesis testing considering the 10 

number of traits by wild bootstrap, which means we still use the genome-wide threshold 5 × 10!# for the 11 

adjusted p-values. The specific steps are as follows, 12 

1. For each trait 𝑌$, fit a null model 𝑌$ =	𝑋$𝛼$ + 𝜀$, where 𝑌$ is a vector of trait; 𝑋$ is the 13 

covariate matrix for trait 𝑞. We get 𝛼.$ and 𝜀$̂. 14 

2. Let 𝑣%
(')~𝑁(0,1), generate sample 𝑏 for each trait and each subject 𝑖: 𝑌%$

(') =	𝑋%$) 𝛼.$ 	+ 𝑣%
(')𝜀%̂$. 15 

Note that 𝑣%
(') are the same for all traits but different among subjects and bootstrap samples. 16 

3. For a SNP 𝑘, 𝑘 = 1,… ,𝑁*, do XWAS on all traits with models 𝑌$
(') =	𝑋$𝛼$

(') 	+ 𝑍$+𝛽$+
(') +17 

𝜀$
('), 𝑞 = 1,… , 𝑄, where 𝑍$+ are genotype vectors which may have difference sample size across 18 

traits. Then we can get 𝐹 statistics for all 𝑄 traits (𝐹,+
('), … , 𝐹-+

('))’. Take the max 𝐹 statistic 𝐹+
(')∗ 19 

over traits. 20 

4. Repeat the step 2, 3 for 𝐵 = 150 samples, we get (𝐹+
(,)∗, … , 𝐹+

(/)∗)’, then we can approximate a 21 

𝜒0 distribution for SNP 𝑘 by moment matching. Specifically, let 𝑘,, 𝑘0 and 𝑘1 denote the mean, 22 

variance, and skewness of (𝐹+
(,)∗, … , 𝐹+

(/)∗)’. We compute parameters 𝑎 = 𝑘1/(4 × 𝑘0), 23 

𝑏 = 	𝑘, − 2𝑘00/𝑘1, 𝑑 = 8𝑘01 / 𝑘10. Then the adjusted p-value for SNP 𝑘 on trait 𝑞 can be 24 

approximated by 1 − 𝑝𝑐ℎ𝑖𝑠𝑞(
2!"
#$%!'

3
, 𝑑) , where 𝑝𝑐ℎ𝑖𝑠𝑞 is the c.d.f. of 𝜒0 distribution, and 𝐹$+4'5 25 

is the observed F statistic computed from the real data. Note the more bootstrap samples, the 26 

more accurate the approximation. If the raw p-values are extremely small, such as 10!06, 𝐵 may 27 

increase to 200 or 300. 28 
Since the computational burden of doing the procedure for all SNPs was intractable, we split the SNPs 29 

into five groups based on MAF: [0.005, 0.01), [0.01, 0.05), [0.05, 0.10), [0.10, 0.25), [0.25, 0.50], and 30 

randomly picked 10 SNPs in each group. For a group, we combined (𝐹+
(,)∗, … , 𝐹+

(/)∗) generated from the 31 



10 SNPs to approximate the 𝜒0 distribution for that group. In other words, we assumed that the 1 

distribution parameters were identical for SNPs in the same MAF group. 2 

 3 

SUPPLEMENTARY RESULTS 4 

Dosage compensation and X-linked heritability for DTI and fMRI traits 5 

Out of the 110 tract-mean traits, 93 exhibited significant ℎ70 , with an average of ℎ70 = 1.20% (se = 6 

0.393%) (Fig. S17), whereas 330 out of 525 DTI PC traits were significant, with an average of ℎ70 =7 

1.30% (se = 0.422%) (Fig. 2E and Fig. S18). The atlas of enrichment for tract-mean DTI traits are in 8 

Fig. S19. For each pair of tract and DTI metric, there was a correspondence between the number of PCs 9 

favoring full DC and the DC status of the tract-mean trait (Fig. S20). Specifically, most tract-mean traits 10 

in favor of full DC had more than three PCs also in favor of full DC. In contrast, most tract-mean traits 11 
favoring no DC had no more than two PCs favoring full DC. However, we found some outliers. For 12 
example, FA of fornix had the second to fifth PC favoring no DC, but the tract-mean trait favored full 13 

DC. Similarly, MO of posterior corona radiata had the second to fifth PC favoring full DC but the tract-14 

mean trait favored no DC. The latter case is probably because the first PC had extremely high ℎ70 =15 

4.64%, thus dominating the DC status. As a result, the top five PCs can capture the major genetic 16 
information underlying the DC mechanism for DTI white matter tracts. Overall, heritability analysis for 17 

DTI traits on the X-chromosome shows that functional PCs can provide different dimensions from the 18 
tract-mean traits to explain genetic control.  19 
 20 

Language, secondary visual, and frontoparietal networks had the highest ℎ70  among the mean amplitude 21 

rfMRI G360 traits (ℎ70 = 1.67%~1.79%), while the average functional connectivity within primary and 22 

secondary visual networks and the one between these two networks surpassed all other connectivity G360 23 

traits of rfMRI (ℎ70 = 2.46%~2.86%) (Fig. S21A). G360 traits for tfMRI presented different patterns 24 

than rfMRI. The mean amplitudes of frontoparietal, posterior-multimodal, and dorsal-attention networks 25 

were the most heritable for the X-chromosome (maximum ℎ70 = 1.13%~1.53%), whereas the average 26 

functional connectivity between frontoparietal and posterior-multimodal networks, and that between 27 

language and posterior multimodal networks, as well as that within the language network (ℎ70 =28 

1.78%~1.94%) surpassed all other G360 traits of tfMRI in terms of ℎ70  (Fig. S21B).  29 

 30 

For rfMRI ICA, we compared the distribution of DC for all networks separately. More than half of 31 

amplitude traits related to attention and visual networks were in favor of no DC. These traits were mostly 32 

located in temporal and occipital regions. Moreover, functional connectivity traits associated with limbic 33 



and subcortical-cerebellar networks mostly favored no DC. These traits were mainly located in the 1 

cerebellum, temporal and subcortical regions. we found that more than half of node amplitude traits 2 
related to visual and attention networks were enriched in favor of no DC, while more than half of 3 

functional connectivity traits related to the subcortical cerebellum favored no DC. The consistency and 4 

disparity of DC patterns between G360 and ICA traits indicate that both approaches can capture the major 5 
genetic information of DC, but ICA provides finer resolution to investigate the functional organization 6 

and communication between brain networks. 7 

 8 

Overview of sex phenotypic differences in complex brain imaging traits 9 

Sex differences in the human brain with respect to cortical and subcortical structures, white matter 10 

microstructures, and functional connectivity were observed in plenty of studies3. We evaluated the sex 11 
differences using a wide spectrum of traits using a linear model (Supplementary Methods) and adjusted 12 
potential confounding that may bias the sex effect, including age, genetic principal components, head 13 

motion and positions, etc. 2,260 (80.1%) traits were significantly different between sexes after multiple 14 
hypothesis adjustment by the Benjamini-Hochberg procedure to control false discovery rate (FDR) at 0.05 15 
level (Table S15). Each set of traits had comparable proportion of significant ones, except for rfMRI ICA 16 

trait, for which only 75.6% traits were significant. Set females as reference, 52.6% significant traits had a 17 
positive effect size for sex (proportion test, p-value = 0.015), which means males had significantly more 18 
traits with larger measures than females. The proportion of positive effect size varied from set to set (Fig. 19 

S22). For instance, both CT and BV had more than 58% traits with positive effect for sex, but the 20 
proportion for SA was only 47.4%. All DTI traits were of the proportion greater than 50%, where 71.8% 21 

tract-mean traits were of larger values for males. Remarkably, 79.3% G360 traits of rfMRI were larger for 22 
males, while males only surpassed females for 47.1% ICA traits of rfMRI, indicating the proportion 23 

highly depends on brain parcellations and trait generation process. 24 
 25 
By closely examining the sex differences within each modality, we found more significant disparities. For 26 

example, males had larger total BV, CSF and total SA relative to females, but had smaller gray and white 27 
matter volume and mean CT. Overall mean traits of DTI were larger for males except for RD. External 28 
capsule and the ratio of fornix to stria terminalis were the only two tracts with negative sex effect 29 

evaluated by AD. For G360 traits of both rfMRI and tfMRI, we discovered that males had greater mean 30 

amplitude for all networks, but females had greater mean functional connectivity related to ventral-31 
multimodal network. Similarly, for rfMRI ICA traits, males had greater amplitude for majority (83.3%) of 32 

nodes, while females surpassed males in terms of functional connectivity. Most of these discoveries were 33 

consistent with previous studies4-9. There is increasing evidence that both the X-chromosome and sex 34 



steroid exposures across the lifespan can potentially alter the human brain from many aspects10-13, and 1 

therefore, we are motivated to investigate genetic underpinnings of human brain with respect to the X-2 
chromosome.  3 

 4 

CAPTIONS OF SUPPLEMENTARY TABLES 5 
Supplementary Table 1: Details for complex brain imaging traits. 6 

Sheet 1: This sheet shows trait categories and numbers of traits. 7 

Sheet 2: This sheet shows trait abbreviations and full names for DTI traits. 8 
Sheet 3: This sheet shows DTI metrics and descriptions. 9 

Sheet 4: This sheet shows relevant brain locations and networks for ICA traits. 10 

 11 
Supplementary Table 2: Results of dosage compensation and enrichment analysis for X-linked 12 
heritability. 13 
 14 
Supplementary Table 3: X-linked heritability estimated in sex-stratified analysis. The heritability 15 

was computed by GCTA (https://yanglab.westlake.edu.cn/software/gcta/#Overview). The likelihood-ratio 16 
test (LRT) was conducted by comparing the full model including both the genetic relatedness matries 17 
(GRMs) of autosomes and of the X-chromosome, with the reduced model including the GRM of 18 

autosomes only. The raw p-values were adjusted for the number of traits by Benjamini-Hochberg 19 
procedure to control the false discovery rate (FDR) at 0.05 level. 20 
 21 
Supplementary Table 4: Basic information of XWAS. 22 

 23 
Supplementary Table 5: Independent significant SNPs identified by LD pruning.  24 
Sheet 1: Nominal significant SNPs (p-value < 5e-08) in LD > 0.6 were grouped under an independent 25 

significant SNP. 26 

Sheet 2: We did a further round of pruning by restricting the adjusted p-values of identified independent 27 

significant SNPs (in Sheet 1) less than 5e-08, where the raw p-values were adjusted by wild bootstrap. 28 

 29 

Supplementary Table 6: Significant loci identified by LD pruning.  30 
Sheet 1: Nominal significant SNPs (p-value < 5e-08) in LD > 0.6 were grouped under an independent 31 

significant SNP. The LD blocks defined by independent significant SNPs with distances less than 250kb 32 

with each other were merged into a single genomic locus. 33 



Sheet 2: Based on results in Sheet 1, we further restricted that the top SNP for each locus was significant 1 

after adjusting for multiple hypothesis testing for all the traits using wild bootstrap. Whether the trait-2 
locus pairs were newly identified and whether they were replicated by UKBE subjects only and by meta-3 

analysis for UKBE, UKBA and UKBSAC subjects were also marked. 4 

 5 
Supplementary Table 7: Significant variants of meta-analysis for sex-stratified XWAS results. The 6 

meta-analysis was performed by METAL (https://genome.sph.umich.edu/wiki/METAL_Documentation). 7 

The raw p-values were adjusted by wild bootstrap considering the number of traits. The significant 8 
variants were those with adjusted p-values less than 5e-08. The bolded results are new SNPs that were not 9 

identified in the sex-agnostic XWAS. 10 

 11 
Supplementary Table 8: XWAS replication results. The top SNP for each locus was presented. A locus 12 
was replicated if the top SNP in the replication study was lower than the Bonferroni threshold (0.05/50 = 13 
0.001).  14 
Sheet 1: The XWAS replication results using phase 4 European-ancestry subjects (UKBE, n = 4,181). 15 

Replicated associations are bolded. 16 
Sheet 2: The XWAS replication results using phase 1 to 4 African-ancestry subjects (UKBA, n = 295). 17 
Sheet 3: The XWAS replication results using phase 1 to 4 South Asian-ancestry and Chinese-ancestry 18 

subjects (UKBSAC, n = 462). 19 
Sheet 4: The individual XWAS replication results were meta-analyzed using Metal 20 
(https://genome.sph.umich.edu/wiki/METAL). Replicated associations are bolded. 21 
 22 

Supplementary Table 9: Significant variants of meta-analysis for XWAS discovery and white 23 
replication results. The meta-analysis was performed by METAL 24 
(https://genome.sph.umich.edu/wiki/METAL_Documentation). The raw p-values were adjusted by wild 25 

bootstrap considering the number of traits. The significant variants were those with adjusted p-values less 26 

than 5e-08. 27 

 28 

Supplementary Table 10: NHGRI-EBI GWAS catalog (2023.06) lookup for nominal significant 29 

SNPs (p-value < 5e-08) and significant SNPs after further adjustment. 30 
Sheet 1: The lookups in this sheet are based on nominal significant SNPs (p-value < 5e-08).  31 

Sheet 2: The lookups in this sheet are based on significant SNPs after adjusting for multiple hypothesis 32 

testing for all the traits by wild bootstrap (adjusted p-value < 5e-08), as well as other SNPs that are in 33 
LD > 0.6 with these significant SNPs. 34 

https://genome.sph.umich.edu/wiki/METAL


 1 

Supplementary Table 11: MAGMA gene-based analysis results. Summary statistics of nominal 2 
significant variants (p-value < 5e-08) were utilized in the analysis. The Bonferroni threshold considering 3 

the number of protein-coding genes (747) and the effective number of independent traits (230) were used 4 

(p-value < 0.05/747/230 = 2.91e-07). GRCh37 was used to map SNPs to genes by physical location. 5 
 6 

Supplementary Table 12: Independent significant SNPs mapped to genes based on expression 7 

quantitative trait locus (eQTL) mapping. PAR SNPs had no results. 8 
 9 

Supplementary Table 13: Independent significant SNPs mapped to genes based on functional 10 

consequence. The independent significant SNPs were in LD > 0.6 with the top SNP of each locus. 11 
 12 
Supplementary Table 14: Mapped genes identified in functional mapping using nominal significant 13 
SNPs at 5e-08 level.  14 
 15 

Supplementary Table 15: Gene mapping using chromatin interaction profiles with H-MAGMA.  16 
 17 
Supplementary Table 16: Biological annotation for prioritized genes using DAVID Bioinformatics 18 

Database (https://david.ncifcrf.gov/home.jsp). 19 
 20 
Supplementary Table 17: Biological annotation for prioritized genes using SynGO 21 
(https://syngoportal.org/). 22 

 23 
Supplementary Table 18: Summary data-based Mendelian randomization results. The summary 24 
statistics of CAGE whole-blood eQTL analysis were provided by Sidorenko et al.14. The analysis was 25 

conducted by SMR module in GCTA (https://yanglab.westlake.edu.cn/software/gcta/#Overview). We set 26 

all parameters as default. Bolded results had FDR-adjusted p-values less than 0.05 and HEIDI p-values 27 

greater than 0.05. 28 

 29 

Supplementary Table 19: Sex phenotypic differences in complex brain imaging traits. 30 
 31 

Supplementary Table 20: Significant variants in sex-stratified XWAS.  32 

 33 

https://syngoportal.org/


Supplementary Table 21: Significant variants in meta-analysis for sex-stratified XWAS using UKB 1 

discovery data and UKB replication data of white subjects.  2 
 3 

Supplementary Table 22: Variants that had significantly different effect sizes between sexes. The 4 

significant variants were then meta-analyzed across sexes using the Stouffer’s method.  5 
 6 

Supplementary Table 23: Differences in genetic profiles between subjects classified by phenotypic 7 

quantiles. 8 
 9 
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