The Effect of Diabetes Mellitus on the Pharmacokinetics of Tuberculosis Drugs - 4 Authors: Muge Cevik^{1*}, Ann Sturdy², Bart G.J. Dekkers³, Onno W. Akkerman^{4,5}, Stephen H. - 5 Gillespie¹, Jan \(\text{Willem C. Alffenaar} \) 6,7,8 - 8 Affiliations: - 9 1. Division of Infection and Global Health Research, School of Medicine, University of St Andrews, - 10 UK 1 2 3 6 7 - 11 2. Department of Infectious Disease, Faculty of Medicine, Imperial College London, UK - 12 3. University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy - and Pharmacology, Groningen, the Netherlands - 4. University of Groningen, University Medical Center Groningen, Department of Pulmonary - 15 Diseases and Tuberculosis, Groningen, the Netherlands - 16 5. University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord, - 17 Haren, the Netherlands - 18 6. The University of Sydney Institute for Infectious Diseases, Sydney, NSW, Australia. - 19 7. School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, - 20 Australia. 22 29 33 - 21 8. Westmead Hospital, Westmead, NSW, Australia - 23 *Corresponding author: - 24 Dr Muge Cevik - 25 Division of Infection and Global Health Research, - 26 School of Medicine, University of St Andrews, Fife, KY16 9TF - 27 Telephone number: +447732800814 - 28 Email address: mc349@st-andrews.ac.uk - 30 This is the first systematic review to comprehensively examine the impact of DM on the - 31 pharmakokinetics of TB drugs. While some studies showed lower plasma concentrations, we - 32 observed significant heterogeneity; therefore, no recommendations can be made. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 Abstract While pharmacokinetics (PK) of many drugs is known to be altered in individuals with diabetes mellitus (DM), the effects of DM on the PK of anti-tuberculosis (TB) drugs remains poorly understood. We performed a systematic review through searches of major databases from 1946 to 6 July 2023. The literature search identified 4173 potentially relevant articles. After reviewing the eligibility criteria, 21 articles were included that assessed the PK of anti-TB drugs among patients with DM. Most articles focused on first line TB drugs; we identified 16 studies assessing rifampicin PK, 9 studies on isoniazid, 8 on pyrazinamide and 3 assessing ethambutol. Only 2 studies reported on second line anti-TB treatment. While some studies showed lower plasma concentrations of TB medications among DM patients, this finding was not consistent. In addition, we observed high variability in findings and significant heterogeneity among studies in terms of study design and differences in demographics. This review provides detailed overview of the limited evidence available regarding the PK of anti-TB medications in patients with DM. However, due to significant heterogeneity between studies, no conclusions could be made. Adequately designed PK studies using standardise methodologies are urgently needed to make recommendations regarding drug dosing in patients affected both by TB and DM. #### Introduction The global tuberculosis (TB) burden remains substantial, with more than 10 million people newly diagnosed per year [1]. TB patients often have other co-morbidities that influence the disease course and outcome. For instance, diabetes mellitus (DM) has been shown to increase the risk of acquiring TB [2, 3] and progression to active disease [3, 4]. The coexistence of TB and DM (TB-DM) has been associated with a 4-fold increased risk of treatment failure and 2-fold increased risk of death [5-7]. In addition, TB-DM patients have been shown to have a higher bacterial burden, delayed sputum culture conversion and a greater risk of developing drug resistance [6, 8]. Over the next 10 years, the prevalence of DM is estimated to double globally, affecting over 600 million individuals with a considerable increase in the African continent [9-11]. While DM has long been acknowledged as an important risk factor for TB, the threat posed by the burden of these two epidemics has recently been recognised [12, 13]. It is now considered a major global public health concern by the World Health Organization (WHO) and a critical public health challenge in low- and middle-income countries, with the WHO subsequently adopting a collaborative framework for care and control of TB and DM [14]. While the burden of TB and DM co-disease is increasing rapidly, there is limited practical evidence to underpin guidelines for TB-DM patient management, such as length of treatment, drug dosing and use of therapeutic drug monitoring (TDM). Pharmacokinetics (PK) of anti-TB agents show inter- and intra-patient variability and co-morbidities may further influence plasma concentrations, as the PK of many other drugs are known to be altered in diabetic individuals [15]. DM may affect kidney function, gastric emptying and drug metabolism pathways [15, 16]. This highlights the importance of understanding drug concentrations in TB-DM population as subtherapeutic concentrations may contribute to the treatment failure and acquired drug resistance [17]. In this systematic review, we evaluated the available evidence on the PK of antituberculosis drugs in diabetic individuals to provide in-depth analysis to guide patient management and identify priorities for research. #### Methods Search Strategy We retrieved all original studies evaluating the effect of DM on the PK of all TB drugs recommended by the WHO for the treatment of drug-sensitive (DS) and drug-resistant TB including rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA) and/or ethambutol (EMB). We systematically searched major databases; Medline, EMBASE, Web of Science and Scopus including conference abstracts from 1946 to 6th of July 2023 using Medical Subject Headings (MeSH) terms (Supplementary Material). We also manually screened the references of included original studies to obtain additional studies. To identify unpublished studies, http://clinicaltrials.gov was searched. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The protocol was registered at PROSPERO (CRD42022323566). #### Study Selection Studies that reported PK of anti-TB medications among DM and non-DM participants were included. No restrictions on language and publication date were applied. Studies in adult and paediatric populations were included. General PK studies reporting a subgroup of DM participants were not eligible unless they included detailed PK parameters for DM and non-DM participants. Review articles, letters, case reports and case series with less than five participants and correspondence were excluded, as were studies without PK data, drug interaction studies, and non-human studies. #### **Data Extraction** Two authors screened and retrieved articles according to the eligibility criteria and performed full text review and final article selection. From each study, the following variables were extracted: demographics of comparator group(s) and the DM group including age, weight, and sex, study design, DM diagnosis, and DM medications. Dose, dosing interval, sampling points, AUC, peak drug concentration (C_{max}), half-life ($t\frac{1}{2}$), time to reach C_{max} (T_{max}), volume of distribution (Vd) and clearance (CL) were extracted from the included articles if available and were stratified by group. If these data were not reported, we also contacted the authors to request the data. #### Risk of bias in included studies In the absence of available tools to assess risk of bias in PK studies, we assessed study quality and risk of bias using the ROBINS-I tool for non-randomised studies of interventions, which wasused to assess PK studies in a recent publication [18, 19]. Any disagreements regarding grading of quality were resolved through discussion with a third author. **Analysis** Narrative synthesis of the findings was conducted and reported according to the Synthesis Without Meta-analysis (SWiM) guidelines [20]. Descriptive statistics was used to describe key outcome measures. The data were found to be too heterogenous to permit further quantitative #### Results synthesis. The systematic search identified 4173 potentially relevant articles. After removing duplicates, 3464 articles were retrieved for initial screening of which a total of 49 studies were included for full text review. After reviewing the eligibility criteria, 21 articles were included that assessed the PK of anti-TB medications among TB-DM patients [21-41]. Five included papers presented the same data: in conference abstract [42-46] and then in published form [23, 29, 33, 36, 43]; we included data from the published report. One study was only published as a conference abstract and the authors were not able to share more data at the time of this review [47]. No relevant unpublished studies were found on the ClinicalTrials.gov. The study selection process is recorded in a PRISMA flow diagram (Figure 1). ## Rifampicin (Table 1) Of the 21 studies, 16 measured RIF plasma concentrations [21-23, 25, 27, 28, 30-36, 38-40], majority of which were prospective PK studies except one retrospective study reporting results based on routinely collected data [28]. RIF doses used were highly heterogeneous and are presented in Table 1. Out of 16 studies, 7 reported AUC values; three studies with intensive sampling (> 6 samples) [31, 32, 38] reported AUC₀₋₂₄ mg.h/L, three studies reported AUC₀₋₆ mg.h/L [21, 33, 36], and one reported AUC₀₋₈ mg.h/L [27]. In one study, AUC₀₋₆ mg.h/L to RIF was significantly lower in patients with TB-DM compared to those without DM) [33], another study found a lower trend AUC₀₋₂₄ mg.h/L in the DM group, but this was not statistically significant [32] and five studies found no 161 162 163 164 165 166 167 168 169 170 171
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 difference [21, 27, 31, 34, 38]. Of the three studies carrying out intensive sampling [31, 32, 38], no significant difference was shown. Out of 16 studies, 15 measured RIF peak concentrations (C_{max}); five demonstrated significantly lower RIF peak concentrations among diabetic patients compared to non-diabetics [22, 28, 33, 39, 40] and ten studies showed no significant difference between diabetic and non-diabetic patients [21, 25, 27, 30-32, 34-36, 38]. Mean absolute RIF C_{max} was below the recommended range (above 8 mg/L [48]) in diabetic and non-diabetic groups in the majority of studies, and within the recommended range only in the 3 studies with intensive sampling [31, 32, 38]. Eight studies measured the time to reach Cmax (T_{max}) , which was longer in TB-DM participants in three studies [31-33] (although without reaching statistical significance in one study [33]) and 3 studies found no significant difference [34, 36, 38]. In a study using population PK modelling, absorption rate constant (ka) was significantly increased and the volume of distribution (Vd) was significantly increased in the DM [23], the authors inferring that the plasma concentrations would therefore be lower in the DM group. Another study found no difference in ka or Vd between the TB and TB-DM groups in a 1 compartment model, but reduced clearance was observed and Vd was significantly higher in the TB-DM group when Vd was normalized to total body weight [31]. Raised blood glucose was inversely correlated with the rifampicin AUC/C_{max} in four studies [31, 33, 39, 40], whereas three other studies found no association between HbA1c or fasting blood glucose (FBG) and plasma concentrations [25, 32, 38]. Two studies found that body weight and plasma concentrations were inversely correlated [22, 33]. Isoniazid (Table 2) Nine studies assessed isoniazid (INH) PK [21, 22, 26-28, 30, 32, 35, 37]. Of these, one was based on routinely collected retrospective data [28], four studies used 600 mg dosing 3 times per week [21, 27, 30, 35] and only 1 study sampled intensively [32]. Four studies assessed for NAT2 status using different methods [26, 27, 32, 37]. We identified no studies with PK modelling. Out of nine studies, four assessed the mean exposure; one AUC₀₋₂₄ mg.h/L [32], two AUC₀₋₆ mg.h/L [21, 37] and one AUC_{0.8} mg.h/L [27]. Of these, two studies demonstrated significantly lower mean exposure to INH [21, 32], although after adjustment for age, sex, and weight this difference disappeared in one [21]. Two studies found no significant difference between the DM and non-DM groups [27, 37]. Four studies found INH C_{max} to be significantly lower in the DM group [21, 22, 30, 32], though one reported no significant difference after adjustments for age, sex, and weight [21] and the remaining 4 studies found no significant difference [26-28, 37]. One study with intensive sampling found no significant difference [32]. Out of three studies assessing T_{max} , one found no significant difference in INH T_{max} between the DM and non-DM group , and two studies did not report comparative analysis [27, 37]. While one study reported concentrations to be negatively correlated with blood glucose [30], in two studies INH C_{max}/AUC was not correlated with FBG or HbA1c [26, 32]. In one study INH concentrations were inversely correlated with weight [22]. ### Pyrazinamide (Table 3) Pyrazinamide PK was reviewed in eight studies [21, 22, 27, 29, 30, 32, 35, 38], all of which were prospective PK studies. Patients in all studies except two were on 1500 mg PZA dosing, whilst one study used 1600 mg for patients >50 kg and 1200 mg for patients <50 kg [32] and other used 20-30 mg/kg [29]. Out of eight, four papers reported mean exposure to PZA; two reporting AUC₀₋₂₄ mg.h/L [32, 38], one AUC₀₋₈ mg.h/L [27] and one AUC₀₋₆ mg.h/L [21]. Mean exposure to PZA was significantly lower among DM participants in two studies [21, 27] and two studies with intensive sampling reported no significant difference in AUC₀₋₂₄ mg.h/L [32, 38]. Out of six studies reporting C_{max} three reported significantly lower C_{max} among DM compared to non-DM participants [21, 27, 30], which remained significant after adjustments for age, sex, and weight [21] and three studies reported no significant difference [22, 32, 38]. Three studies measured T_{max} and none reported a statistically significant difference in T_{max} between the DM and non-DM TB groups. No correlation between FBG and AUC/ C_{max} was observed in two studies [32, 38] whereas one study showed a negative correlation between plasma PZA concentrations and blood glucose [30]. In a population PK modelling study [29], increased apparent clearance was observed in TB-DM patients, most significantly in the group with patients >70 years and AUC₀₋₂₄ mg.h/L was decreased in the DM group >70 years. ## **Ethambutol (Table 4)** Three included studies assessed the effect of DM on EMB PK [22, 32, 38]. Two reported $AUC_{0.24}$ mg.h/L and T_{max} [32, 38], all reported C_{max} . None of the studies reported statistically significant difference in AUC, C_{max} , and T_{max} between the DM and non-DM groups. No correlation was seen between FBG and AUC/C_{max} in two studies [32, 38]. We identified no studies with PK modelling. ### Other agents (Table 5) Two studies assessed the effect of DM on other agents; cycloserine [41], linezolid [41] and moxifloxacin [24]. A retrospective cross-sectional study reviewing the cycloserine and linezolid drug levels at 2 h post-dose in routine practice found that 55% of the samples had below the lower limit of recommended cycloserine plasma concentrations and 17% had low linezolid concentrations [41]. DM patients had a lower cycloserine exposure, although this was not statistically significant, and there was no association between linezolid exposure and DM. In a recent retrospective study evaluating moxifloxacin PK, AUC_{0-24h} was shown to be significantly lower in patients with DM compared to age, sex and RIF matched TB patients without DM [24]. In line, peak and trough concentrations were also reduced in DM patients. Although the drug absorption, volume of distribution and T_{max} were comparable between TB-DM and TB patients, moxifloxacin clearance was increased in TB-DM patients. Comparison of area under the unbound drug concentration—time curve/minimal inhibitory concentration (MIC) ratio indicate that exposure was already low in the majority of control patients, but none of the DM patients had adequate exposure to moxifloxacin. ## Risk of bias assessment The risk of bias for each domain across all included studies is given in Supplementary material. Prospective studies were the most common study design contributing to the review question, except three studies where routinely collected TDM was used. While all studies have made a comparative analysis between DM and non-DM population, all studies had moderate to serious risk of bias in at least one domain. There was a high risk of bias for baseline confounders that may have influenced the outcome result. For example, 11 out of 21 studies did not match DM and non-DM groups according to age or sex. Non-adjustment of host factors may influence the plasma concentrations, making it challenging to relate outcomes of the results to the effect of DM alone. In addition, while most of the patients were on anti-diabetic medications, the degree of diabetic control was not provided in the majority of studies. This highlights the challenges in studying the PK of anti-TB medications in a patient population with complex background. Importantly, there was also high risk of measurement bias in all prospective studies except three where intensive sampling was conducted. As a result, evidence quality is influenced due to confounding and imprecision, limiting our practice recommendations. Overall, the existing body of literature examining PK of anti-TB medications among DM population is of medium quality. #### Discussion This systematic review provides a comprehensive account of the impact of DM on the PK of anti-TB medications. Our findings suggest that the limited available evidence to date is highly variable. While some studies showed lower plasma concentrations of TB medications among DM patients, we observed high variability in findings and significant heterogeneity among studies including study design and differences in demographics. Therefore, no recommendation can be made. There may be several reasons to explain this heterogeneity. Firstly, there were significant demographic differences including weight, age and DM definitions. Increased body surface area distribution and delayed drug absorption due to DM related gastroparesis and changes in expression of enzymes involved in metabolism [49, 50] are major factors that may contribute to altered PK [15, 16]. DM patients had higher weight and/or BMI compared to nondiabetic patients and some studies demonstrated a negative association between weight and plasma concentrations. The only study that matched based on weight (within 5 kg) [38] found no significant difference of RIF plasma concentrations between groups. However, matching weight is unlikely to eliminate potential biases as DM participants continued to receive capped dosing despite weight differences and were also generally older than non-DM controls. Unclear DM definitions may also explain the variability. In many studies DM diagnosis was based on self-report. This is specifically important as self-reporting may not be accurate and secondly, TB could lead to stress-induced hyperglycaemia, which resolves after TB treatment [51]. Screenning DM at the time of TB diagnosis may result in some with transient hyperglycaemia being identified as DM. Therefore, a standard measure of DM consistently defined and reported in PK studies in line with the UNION
criteria [52] would facilitate a better assessment of the plasma concentrations [53]. Nevertheless, patients with transient hyperglycaemia may also be at risk of lower plasma concentrations. For instance, in a study from Uganda, FPG was inversely correlated 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 with RIF AUC_{0-24h} [54]. In addition, quality of diabetes control or treatment was poorly reported in most studies, which may have influenced the results. PK sampling methodology and analysis varied widely. Studies with a single 2 hr sampling point assume T_{max} to occur at 2 hrs (C_{max}). As T_{max} was longer for rifampicin in some studies, studies without intensive sampling may not accurately capture the C_{max}. Notably, 3 studies with intensive sampling [31, 32, 38] showed no differences in rifampicin or pyrazinamide C_{max}, but a significant difference in isoniazid C_{max} (27). However, it is important to note T_{max} is highly variable for RIF in general [55] Particularly affecting the isoniazid studies, dosing differed markedly, with 4 out of 9 papers using 600 mg 3 times/week, which is no longer a recommended dosing, making the comparison between the studies and the generalisation of the results more difficult. Only four out of 9 studies made any assessment of NAT2 acetylator status. As this is recognised as a key variable in isoniazid PK, this is likely to confound any other comparison of variables [56]. Plasma concentrations of TB medications may affect the clinical outcome. Zheng et al [57] showed an association between plasma concentrations of first line anti-TB drugs and culture conversion and clinical outcomes and Alfarisi et al. [21] demonstrated a positive association between time to culture conversion and INH and RIF concentrations and negatively association with PZA levels in DM patients. In another retrospective study, where all DM patients underwent TDM and dose adjustment accordingly, time to culture conversion improved significantly greater among DM patients with the post-intervention group that converted on average 19 days earlier [58]. We identified another systematic review assessing the impact of DM on the PK of rifampicin among TB patients [59]. The review included studies published up until September 2020 and identified seven studies from which pooled estimates were calculated. The same authors updated their systematic review including studies with C_{max} at 2hr [60], and identified 17 studies reporting RIF plasma concentrations. Our review considers studies published up to July 2023 with a comprehensive systematic search; therefore, we were able to identify 16 papers assessing the PK of RIF. 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 No conflict of interests reported. To our knowledge, this is the first review to comprehensively examine the impact of DM on the PK of TB drugs. Our study has limitations. Firstly, we identified a limited number of PK studies among DM patients despite a comprehensive literature search. Secondly, due to the substantial study heterogeneity we were unable to pool data. Finally, we did not include general PK studies reporting on TB-DM patients as a subgroup as detailed and comparative PK parameters for DM vs non-DM patient populations weren't available. This review provides detailed understanding about the evidence available so far on PK of anti-TB drugs in patients with DM. There is some evidence that PK, especially among DM patients, may have clinical relevance in terms of MIC and culture conversion. However, significant heterogeneity observed in studies and the scarcity of data on clinical outcomes, it is challenging to make recommendations about dosing in the TB-DM population. Given the relationship of delayed culture conversion and relapse, clinical outcomes should be explored in future PK studies. In order to achieve definitive answers for PK in DM population, we recommend important considerations as in Table 6. Until we have further information to guide the management of TB-DM patients, TDM and dose adjustment may be beneficial in patients with DM. Acknowledgements This work was supported by the Chief Scientist Office (CAF/20/03) and British Infection Association (Grant/2022/SPG/MC) received by MC. **Author contributions** MC and SHG conceptualized the scope of the review. MC and AS pulled the data from selected papers. All authors contributed to the final version of the manuscript and approved it for publication. **Declaration of Interests** #### References: 351 352 - 353 1. WHO. World Health Organization, Global tuberculosis report 2022 - 354 . Available at: https://www.who.int/publications/i/item/9789240061729. - Koesoemadinata RC, McAllister SM, Soetedjo NNM, et al. Latent TB infection and pulmonary TB disease among patients with diabetes mellitus in Bandung, Indonesia. Trans R Soc Trop Med Hyg 2017; 111(2): 81-9. - 358 3. Foe-Essomba JR, Kenmoe S, Tchatchouang S, et al. Diabetes mellitus and tuberculosis, a systematic review and meta-analysis with sensitivity analysis for studies comparable for confounders. PLoS One **2021**; 16(12): e0261246. - Al-Rifai RH, Pearson F, Critchley JA, Abu-Raddad LJ. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One 2017; 12(11): e0187967. - Baker MA, Harries AD, Jeon CY, et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med **2011**; 9: 81. - Salindri AD, Kipiani M, Kempker RR, et al. Diabetes Reduces the Rate of Sputum Culture Conversion in Patients With Newly Diagnosed Multidrug-Resistant Tuberculosis. Open Forum Infect Dis 2016; 3(3): ofw126. - Huangfu P, Ugarte-Gil C, Golub J, Pearson F, Critchley J. The effects of diabetes on tuberculosis treatment outcomes: an updated systematic review and meta-analysis. Int J Tuberc Lung Dis 2019; 23(7): 783-96. - 372 8. Dong Z, Shi J, Dorhoi A, et al. Hemostasis and Lipoprotein Indices Signify Exacerbated Lung Injury in TB With Diabetes Comorbidity. Chest **2018**; 153(5): 1187-200. - Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract **2018**; 138: 271-81. - 10. Collaboration NCDRF. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet **2016**; 387(10027): 1513-30. - Noubiap JJ, Nansseu JR, Nyaga UF, et al. Global prevalence of diabetes in active tuberculosis: a systematic review and meta-analysis of data from 2.3 million patients with tuberculosis. Lancet Glob Health **2019**; 7(4): e448-e60. - Pan SC, Ku CC, Kao D, Ezzati M, Fang CT, Lin HH. Effect of diabetes on tuberculosis control in 13 countries with high tuberculosis: a modelling study. Lancet Diabetes Endocrinol 2015; 3(5): 323-30. - Harries AD, Kumar AM, Satyanarayana S, et al. Addressing diabetes mellitus as part of the strategy for ending TB. Trans R Soc Trop Med Hyg **2016**; 110(3): 173-9. - 386 14. WHO Integrated care for tuberculosis (TB) and diabetes mellitus (DM) comorbidity in Asian countries: health system challenges and opportunities 388 **, 2022**. - Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet **2012**; 51(8): 481-99. - 391 16. Gwilt PR, Nahhas RR, Tracewell WG. The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clin Pharmacokinet **1991**; 20(6): 477-90. - 393 17. Gillespie SH. Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob Agents Chemother **2002**; 46(2): 267-74. - 395 18. Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ **2016**; 355: i4919. - 397 19. Gafar F, Wasmann RE, McIlleron HM, et al. Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents: a systematic review and individual patient data meta-analysis. Eur Respir J **2023**; 61(3). - Campbell M, McKenzie JE, Sowden A, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ **2020**; 368: 16890. - 402 21. Alfarisi O, Mave V, Gaikwad S, et al. Effect of Diabetes Mellitus on the Pharmacokinetics and Pharmacodynamics of Tuberculosis Treatment. Antimicrob Agents Chemother **2018**; 404 62(11): 11. - 405 22. Babalik A, Ulus IH, Bakirci N, et al. Plasma concentrations of isoniazid and rifampin are decreased in adult pulmonary tuberculosis patients with diabetes mellitus. Antimicrob Agents Chemother **2013**; 57(11): 5740-2. - Chang MJ, Chae JW, Yun HY, et al. Effects of type 2 diabetes mellitus on the population pharmacokinetics of rifampin in tuberculosis patients. Tuberculosis (Edinb) **2015**; 95(1): 54-410 9. - Dekkers BGJ, Bolhuis MS, Beek LT, et al. Reduced moxifloxacin exposure in patients with tuberculosis and diabetes. European Respiratory Journal **2019**; 54(3) (no pagination). - Fonseca AAD, Pinto ACG, Paixao TPD, Alberio CAA, Vieira JLF. Can diabetes mellitus modify the plasma concentrations of rifampicin in patients under treatment for tuberculosis? Brazilian Journal of Infectious Diseases **2020**; 24(4): 352-5. - 416 26. Galvao FES, Fonseca AAD, Pinto ACG, da Paixao TP, Alberio CAA, Vieira JLF. No 417 significant influence of diabetic mellitus on isoniazid plasma levels in patients under 418 treatment for tuberculosis. Infectious Diseases **2020**; 52(8): 577-80. - 419 27. Hemanth Kumar AK, Kannan T, Chandrasekaran V, et al. Pharmacokinetics of thrice-420 weekly rifampicin, isoniazid and pyrazinamide in adult tuberculosis patients in India. Int J 421 Tuberc Lung
Dis **2016**; 20(9): 1236-41. - Heysell SK, Moore JL, Keller SJ, Houpt ER. Therapeutic drug monitoring for slow response to tuberculosis treatment in a state control program, Virginia, USA. Emerg Infect Dis **2010**; 16(10): 1546-53. - 425 29. Kim R, Jayanti RP, Kim HK, et al. Development of a population pharmacokinetic model of pyrazinamide to guide personalized therapy: impacts of geriatric and diabetes mellitus on clearance. Front Pharmacol **2023**; 14 (no pagination): 1116226. - 428 30. Kumar AK, Chandrasekaran V, Kannan T, et al. Anti-tuberculosis drug concentrations in tuberculosis patients with and without diabetes mellitus. Eur J Clin Pharmacol **2017**; 73(1): 65-70. - 431 31. Medellin-Garibay SE, Cortez-Espinosa N, Milan-Segovia RC, et al. Clinical 432 Pharmacokinetics of Rifampin in Patients with Tuberculosis and Type 2 Diabetes Mellitus: 433 Association with Biochemical and Immunological Parameters. Antimicrob Agents 434 Chemother 2015; 59(12): 7707-14. - 435 32. Mtabho CM, Semvua HH, van den Boogaard J, et al. Effect of diabetes mellitus on TB drug concentrations in Tanzanian patients. J Antimicrob Chemother **2019**; 74(12): 3537-45. - Nijland HM, Ruslami R, Stalenhoef JE, et al. Exposure to rifampicin is strongly reduced in patients with tuberculosis and type 2 diabetes. Clin Infect Dis **2006**; 43(7): 848-54. - 439 34. Perea-Jacobo R, Muniz-Salazar R, Laniado-Laborin R, Cabello-Pasini A, Zenteno-Cuevas R, Ochoa-Teran A. Rifampin pharmacokinetics in tuberculosis-diabetes mellitus patients: a pilot study from Baja California, Mexico. Int J Tuberc Lung Dis **2019**; 23(9): 1012-6. - 442 35. Ramachandran G, Chandrasekaran P, Gaikwad S, et al. Subtherapeutic rifampicin concentration is associated with unfavorable tuberculosis treatment outcomes. Clin Infect Dis **2020**; 70(7): 1463-70. - 445 36. Requena-Mendez A, Davies G, Ardrey A, et al. Pharmacokinetics of rifampin in Peruvian tuberculosis patients with and without comorbid diabetes or HIV. Antimicrob Agents Chemother **2012**; 56(5): 2357-63. - 448 37. Requena-Mendez A, Davies G, Waterhouse D, et al. Effects of dosage, comorbidities, and food on isoniazid pharmacokinetics in Peruvian tuberculosis patients. Antimicrob Agents Chemother **2014**; 58(12): 7164-70. - Ruslami R, Nijland HM, Adhiarta IG, et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother **2010**; 54(3): 1068-74. - Samuel Gideon George P, Saranya P. Effect of patient-specific variables on rifampicin peak serum concentration. Drug Invention Today **2018**; 10(3): 290-6. - 456 40. Saranya P, Parthasarathy V, Hariprasad B, Shobha Rani H. Effect of diabetes mellitus on rifampicin peak serum concentration. International Journal of Pharmacy and Pharmaceutical Sciences **2016**; 8(10): 149-52. - 459 41. Zhu H, Guo SC, Liu ZQ, et al. Therapeutic drug monitoring of cycloserine and linezolid during anti-tuberculosis treatment in Beijing, China. Int J Tuberc Lung Dis **2018**; 22(8): 931-6. - 462 42. Chang MJ, Shin W, Song J, et al. The pharmacokinetics of four standard anti-tuberculosis drugs in tuberculosis patients with diabetes mellitus. Respirology **2009**; 3): A231. - 464 43. Mtabho C, Semvua H, Kibiki G, Tostmann A, Aarnoutse R. The effect of diabetes mellitus on the pharmacokinetics of tuberculosis drugs in Tanzanian patients. Tropical Medicine and International Health **2015**; 1): 23. - 44. Nijland H, Ruslami R, Stalenhoef J, et al. Exposure to rifampicin is reduced by 53% in tuberculosis patients with Diabetes Mellitus. Br J Clin Pharmacol **2006**; 62(6): 730-. - 469 45. Mendez AR, Moore DAJ, Davies G. Improving management of TB in the tropics 470 Rifampicin pharmacokinetics in peruvian tuberculosis patients with and without co-morbid diabetes or HIV. Tropical Medicine and International Health 2011; 1): 62. - 472 46. Kim R, Jayanti R, Jang T, et al. Development of Population Pharm Aco Kin Etics Model of 473 Pyrazinamide and Optimal Dose Recommendation for Elderly with Diabetes Mellitus in 474 Korean Tuberculosis Patients. Clinical Pharmacology and Therapeutics **2023**; 475 113(Supplement 1)(S1): S94. - 476 47. Christopher DJ, Jedidiah D, Isaac B, Mathew B, Winston B. Anti-tubercular drug concentrations in pulmonary tuberculosis patients-diabetic vs non-diabetic groups. European Respiratory Journal Conference: 29th International Congress of the European Respiratory Society, ERS Madrid Spain 2019; 54(Supplement 63). - 480 48. Peloquin CA, Velasquez GE, Lecca L, et al. Pharmacokinetic Evidence from the HIRIF 481 Trial To Support Increased Doses of Rifampin for Tuberculosis. Antimicrob Agents 482 Chemother **2017**; 61(8). - 483 49. Kuppusamy UR, Indran M, Rokiah P. Glycaemic control in relation to xanthine oxidase and antioxidant indices in Malaysian Type 2 diabetes patients. Diabet Med **2005**; 22(10): 1343-485 6. - Dash RP, Ellendula B, Agarwal M, Nivsarkar M. Increased intestinal P-glycoprotein expression and activity with progression of diabetes and its modulation by epigallocatechin-3-gallate: Evidence from pharmacokinetic studies. Eur J Pharmacol **2015**; 767: 67-76. - 489 51. Ugarte-Gil C, Alisjahbana B, Ronacher K, et al. Diabetes mellitus among pulmonary 490 tuberculosis patients from four TB-endemic countries: the TANDEM study. Clin Infect Dis 491 **2019**. - 492 52. Lin Yan ADH, Ajay M V Kumar, Julia A Critchley, Reinout van Crevel, Philip Owiti, Riitta 493 A Dlodlo, Anders Dejgaard. MANAGEMENT OF DIABETES MELLITUS 494 TUBERCULOSIS A GUIDE TO THE ESSENTIAL PRACTICE - 495 , **2019**. - 496 53. LinY HAD, Kumar A MV, Critchley J A, van Crevel R, Owiti P, Dlodlo R A, Dejgaard A. 497 Management of diabetes mellitus-tuberculosis: a guide to the essential practice. International 498 Union Against Tuberculosis and Lung Disease 2019. - Wyrsch F, von Braun A, Sekaggya-Wiltshire C, et al. Hyperglycaemia and pharmacokinetics of rifampicin/isoniazid among TB-HIV co-infected patients in Kampala, Uganda. Int J Tuberc Lung Dis 2020; 24(12): 1234-40. - 502 55. Sturkenboom MG, Mulder LW, de Jager A, et al. Pharmacokinetic Modeling and Optimal Sampling Strategies for Therapeutic Drug Monitoring of Rifampin in Patients with Tuberculosis. Antimicrob Agents Chemother **2015**; 59(8): 4907-13. - 505 56. Hong BL, D'Cunha R, Li P, et al. A Systematic Review and Meta-analysis of Isoniazid Pharmacokinetics in Healthy Volunteers and Patients with Tuberculosis. Clin Ther **2020**; 42(11): e220-e41. - 508 57. Zheng X, Bao Z, Forsman LD, et al. Drug Exposure and Minimum Inhibitory Concentration 509 Predict Pulmonary Tuberculosis Treatment Response. Clin Infect Dis **2021**; 73(9): e3520-510 e8. - 511 58. Alkabab Y, Keller S, Dodge D, Houpt E, Staley D, Heysell S. Early interventions for diabetes related tuberculosis associate with hastened sputum microbiological clearance in Virginia, USA. BMC Infect Dis **2017**; 17(1): 125. - 514 59. Metwally AS, El-Sheikh SMA, Galal AAA. The impact of diabetes mellitus on the 515 pharmacokinetics of rifampicin among tuberculosis patients: A systematic review and meta-516 analysis study. Diabetes Metab Syndr **2022**; 16(2): 102410. - 517 60. El-Sheikh SMA, Metwally AS, Galal AAA. Impact of diabetes mellitus on rifampicin's 518 plasma concentration and bioavailability in patients with tuberculosis: A systematic review 519 and meta-analysis study. Therapie **2023**; 78(3): 313-24. Figure 1. Flowchart describing study selection From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097 | | mai | Пріспі | | | | | | | | | | | 3 | | | | | | |----------------------------------|-----------|--|--|--|---|---|-------------|---|--|--|--|--
--|---|---|---|---|--| | | | | | | | | | | | | | | medRxiv prepri
(which was | | | | | | | Study | Country | Study Design | Number
(DM/Total) | Age | Sex | Weight | Sampling | TB Treatment
Phase | Dose (mg) | Regimen | TB Diagnosis | DM Diagnosis | ⇒ ⊋ | AUC | T _{max} (Hrs) | DM Control | DM Treatment | Other PK | | Nijland
2006 | Indonesia | Prospective PK | 17/34 | Matched
Median 50
(DM) v 48
(nonDM) | Matched
(59% male) | Significantly higher
in DM group
(median kg 55.6
versus 46.2 p0.01) | 2/4/6 hr | Continuation | 450 | Rifampicin 450mg
Isoniazid 300mg
3x week | Pulmonary
Microbiologically
confirmed | Known
Screening via
FBGx2 | mg/L Significantly I of the property pr | Significantly lower in DM group 12.3 (8.0-24.2) DM v | T _{max} longer in
DM group, but
not significant
Median 4 (2-6
range) DM v 2
(2-4) nonDM,
p0.52 | Median HbA1c
9.85%
Median FBG
9.3mmol/L | 71% on oral
antidiabetic meds.
No metformin or
insulin | Body weight, raised FBG, DM inversely correlated with AUC/C _{max} on MV analysis | | Ruslami
2010 | Indonesia | Prospective PK | 17/34 | Significantly
higher DM
group
Mean 47
(DM) versus
35 (nonDM)
p0.00 | Matched
(42% male) | Matched (within
5kg)
(mean 47.3kg both
groups) | Intensive | Intensive | 450 | Rifampicin 450mg
Isoniazid 300mg
Pyrazinamide 1500mg
Ethambutol 750mg
Daily | Pulmonary | Known (60%)
Screening via
WHO criteria
(40%) | mg/L No difference 12.3 95% CD 13.3 08. 9.6 (8.4-11.3) nonDM po. 86 and no | No difference
Mean 49.0 (40.9-
58.7) DM v 50.6
(42.9-59.8) nonDM | No difference
Median 2 (0.5-4
range) DM v 2.5
(1-4) nonDM
p0.28 | Mean HbA1c
11.1%
Median FBG
16.6mmol/L | None | No correlation between FBG and AUC/C _{max}
10 DM cases treated with insulin to
achieve glycaemic control, with PK
repeated 6 weeks later – non-significant
change in AUC/other PK
Has further detailed PK if needed | | Heysell
2010 | USA | Retrospective
cohort using
routinely
collected data
TDM carried
out for patients
defined as 'slow
to respond' | 17/42 | 36% 18-39,
36% 40-54,
28% >65
Total group –
no
breakdown
for DM | 67% male of
total group (nil
breakdown for
DM) | Unknown | 2 hr | Unknown | Unknown | Rifampicin
Isoniazid
Pyrazinamide
Ethambutol
Some daily, some 2x
week R/H | Pulmonary or
extrapulmonary
Microbiologically
confirmed | Unknown | C _{max} defined and posted Augusta Commanda Response Commanda Comma | | NA | Unknown | Unknown | No quantitive C _{max} data available comparing DM and non-DM groups | | Requen
a-
Mendez
2012 | Peru | Prospective
comparing DM
group, HIV
group and non-
DM/HIV group | 26/105
(29 HIV, 50
nonDM/
nonHIV) | Significantly
higher in DM
group
(51.3 versus
31.1
nonDM/HIV) | 65.4% male DM
group, 48.0%
nonDM/HIV) | BMI reported rather
than weight.
Significantly higher
in DM group (27.5
versus 23.3
nonDM/nonHIV
group) | 2hr, 6hrs | 1 time point for
each case,
61/105
intensive,
44/105
continuous
(50% each in
DM group) | 10mg/kg
to
maximum
600 | Rest of regimen not stated x6/week dosing in intensive, x2/week in continuation | 87% pulmonary,
77/105
microbiologically
confirmed | Known | mg/L mg/L highest of All licerse to Obyright holder for Mary and M | | 6hrs rather
than 2hrs in
62.2% cases (no
association
with DM) | Median HbA1c
8.3% | Unknown | Majority of patients with concentrations lower than therapeutic range – no particular association with DM. | | Babalik
2013 | Turkey | Prospective | 14/70 | Significantly
higher in DM
group
(56.5yrs
versus 39.0,
p0.001) | 86% DM group
male, versus
61% non-DM
(p0.116 | DM group
significantly heavier
(68.7kg versus
56.7kg, p0.001) | 2hr4 | Intensive at 14
and 30 days
after starting
treatment | 600 | 600 Rifampicin
300 Isoniazid
1500 Pyrazinamide
1000 Ethambutol
Daily | Pulmonary, 89%
culture confirmed | Known | • | NA | NA | Mean HbA1c
6.1% (only
included if
HbA1c <6.5%) | On treatment | Concentration inversely correlated with weight | | Chang
2015 | Korea | Prospective
with analysis
using
population PK | 21/54 | Median 55
(20-92 range)
for whole
group, no
breakdown
of DM group | 63% male
whole group,
no breakdown
DM group | Mean 53.96kg whole
group, no
breakdown DM
group | 1,2,4,6hrs | Intensive | 10 mg/kg
(up to 450
mg or 600
mg) | Rifampicin 10 mg/kg
(max 450 mg or 600
mg)
Isoniazid 5 mg/kg (max
300 mg or 400 mg)
Pyrazinamide 15-30
mg/kg (max 1500 mg)
Ethambutol 15-20
mg/kg (max 800 mg,
1000 mg or 1200 mg)
Daily | Combination dinical/radiologic al/microbiological | FBG >126 mg/dl
or post-prandial
glucose levels
>200 mg/dl | NA | NA | NA | Mean fasting
blood glucose
154.8 mg/dL | Unknown | ka (absorption rate constant) significantly increased in DM group (2.81 hr-1, versus 1.33, p<0.05) Vd (volume of distribution) significantly increased in DM group (76.3L versus 46.1, p<0.05) Infer from increased Vd in DM group, that plasma concentration would be lower in DM group | | Medelli
n-
Garibay
2015 | Mexico | Prospective
intensive PK
with additional
immunology
study | 24/48 | DM group
older
Median 52.2
versus 37.3 | Matched | Higher median BMI
in DM group
(23.3 versus 21.6) | Intensive | Intensive | 450 if
<50kg
600 if
>50kg | Rifater
450/600 Rifampicin
225/300 Isoniazid
1200/1600
Pyrazinamide
(Weight 50kg)
per tablet | Microbiologically
confirmed | Known or
screened:
fasting glucose
>126 mg/dl or
HbA1c >6.5% | Mg/L No significant difference Median Cmax DM group 12.10 ± 5.1 versus 11.41 ± 3.8, p0.44 | AUC 0-24 (mg.hr.L)
No significant
difference
Median DM group
97.52 ± 36.7 versus
82.60 ± 35.5, p0.17 | Significantly increased in Dm group Median DM 2.98 ± 1.9 versus 2.32 ± 1.4 | Median HbA1c
9.02% | 63% on treatment | No difference in ka or VD between TB and TBDM group in 1 compartment model, but reduced clearance in Dm group Tlag significantly increased in Dm group Tlag positively correlated with increased HbA1c, Cmax negatively correlated with increased fasting glucose | | Hemant
h Kumar
2016 | India | Prospective PK
to assess x3
weekly
regimen, with | 23/101 | Median age
34 (no
breakdown
of Dm group) | 65.3% male (no
breakdown of
Dm group) | BMI significantly
higher in Dm group
(20.3 versus 18.4,
p0.021) | 2,4,6,8 hrs | Intensive | 450 (600 if >60kg) | Rifampicin 450/600
Isoniazid 600
Pyrazinamide 1500
Ethambutol 1200 | Pulmonary or EP | Known or random
blood glucose
>200 µg/mL | μg/mL
No significant
difference
Median DM 5.7 | AUC 0-8 μg/ml.hr
No significant
difference
Median DM 27.6 | 2hrs for whole
group – no
analysis
comparing DM | Unknown | Unknown | DM not significant as a factor on multivariate analysis (Cmax and AUC) | | | | DM as one | | | | | | | | +/- Streptomycin 750 |
 | (4.2 – 7.1) ver 50 5€. | (22 0 27 2) vorsus | to nonDM | | | | |------------------------------------|----------|--|----------|--|---|---|--------------|-------------------------------------|-----------------------------------|---|---|---|--|--|---|---|---|---| | | | covariate | | | | | | | | 3x weekly | | | nonDM 4.9 (3.2. V)
6.6), p0.24 | (22.0-37.3) versus
nonDM 27.9 (20.0-
32.7), p0.35 | to nonDivi | | | | | Saranya
2016 | India | Prospective PK | 20/45 | DM group
older
Mean 46.6 v
42.4 | 68.9% male (no
breakdown of
DM group) | Weight not
significantly
different between
DM and nonDM
(p=0.544), 89.9%
total <50kg | 2hr | Not specified | Not
specified | Not specified | Pulmonary | Unknown | C2hr only Significantly lower: https://doi nDM group No absolute numbers give@d by | NA | NA | Unknown | 83% on insulin
and metformin | Cmax negatively correlated with RBG | | Kumar
2017 | India | Prospective
multicentre | 452/1912 | DM
significantly
older
(median age
DM 48yr
versus 34,
p<0.001) | Significantly
more men in
Dm group
(73.5% versus
65.7, p0.002 | BMI significantly
higher in DM group
(20.4 versus 18.2,
p<0.001) | 2hr | Intensive | 450 (600 if
>60 kg) | Rifampicin 450/600
Isoniazid 600
Pyrazinamide 1500
Ethambutol 1200
+/- Streptomycin 750
3x weekly | Pulmonary or EP | Known or random
blood glucose
>200 µg/mL
(16% new) | pg/mL
C2hr only
No significant review of the control contro | NA | NA | Median random
blood glucose
263.5 mg/dL | Majority of
diabetes group on
treatment | | | Alfarisi
2018 | India | Prospective
cohort, both PK
and PK-PD | 101/243 | DM
significantly
older
(median age
48 versus 26,
p<0.001) | Significantly
more men in
DM group (77%
versus 61%,
p<0.001) | Weight significantly
increased in DM
group (50.8kg versus
45kg, p<0.001) | 0.5,2,6hrs | x1 intensive
x1 continuation | 450 | Rifampicin 450 Isoniazid 600 Pyrazinamide 1500 Ethambutol 1200 3x weekly Rif/Iso alone in continuation (3x weekly) | Pulmonary | Known or HbA1c
>6.5%, fasting
blood glucose
concentration
>126 mg/dl, or
random
blood glucose
>200 mg/dl | me/mL all the author all the author all the author author all the | No significant
difference
Intensive: mean DM
12.19, nonDM 15.34,
p0.11
Continuation: mean
DM 14.56, nonDM
11.13 p0.14 | NA | Median HbA1c
at baseline
8.9% | 44.6% on
metformin | | | Samuel
Gideon
George
2018 | India | Prospective PK | 24/60 | Mean
44.78yrs (no
breakdown
of DM group) | 71.7% male (no
breakdown of
DM group) | Weight significantly
increased in DM
group (mean
50.87kg versus
42.36kg, p<0.001) | 2hr | Intensive | 450/600
(?weight
cut off) | Rifampicin 450/600
Isoniazid
Pyrazinamide
Ethambutol
3x weekly
Doses not specified | Pulmonary, smear
and radiologically
positve | Not stated | po.17 has gradient possible. Au carried the carried that | NA | NA | Unknown | Unknown | Cmax negatively correlated with RBG | | Mtabho
2019 | Tanzania | Prospective PK | 19/39 | DM
significantly
older
(median age
50yrs versus
38, p0.001) | No difference in
groups (79%
male in DM
group versus
75%) | No difference in
weight (58kg DM
versus 55% non,
p0.258) | Intensive | Intensive | 600
(>50kg),
450
(<50kg) | Rifampicin 600/450
Isoniazid 300/225
Pyrazinamide
1600/1200
Ethambutol 1100/825
Weight cut off 50kg
Daily | Clinical/radiologic
al/microbiological | Known or fasting
glucose
>7mmol/L | mg/L stogust 29 No significant a lici 20 si | DM group but not
significant
Mean DM 29.9 (6.4-
69.7), nonDM 39.9 | Significantly
longer in DM
Median DM
2.1hrs versus
1.1hrs, p0.02 | Median HbA1c
111mmol/mol | 84% on oral
medications | Cmax/AUC not associated with fasting glucose or HbA1c results | | Perea-
Jacobo
2019 | Mexico | Prospective PK | 16/30 | DM
significantly
older (mean
age 46.6yrs
versus 37.2,
p0.018) | No difference
between
groups (75%
male DM group
versus 71%) | No difference in BMI
(Mean DM 23.6
versus 22.3, p0.323) | 2.5,6,24 hrs | Intensive | 600 | Rifampicin 600
Isoniazid 300
Pyrazinamide 1600
Ethambutol 1200
Daily | Pulmonary and
extrapulm, micro
confirmed | Fasting glucose
>126 mg/dl or
HbA1c >6.5% | Hg/ML No significant the Copyright No significant the Mean DM 4.1e 97 ep 3.0, nonDM 5.8, p0.37 | No significant difference Mean DM 14.3 ± 7.5, nonDM 21.6 ± 16.3, | No significant
difference
Mean DM 5.6 ±
7.3, nonDM 4.0
± 6.1, p0.50 | Unknown | 88% on treatment | | | Fonseca
2020 | Brazil | Prospective PK | 26/62 | No
difference
(median
39yrs versus
44) | 100% | Weight significantly
higher in DM group
(Median 64kg versus
54kg) | 2hrs | Intensive/
Continuation
(D61) | 600 | Rifampicin 600
Isoniazid 300
Pyrazinamide 1600
Ethambutol 1100
Daily
R/H only in
continuation | Pulmonary,
clinical, radio,
micro | Fasting glucose
>126 mg/dl or
HbA1c >6.5% | µg/mL int in Qer for the C2hr only No significant perpending the Garage Median DM 6.0 € Perpending the Garage No.37 | NA | NA | Median HbA1c
9.6% | 15% on treatment | No association between concentrations and HbA1c or FBG | | Ramach
andran
2020 | India | Prospective PK, specifically looking at association between C _{2hr} and outcomes. | 113/404 | Median age
40, no
breakdown
of DM group | 64, no
breakdown DM
group | BMI
Median 17.8, no
breakdown DM
group | 2hrs | Intensive and
Continuation | 450/600 if >60kg | R 450/600
H 600
Z 1500
E 1200
3x weekly
CP: R/H | Pulmonary | Known or HbA1c
>6.5%, or RBG
>200 mg/dl | µg/mL C _{2hr} No significant difference I: Median 3.64 (1.78- 6.58 IQR) v 3.47 (1.33- 6.40), p0.49 C: 5.91 (2.13-9.51) v 4.41 (1.65-7.46), p0.07 | NA | NA | Unknown | Unknown | | medRxiv preprint doi: https://doi.org/10.1101/2023.08.29.23294656; this version posted August 29, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. | Study | Country | Study Design | Number | Age | Sex | Weight | Sampling | TB Treatment Phase | Dose (mg) | Regimen | TB Diagnosis | DM Diagnosis | C _{max} | AUC | T _{max} (Hrs) | DM Control | DM Treatment | Other PK | |--------------------------|-----------|--|---------------------|--
--|---|---|--|-------------------------------------|---|---|--|--|---|---|--|---|--| | Ruslami
2010 | Indonesia | Prospective
PK | (DM/Total)
18/36 | Significantly
higher DM group
Mean 47 (DM)
versus 35
(nonDM) p0.00 | Matched
(42% male) | Matched
(mean 47.3kg
both groups) | Intensive | Intensive | 1500 | Rifampicin 450mg
Isoniazid 300mg
Pyrazinamide 1500mg
Ethambutol 750mg | Pulmonary | Known (60%)
Screening via
WHO criteria
(40%) | mg/L
No difference
Mean 45.5 (41.6- by 49.3 95% CI) DM y 47.0 (44.1-50.1) po 647 | 455) DM v 468
(422-519) nonDM | No difference
Median 1 (0.5-4
range) DM v 1.5
(0.5-6) nonDM
p0.61 | Mean HbA1c
11.1%
Median FBG
16.6mmol/L | None | No correlation between FBG and AUC/C _{max}
10 DM cases treated with insulin to achieve
glycaemic control, with PK repeated 6
weeks later – non significant change in
AUC/other PK | | Babalik
2013 | Turkey | Prospective | 14/70 | Significantly
higher in DM
group (56.5yrs
versus 39.0,
p0.001) | 86% DM
group male,
versus 61%
non-DM
(p0.116 | DM group
significantly
heavier (68.7kg
versus 56.7kg,
p0.001) | 2hr | Intensive at 14 and
30 days after
starting treatment | 1500 | 600 Rifampicin
300 Isoniazid
1500 Pyrazinamide
1000 Ethambutol
Daily | Pulmonary,
89% culture
confirmed | Known | C2hr only No significant difference at D34 Wey and D30 (day 1% 00 00 00 00 00 00 00 00 00 00 00 00 00 | NA NA | NA | Mean HbA1c
6.1% (only
included if
HbA1c
<6.5%) | On treatment | | | Hemanth
Kumar
2016 | Indi a | Prospective
PK to assess
x3 weekly
regimen,
with DM as
one covariate | 23/101 | Median age 34
(no breakdown of
Dm group) | 65.3% male
(no
breakdown
of Dm group) | BMI
significantly
higher in Dm
group (20.3
versus 18.4,
p0.021) | 2,4,6,8 hrs | Intensive | 1500 | Rifampicin 450/600
Isoniazid 600
Pyrazinamide 1500
Ethambutol 1200
+/- Streptomycin 750
3x weekly | Pulmonary or
EP | Known of
random blood
glucose >200
μg/mL | hg/mL Significantly lower of the Mary t | AUC 0-8 µg/ml.hr Significantly lower in DM group Median DM 192.6 (158.4-230.4) versus nonDM 232.3 (206.0- 256.1-61.1), p<0.001 DM non- significant on multivariate analysis | 2hrs for whole
group – no
analysis
comparing DM to
nonDM | Unknown | Unknown | | | Kumar
2017 | India | Prospective
multicentre | 452/1912 | DM significantly
older (median age
DM 48yr versus
34, p<0.001) | Significantly
more men in
Dm group
(73.5%
versus 65.7,
p0.002 | BMI
significantly
higher in DM
group (20.4
versus 18.2,
p<0.001) | 2hr | Intensive | 1500 | Rifampicin 450/600
Isoniazid 600
Pyrazinamide 1500
Ethambutol 1200
+/- Streptomycin 750
3x weekly | Pulmonary or
EP | Known or
random blood
glucose >200
μg/mL
(16% new) | µg/mL C2hr only DM significantly licenses Nedian DM 31 05 00 0 display (22.3-38.0), nome of carry p<0.001 DM remained significant independent factors on linear regression | NA The second | NA | Median
random
blood
glucose
263.5 mg/dL | Majority of
diabetes group
on treatment | Concentration negatively correlated with blood glucose | | Alfarisi
2018 | India | Prospective
cohort, both
PK and PK-PD | 101/243 | DM significantly
older
(median age 48
versus 26,
p<0.001) | Significantly
more men in
DM group
(77% versus
61%,
p<0.001) | Weight
significantly
increased in
DM group
(50.8kg versus
45kg, p<0.001) | 0.5,2,6hrs | x1 intensive
x1 continuation | 1500 | Rifampicin 450 Isoniazid 600 Pyrazinamide 1500 Ethambutol 1200 3x weekly Rif/Iso alone in continuation (3x weekly) | Pulmonary | Known or
HbA1c >6.5%,
fasting blood
glucose
concentration
>126 mg/dl, or
random
blood glucose
>200 mg/dl | μg/mL OF C
Significantly lower in C
DM group, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | AUCO-6 µg.hr/ml Significantly lower in DM group, remaining significant on adjustment Mean DM 80.89, | | Median
HbA1c at
baseline
8.9% | 44.6% on
metformin | | | Mtabho
2019 | Tanzania | Prospective
PK | 19/39 | DM significantly
older (median age
50yrs versus 38,
p0.001) | No
difference in
groups (79%
male in DM
group versus
75%) | No difference in
weight (58kg
DM versus 55%
non, p0.258) | Intensive | Intensive | 1600(>50k
g),
1200
(<50kg) | Rifampicin 600/450
Isoniazid 300/225
Pyrazinamide
1600/1200
Ethambutol 1100/825
Weight cut off 50kg
Daily | Clinical/radio
logical/micro
biological | Known or
fasting glucose
>7mmol/L | mg/L
No significant
difference
Mean DM 34.5
(21.4-46.2), nonDM
38.2 (29.0-50.8)
p0.09 | AUCO-24 mg.h/L
No significant
difference
Mean DM 290
(123-420), nonDM
344 (209-609),
p0.08 | No significant
difference
Median DM 1.1hrs
versus 1.1hrs,
p0.25 | Median
HbA1c
111mmol/m
ol | 84% on oral
medications | Cmax/AUC not associated with fasting glucose or HbA1c results | | Ramachan
dran 2020 | Indi a | Prospective PK, specifically looking at association between C _{2hr} and outcomes. | 113/404 | Median age 40, no
breakdown of DM
group | 64, no
breakdown
DM group | BMI
Median 17.8,
no breakdown
DM group | 2hrs | Intensive | 1500 | R 450/600
H 600
Z 1500
E 1200
3x weekly
CP: R/H | Pulmonary | Known or
HbA1c >6.5%,
or RBG >200
mg/dl | μg/mL
C _{2hr}
No significant
difference
Median 34.95
(25.03-43.42 IQR) v
37.49 (28.26-46.17),
p0.08 | NA | NA | Unknown | Unknown | | | Kim 2023 | Korea | Prospective
with
population
PK analysis | 55/613 | Median age 54yrs,
no breakdown
DM group | 67% male, no
breakdown
DM grouo | Weight
Median 60.8kg,
no breakdown
DM group | Random 1-
2 samples
for each
patient
between
0-24hrs | Intensive | 20-
30mg/kg | Not specified | Microbiologi
cally
confirmed
pulmonary | Not specified | NA | NA | NA | Unknown | Unknown | Increased apparent clearance in DM, most significantly in >70yrs group. Decreased AUC 0-24 in >70yrs DM group. | | Study | Country | Study Design | Number
(DM/Total) | Age | Sex | Weight | Sampling | TB Treatment | | Regimen | TB Diagnosis | DM | medRxiv p | AUC | T _{max} (Hrs) | DM Control | DM Treatment | Other PK | |---------------------|----------|---|--|---
---|--|-------------|--|--|--|---|--|--|---|--|--|---|--| | Heysell 2010 | USA | Retrospective cohort using routinely collected data TDM carried out for patients defined as 'slow to respond' | 16/39 | 31% 18-39,
38% 40-54,
31% >65
Total group
– no
breakdown
for DM | 67% male of
total group (nil
breakdown for
DM) | Unknown | 2 hr | Phase Unknown | (mg)
Unkno
wn | Rifampicin
Isoniazid
Pyrazinamide
Ethambutol
Some daily, some 2x
week R/H | Pulmonary or
extrapulmonary
Microbiologicall
y confirmed | Diagnosis Unknown | C _{max} defin | NA | NA | Unknown | Unknown | No quantitive C _{max} data available comparing DM ai non-DM groups | | Babalik 2013 | Turkey | Prospective | 14/70 | Significantly
higher in
DM group
(56.5yrs
versus 39.0,
p0.001) | 86% DM group
male, versus
61% non-DM
(p0.116 | DM group
significantly
heavier
(68.7kg
versus
56.7kg,
p0.001) | 2hr | Intensive at
14 and 30
days after
starting
treatment | 300 | 600 Rifampicin
300 Isoniazid
1500 Pyrazinamide
1000 Ethambutol
Daily | Pulmonary, 89%
culture
confirmed | Known | C2hr o配 tower in DM group 设计 43nd D30 (day 1 行 | NA | NA | Mean HbA1c
6.1% (only
included if
HbA1c
<6.5%) | On treatment | Concentration inversely correlated with weight | | Requena-Mendez 2014 | Peru | Prospective
field PK
assessing
daily and x2
weekly dosing
in DM, HIV
and
nonDM/HIV
groups | 25/107
(30 HIV, 52
nonDM/non
HIV) | DM
significantly
older
(median
50yrs,
versus 29yrs
p<0.001) | 64% DM male,
versus 50% TB
group (p0.2) | BMI
significantly
increased in
DM group
(median 27
versus 22.9,
p<0.001) | 2, 6 hrs | 1 sampling event from each participant, 57.9% overall in intensive phase, rest in continuation | 5mg/k
g
intensi
ve
phase,
15mg/
kg
contin
uation
phase,
up to
800mg | Rest of regimen not
specified
Daily in intensive
phase, x2/week in
continuation | 72.9%
microbiologicall
y confirmed | Known | No signed and inference between the month of o | AUC 0.6 – mg.hr/L
No significant
difference between
DM/non-DM in daily
or x2 weekly groups
(daily group: median
10.39 DM, 11.05
non-DM, p0.6, x2
weekly: median
54.26 DM, 62.45
nonDM, p0.2 | 86.4% total highest concentration at 2hrs in daily group, 90.7 in x2/weekly group. No comment on any differences in DM group | Median
random
blood
glucose
119.5mg/dL | Unknown | Highly variable concentrations in all group with >30% not reaching target concentrations. | | Hemanth Kumar 2016 | India | Prospective PK to assess x3 weekly regimen, with DM as one covariate | 23/101 | Median age
34 (no
breakdown
of Dm
group) | 65.3% male (no
breakdown of
Dm group) | BMI
significantly
higher in Dm
group (20.3
versus 18.4,
p0.021) | 2,4,6,8 hrs | Intensive | 600 | Rifampicin 450/600
Isoniazid 600
Pyrazinamide 1500
Ethambutol 1200
+/- Streptomycin 750
3x weekly | Pulmonary or EP | Known of
random
blood
glucose
>200
μg/mL | No signification of the control t | AUC 0-8 µg/ml.hr
No significant
difference
Median DM 37.8
(22.9-53.9) versus
nonDM 42.9 (34.2-
61.1), p0.08 | 2hrs for whole
group – no
analysis
comparing DM to
nonDM | Unknown | Unknown | DM not significant as a factor on multivariate analysis (Cmax and AUC) | | Kumar 2017 | India | Prospective
multicentre | 452/1912 | DM
significantly
older
(median age
DM 48yr
versus 34,
p<0.001) | Significantly
more men in
Dm group
(73.5% versus
65.7, p0.002 | BMI
significantly
higher in DM
group (20.4
versus 18.2,
p<0.001) | 2hr | Intensive | 600 | Rifampicin 450/600
Isoniazid 600
Pyrazinamide 1500
Ethambutol 1200
+/- Streptomycin 750
3x weekly | Pulmonary or EP | Known or
random
blood
glucose
>200
µg/mL
(16% new) | µg/mL. O S. C2hr only0. □ DM signif@atty lower Median Da & 6 (3.9-10), nonDM 7.\$1\$€6-11.3), p<0.001 O S. DM remaigeat significant independat@actor on linear reges signor | NA NA | NA | Median
random
blood
glucose
263.5 mg/dL | Majority of
diabetes group
on treatment | Concentration negatively
correlated with blood
glucose | | Alfarisi 2018 | India | Prospective
cohort, both
PK and PK-PD | 101/243 | DM
significantly
older
(median age
48 versus
26, p<0.001) | Significantly
more men in
DM group (77%
versus 61%,
p<0.001) | Weight significantly increased in DM group (50.8kg versus 45kg, p<0.001) | 0.5,2,6hrs | x1 intensive
x1
continuation | 600 | Rifampicin 450 Isoniazi d 600 Pyrazinamide 1500 Ethambutol 1200 3x weekly Rif/Iso alone in continuation (3x weekly) | Pulmonary | Known or
HbA1c
>6.5%,
fasting
blood
glucose
concentra
tion >126
mg/dl, or
random
blood
glucose
>200
mg/dl | pg/mL 5 6
Significant were in DM group, not per | AUC0-6 µg.hr/ml
Significantly lower in
DM group, not
significant after
adjustment
Intensive: mean DM
20.0, nonDM 26.84,
p0.03, adjusted
p0.06
Continuation: mean
DM 23.79, nonDM
26.79 p0.45 | | Median
HbA1c at
baseline
8.9% | 44.6% on metformin | | | Mtabho 2019 | Tanzania | Prospective
PK | 19/39 | DM
significantly
older
(median age
50yrs versus
38, p0.001) | No difference
in groups (79%
male in DM
group versus
75%) | No
difference in
weight (58kg
DM versus
55% non,
p0.258) | Intensive | Intensive | 300
(>50kg
), 225
(<50kg
) | Rifampicin 600/450
Isoniazid 300/225
Pyrazinamide
1600/1200
Ethambutol
1100/825
Weight cut off 50kg
Daily | Clinical/radiologi
cal/microbiologi
cal | Known or
fasting
glucose
>7mmol/L | mg/L
Significantly lower in DM
group
Mean DM 1.6 (0.4-5.8),
nonDM 2.8 (1.0-4.6)
p0.0.01 | AUCO-24 mg.h/L
Significantly lower in
DM group
Mean DM 5.4 (0.7-
26.9), nonDM
10.6(3.7-22.7), p0.01 | No significant
difference
Median DM 1.0hrs
versus 1.1hrs,
p0.85 | Median
HbA1c
111mmol/m
ol | 84% on oral
medications | Cmax/AUC not associated with fasting glucose or HbA1c results DM significantly associated with Cmax and AUC on multivariate regression | | Galvao 2020 | Brazil | Prospective
PK | 26/62 | No
difference
(median
39yrs versus
44) | 100% | Weight
significantly
higher in DM
group
(Median
64kg versus
54kg) | 2hrs | Intensive
and
Continuation | 300 | Rifampicin 600 Isoniazid 300 Pyrazinamide 1600 Ethambutol 1100 Daily R/H only in continuation | Pulmonary,
clinical, radio,
micro | Fasting
glucose
>126
mg/dl or
HbA1c
>6.5% | µg/mL
C2hr only
No significant difference
Intensive: Median DM
4.82 (3.47-5.5 I QR)
versus nonDM 5.0 (4.1-
5.5), p0.43.
Continuation: Median
DM 3.76 (4.1-5.5) versus
nonDM 4.15 (3.82-5.18), | | | Median
HbA1c 9.6% | 15% on
treatment | No association between concentrations and HbA1c/FBG | Isoniazid | | | | | | | | | | | | | | p0.38 | | | | | | |---------------|-------|---------------------------|---------|-------------|--------------|--------------|------|---------------|-----|-----------|-----------|-----------|---|----|----|---------|---------|--| | chandran 2020 | India | Prospective | 113/404 | Median age | 64, no | ВМІ | 2hrs | Intensive and | 600 | R 450/600 | Pulmonary | Known or | µg/mL ♀≤ | NA | NA | Unknown | Unknown | | | | | PK, | | 40, no | breakdown DM | Median 17.8, | | Continuation | | H 600 | | HbA1c | C _{2 hr} € G | | | | | | | | | specifically | | breakdown | group | no | | | | Z 1500 | | >6.5%, or | No sig <mark>∰</mark> fi <mark>⊊</mark> int | | | | | | | | | looking at | | of DM group | | breakdown | | | | E 1200 | | RBG >200 | differe <mark>₹</mark> c€ | | | | | | | | | association | | | | DM group | | | | 3x weekly | | mg/dl | Mth 1 Median | | | | | | | | | between C _{2 hr} | | | | | | | | CP: R/H | | | 5.05 (2 4 <u>=</u> 7.34 | | | | | | | | | and | | | | | | | | | | | IQR) v 535 (2.68- | | | | | | | | | out comes. | | | | | | | | | | | 8.28), 📸 🍇 | Mth 5: 5. 🅰 🥳 17-7.89) | v | | | | | ਹੁੰ.இg/10.1101/2023.08.29.23294656; this version posted August 29, 2023. The copyright holder for this preprint **sty geer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. # Ethambutol | Study | Country | Study Design | Number
(DM/Total) | Age | Sex | Weight | Sampling | TB Treatment
Phase | Dose (mg) | Regimen | TB Diagnosis | DM Diagnosis | C _{max} | AUC | T _{max} (Hrs) | DM Control | DM
Treatment | Other PK | |-----------------|-----------|-------------------|----------------------|--|--|--|-----------|---|------------------------------|---|---|---|--|--|---|--|-----------------------------------|---| | Ruslami
2010 | Indonesia | Prospective | 17/34 | Significantly higher
DM group
Mean 47 (DM)
versus 35 (nonDM)
p0.00 | Matched
(42% male) | Matched (within
5kg)
(mean 47.3kg both
groups) | Intensive | Intensive | 750 | Rifampicin 450mg
Isoniazid 300mg
Pyrazinami de 1500mg
Ethambutol 750mg | Pulmonary | Known (60%)
Screening via
WHO criteria
(40%) | mg/L
No difference
Mean 2.2 (1.9-2
95% CI) DM 2
1.95 (1.6-2.46
nonDM p0.38 | (12.0-15.9) DM
v 13.5 (12.0- | No difference
Median 3 (1-4
range) DM v 3 (1-
6) nonDM p0.93 | Mean HbA1c
11.1%
Median FBG
16.6mmol/L | None | No correlation between FBG and AUC/C_{max} 10 DM cases treated with insulin to achieve glycaemic control, with PK repeated 6 weeks later – non significant change in AUC/other PK | | Babalik
2013 | Turkey | Prospective | 14/70 | Significantly higher
in DM group (56.5yrs
versus 39.0, p0.001) | 86% DM
group male,
versus 61%
non-DM
(p0.116 | DM group
significantly heavier
(68.7kg versus
56.7kg, p0.001) | 2hr | Intensive at 14
and 30 days
after starting
treatment | 1000 | 600 Rifampicin
300 Isoniazid
1500 Pyrazinamide
1000 Ethambutol
Daily | Pulmonary,
89% culture
confirmed | Known | C2hr only money differences and D30 (%) Figure on 2.8 (%) Figure on 2.0.05, day and 2.0.05, day and 3.6 (%) cersus 4.30 ce | 1101#022#0# 20 | NA | Mean HbA1c
6.1% (only
included if
HbA1c
<6.5%) | On
treatment | | | Mtabho
2019 | Tanzania | Prospective
PK | 19/39 | DM significantly
older (median age
50yrs versus 38,
p0.001) | No
difference in
groups (79%
male in DM
group versus
75%) | No difference in
weight (58kg DM
versus 55% non,
p0.258) | Intensive | Intensive | 1100 (>50kg),
825 (<50kg) | Rifampicin 600/450
Isoniazid 300/225
Pyrazinamide
1600/1200
Ethambutol 1100/825
Weight cut off 50kg
Daily | Clinical/radio
logical/micro
biological | Known or
fasting
glucose
>7mmol/L | mg/L carbon mg/L no significant most of the th | No significant difference Mean DM 19.6 (7.5-40.4), | No significant
difference
Median DM
2.0hrs versus
2.0hrs, p0.31 | Median
HbA1c
111mmol/m
ol | 84% on
oral
medicatio
ns | Cmax/AUC not associated with fasting glucose or HbA1c results | Mes. 5-40M (13.78 (1.00 Mes.) 1.00 # Other | Study | Agent | Country | Study Design | Number
(DM/Total) | Age | Sex | Weight | Sampling | TB Treatment
Phase | Dose (mg) | Regimen | TB Diagnosis | DM 2 5 | C _{max} | AUC | DM Control | DM Treatment | Other PK | |-----------------|--------------|--------------------|---|----------------------|--|---|--|-------------------------------|-----------------------|------------------------|---------|--|---|--|--|--|-------------------------|---| | Zhu
2018 | Cycloserine | China | Retrospective – all
cases receiving TDM
last 4 years, DM a
covariant | 19/200 | Mean 35.8,
no b/down
DM group | 63% male, no
breakdown Dm
group | Mean BMI
21.3, no
b/down DM
group | 2hr | Unknown | 500 <50kg
750 >50kg | Unknown | Unknown | Known filed by pee | | NA | Unknown | Unknown | Normal range 20-35 µg/ml
No significant difference in
% DM with low
concentrations
DM 68% low v nonDM 60%
low (p0.427) | | Zhu
2018 | Linezolid | China | Retrospective – all
cases receiving TDM
last 4 years, DM a
covariant | 6/65 | Mean 34.7,
no b/down
DM group | 52% male, no
b/down DM
group | Mean BMI
21.2, no
b/down DM
group | 2hr | Unknown | 600 | Unknown | Unknown | r review) is the | | NA | Unknown | Unknown | Normal range 12-26 µg/ml
No significant difference in
% DM with low
concentrations
DM 17% low v nonDM 21%
low (p1.00) | | Dekkers
2019 | Moxifloxacin |
The
Netherlands | Retrospective – all DM cases receiving moxi TDM over 12 yrs with matched controls | 16/32 | Matched
Median 52
(DM) v 49
(nonDM) | Matched
69% male (DM)
v 63% male
(nonDM) | BMI - No
signif
difference
21.9 (DM) v
20.7
(nonDM) | Varied, median
6-7 samples | Intensive | 6.5-
6.6mg/kg | Varied | 50% pTB (DM),
75% pTB
(nonDM)
31% MDR (DM),
38% MDR
(nonDM) | e author/funder, who liable under a CC-BY | Mg/L
Significantly
lower in DM
Median DM
1.7 (IQR 1.3-
2.6) v nonDM
2.4 (2.0-3.0), | 0-24 mg.hr/L
Significantly
lower in DM
Median DM
17.4 (IQR
12.5-21.8) v
nonDM 23.2
(16.8-32.1), | Median HbA1c
8.3% (only in 9
patients) | 14/16 receiving insulin | Clearance increased in DM
group
No difference in Tlag/ka | 56; this version posted August 29, 2023. The copyright holder for this preprint per, who has granted medRxiv a license to display the preprint in perpetuity. CC-BY-NC-ND 4.0 International license .