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ABSTRACT 
Stool samples for fecal immunochemical tests (FIT) are collected in large numbers worldwide as part 

of colorectal cancer screening programs, but to our knowledge, the utility of these samples for virome 

studies is still unexplored. Employing FIT samples from 1034 CRCbiome participants, recruited from 

a Norwegian colorectal cancer screening study, we identified and annotated more than 18000 virus 

clusters (vOTUs), using shotgun metagenome sequencing. Only six percent of vOTUs were assigned 

to a known taxonomic family, with Microviridae being the most prevalent viral family. Genome 

integration state was family-associated, and the majority of identified viruses were unintegrated. 

Linking individual profiles to comprehensive lifestyle and demographic data showed 17/25 of the 

variables to be associated with the gut virome. Physical activity, smoking, and dietary fiber 

consumption exhibited strong and consistent associations with both diversity and relative abundance of 

individual vOTUs, as well as with enrichment for auxiliary metabolic genes. 

We demonstrate the suitability of FIT samples for virome analysis, opening an opportunity for 

large-scale studies of this yet enigmatic part of the gut microbiome. The diverse viral populations and 

their connections to the individual lifestyle uncovered herein paves the way for further exploration of 

the role of the gut virome in health and disease.  

 INTRODUCTION 
         

Gut residing viruses represent an important component of the intestinal microbial ecosystem 

and may be collectively referred to as the gut virome. Recent large-scale efforts have shown the virome 

to comprise a vast and diverse population1–5, of which bacteriophages (phages), i.e. viruses that infect 

and replicate in bacteria and archaea, make up the overwhelming majority. However, the extent of 

virome diversity in the gut remains poorly annotated, with only a minor fraction typically assigned 

taxonomy2. 
 Viruses residing in the human gut are thought to act as a key modulator of the gut microbiome 

through their interaction with bacteria and the host immune system6. They may influence the structure 

and function of the bacterial community through facilitation of horizontal gene transfer7, nutrient 

recycling, regulation of bacterial virulence8, and gain of antibacterial resistance9. Furthermore, viruses 

play a direct and indirect role in interactions between the human host and the bacterial community10, 

and have been shown to exhibit temporal stability as high as that of their bacterial hosts11,12.  

The gut virome has been linked to human host and environmental factors, for specific food 

items3,13 or viral populations14, and like the bacterial community, its composition has been found to 

develop as a function of age2. The gut virome has also been associated with major chronic diseases such 

as inflammatory bowel disease and type 2 diabetes15,16.  Dysregulation of gut bacteria and abundance of 

certain bacteria17–19 are also proposed features of the association between the gut microbiome and 
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colorectal cancer development20.  These changes in the bacteriome are likely to be accompanied by 

phage dysregulation21.     

Given high diversity and interindividual variability of the gut virome, large population-scale 

analyses are needed to decipher its role in human health and disease. Colorectal cancer screening 

programs, inviting millions each year, are currently running or in the planning stages in many countries 

across the globe22. A widely used screening strategy is based on fecal occult blood testing of gut 

samples, the fecal immunochemical test (FIT). The FIT is non-invasive, inexpensive, and scalable to 

large populations23. There is accumulating evidence that these gut samples are suitable for analysis of 

various features of the gut microbiome24–26. Combining the large numbers of gut samples from 

population-based screening programs with affordable shotgun metagenomics could propel unbiased and 

population-based virome studies.  

 To the best of our knowledge, no studies have yet been conducted analyzing the gut virome 

using FIT samples. With the availability of a large number of FIT samples collected in a Norwegian 

colorectal cancer screening trial, we have performed comprehensive profiling of the gut virome. We 

describe viral diversity including taxonomy, genome integration and functional potential, and assess 

associations of these factors with individual diet, lifestyle and demographic factors. 

MATERIALS AND METHODS 
 
Study population  
 

The CRCbiome enrolled individuals aged 55–76 who tested positive for FIT (and were referred for 

colonoscopy) from the Bowel Cancer Screening in Norway (BCSN) trial, which is a population-wide 

randomized trial comparing the effectiveness of once-only sigmoidoscopy and biennial FIT testing. Out 

of the 2700 individuals invited to participate, 1640 met the inclusion criteria and provided informed 

consent. Details on recruitment procedures can be found in Kværner et al27. All participants provided 

FIT samples containing fecal matter that were self-collected at home and shipped to the laboratory by 

mail at ambient temperature. Following FIT testing, samples were stored at -80°C until withdrawal of 

leftover buffer from the FIT container (~1600 µl; containing about 10 mg fecal matter) and DNA 

extraction (see details below). For the purpose of the CRCbiome overall aim, samples were selected 

based on their colonoscopy results, excluding those without colonoscopy, or with findings of uncertain 

clinical significance. The availability of sufficient DNA (>0.7 ng/µl) and metagenome data (>1 gigabase 

after QC) was also required. The final number of FIT metagenomes included in the study was 1034 

(Fig. 1a).  

 
Questionnaire data 
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Prior to the colonoscopy, participants were asked to complete two questionnaires on diet, lifestyle, and 

demography: a food frequency questionnaire (FFQ), developed and validated28–30 at the Department of 

Nutrition, University of Oslo, and a lifestyle and demographic questionnaire (LDQ), developed in-

house. The FFQ is designed to capture the habitual diet during the preceding year. The current 

questionnaire version includes a total of 23 questions, covering 256 food items. For each food item, 

participants were asked to record frequency of consumption, ranging from never/seldom to several 

times a day, and/or amount, typically as portion sizes given in various household units. Dietary intake 

was calculated using the food and nutrient calculation system, KBS, developed at the Department of 

Nutrition, University of Oslo, with its associated database, which is largely based on the Norwegian 

Food Composition Table31. We focused on key dietary measures, including total energy intake 

(kcal/day), intake of macronutrients (in g/day or energy percentage (E%)), and selected food groups 

(g/day), being linked to risk of major chronic diseases such as cancer (described in further detail 

below)32,33. The FFQ also included questions on body weight (kg) and height (m), which was used to 

calculate participants’ BMI (kg/m2). The LDQ is a questionnaire developed specifically for the 

CRCbiome study to obtain data on key lifestyle and demographic variables. The questionnaire includes 

ten questions in total, where the ones relevant to the current study included demographic factors 

(national background, education, occupation and marital status), antibiotic and antacid usage during the 

last three months, smoking and snus habits, and physical activity level. In the question concerning 

tobacco usage, participants were asked about their current habits, including the daily number of 

cigarettes/snus portions, and to recall years since possible cessation and total years of use. In the present 

study, smokers and snusers were defined as self-reported regular or occasional users, or those being 

registered with recent use (<10 years). For physical activity, participants were asked to report the time 

spent in low, moderate and vigorous physical activity per week during the past year. Total amount of 

moderate to vigorous physical activity (min/week) was calculated by summing the time spent in 

moderate and vigorous activity, the latter weighted by a factor of two to best match national34 and 

international recommendations35,36. 

As a measure of the overall diet and lifestyle, we created a healthy lifestyle index (HLI), grading 

participants by adherence to the following seven recommendations (primary intended to prevent cancer, 

but is also relevant for other major chronic disease): 1) be a healthy body weight, 2) be physically active, 

3) consume a diet rich in whole grains, vegetables, fruit, and beans, 4) limit intake of “fast foods” and 

other processed foods high in fat, starches, or sugars, 5) limit consumption of red and processed meat, 

6) limit consumption of sugar sweetened drinks, and 7) limit alcohol consumption. Further details on 

the HLI can be found Kværner et al.37. 
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Fig. 1 Study design. a) participant flowchart. 2700 FIT positive Bowel Cancer Screening in Norway (BCSN) 

participants were invited to the study. Excluded samples are indicated in purple. *Participants were excluded if 

they had findings of uncertain clinical significance, i.e., a low number of non-advanced adenomas or non-

advanced sessile serrated lesions. b) Workflow for virome characterization. DNA was extracted from the FIT 

leftover buffer. Shotgun metagenomic sequencing was performed on the Illumina platform and the resulting reads 

were assembled using metaSPAdes. Viral genomes were identified using Virsorter2, and then dereplicated using 

Galah. Representative vOTUs were taxonomically annotated using vConTACT2. DRAMv was used for 

annotation of gene function. For details, see materials and methods.   

 

Sample collection, library generation and metagenome sequencing  
 
Following collection of FIT sampling kits and measurement of fecal occult blood concentration, leftover 

buffer was used as input material for DNA extraction and library preparation for the generation of 

shotgun metagenome sequencing data. DNA was extracted using the QIAsymphony automated 

extraction system using an off-board lysis protocol described in Kværner et al27. Sequencing libraries 

were constructed according to the Nextera DNA Flex Library Prep Reference Guide, except scaling 

down the reaction volumes to one quarter of the reference. Library pools of 240 samples were combined 

and size selected to a fragment size of 650–900 bp. Sequencing was performed on the Illumina NovaSeq 

system using S4 flow cells with lane divider, with each pool sequenced on a single lane resulting in 

paired-end 2x151 bp reads. Shotgun metagenome sequencing was performed aiming to achieve 3 

gigabases per sample.  
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Sequence reads quality control and assembly 

The metagenome processing framework Metagenome-ATLAS38 was used for sequencing quality 

control and assembly. In brief, ATLAS utilizes BBTools39 utilities for adapter and quality trimming of 

reads, and for the removal of human genome and PhiX reads. Quality trimmed reads, both paired and 

unpaired, were used for de novo assembly using metaSPAdes40. For information on versions of tools 

and databases used, see Supplementary Table 4. 

 

Viral sequence identification, dereplication, quantification and assessment of genome 

integration 

Viral genomes were classified using VirSorter241 with metagenomic contigs >1500 bp as input. 

CheckV42 was used for assessment of genome completeness, quality, level of host sequence content, 

annotation of host genome integration, and to extract the fractions of contigs determined to contain viral 

sequences. Viral genomes assigned a quality of medium or higher (corresponding to >50% 

completeness) by CheckV assessment were considered for further analysis. We clustered viral genomes 

by average nucleotide identity (ANI) to define viral operational taxonomic units, or clusters (vOTUs) 

using the dereplication tool Galah43, defining clusters by an ANI threshold of 97% covering at least 

70% of each genome’s length. The viral genome with the highest completeness in each cluster was 

chosen as the representative genome for that vOTU. Quality controlled paired-end reads from all 

participants were mapped to each vOTU using BBMap39, with the following options: pairlen=1000, 

pairedonly=t, minid=0.9, maxindel=100, ambiguous=all, maxsites=10. The vOTU coverage was 

calculated using the pileup function from BBTools, and vOTU abundance was recorded as the median 

coverage for those with reads mapping to at least 75% of the genome.  

 

Annotation of viral genomes 

Taxonomic classification of vOTUs was carried out using vConTACT244, based on proteins identified 

with Prodigal45. To establish a reference database for classification, INPHARED46, a tool for automated 

retrieval and creating of custom databases based on viral protein sequences and associated metadata, 

updated monthly, was used (June 13th, 2023 update). vConTACT2 uses a network-based approach to 

identify viral clusters based on clustering of viral proteins. For processing of vConTACT2 clustering, 

graphanalyzer47 was used. Here, taxonomy was assigned if a vOTU had a direct or indirect connection 

(up to one degree removed) to a reference, where the strength of the connection prioritized the taxonomy 

assignment. vConTACT2 was run with parameters --db ‘ProkaryoticViralRefSeq94-Merged’ --rel-

mode ‘Diamond’ --pcs-mode MCL --vcs-mode ClusterONE. Cytoscape48 was used to visualize the 

vOTU network excluding vOTUs with no significant associations (outliers).  
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DRAM-v49 was employed for gene annotation of vOTUs, using the databases Pfam50, 

VOGDB51, KOfam52, UniRef9053, dbCAN54 and RefSeq55. Auxiliary metabolic genes (AMGs) were 

defined using default settings in DRAM-v. AMGs were counted by presence/absence of each category 

of AMG per vOTU. For versions of these tools and databases, see Supplementary Table 4. 

 

Statistics 

The R package vegan56 was used to calculate alpha-diversity (inverse Simpson index), with between-

group differences assessed using ANOVA tests, adjusting for sequencing depth. Beta-diversity (Bray-

Curtis dissimilarity matrices) and differences between groups were evaluated using PERMANOVA 

implemented in the “vegan:adonis2” function with 999 permutations. Differential abundance of vOTUs 

was evaluated using the R package MaAsLin257 using a linear model with total sum scaling 

normalization, and adjustment for age group (50-60, 60-70, and 70-80), sex, and geographic region 

(Bærum and Moss regions, the two recruitment regions in South-East Norway). To examine 

associations with diet, lifestyle, and demographic variables measured on a continuous scale, variables 

were grouped into tertiles. Comparisons were then made of virome variables between the lowest and 

highest tertiles. Participants with missing data or selecting the answer option “Unknown” (applicable 

to the items concerning antibiotic and antacid usage), were excluded from statistical analyses evaluating 

associations with diversity, composition and differential abundance. The magnitudes of observed 

associations with alpha and beta diversity were quantified using Omega-squared statistics58, which for 

beta diversity was calculated employing the "adonis_OmegaSq'' function from the R package micEco. 

Custom R scripts were used for statistics and visualization of results (https://github.com/Rounge-

lab/CRCbiome_virome_2023).  

 

 

RESULTS  
Dataset description 
Raw shotgun metagenomic sequencing data comprised 13.5 billion paired end reads, with 11.5 billion 

passing QC (median of 10.7 million reads per sample, IQR= 3.5 million; Fig. 2a). Storage time of 

samples before DNA extraction ranged from 34 to 1301 days, with a median of 198 days (Fig. 2a). 

Storage time did not impact DNA concentration, sequencing depth, assembly quality or the number of 

retrieved viral genomes (|rho| ≤ 0.05, Fig. 2c). Spearman’s rank correlation of DNA concentration to 

the sequencing depth, number of retrieved viral genomes and alpha-diversity ranged between rho=0.15 

and rho=0.18, whereas correlation to the assembly quality was negligible (rho = 0.04, Fig. 2c). In total, 

we identified 1.7 million putative viral genomes, of which 3677 were classified as complete, 15 481 

were classified as high-, and 30 484 were classified as medium quality, and were used in subsequent 

analyses (Supplementary Fig.1). Overall, 18 268 of the 49 642  genomes (36.8%) were identified within 
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host sequences, indicating a state of lysogeny. Clustering of viral genomes on a 95% similarity level 

resulted in 18 494 vOTUs (of which 1475 were comprised of genomes from 5 individuals or more; 

Supplementary Data 1), representing 37.3% of the potential vOTU diversity by Chao1 estimation of 

species richness. A mean of 223 vOTUs (sd = 69.3) per sample were observed after mapping sequencing 

reads to vOTU representative sequences (Fig. 2b). Inverse Simpson’s diversity index ranged between 

2.79 and 245 (mean = 93.5, sd = 43.7). With regards to beta-diversity, the Bray-Curtis dissimilarity 

index ranged between 0.43 and 1 (mean = 0.84, sd = 0.065; Supplementary Table 1).  

 
Figure 2: Quality assessment of the virome dataset. a) Histograms of measures by sample including storage 

time, DNA concentration, number of sequencing reads, number of metagenome contigs, assembly N50, number 

of viral genomes, vOTUs, and alpha diversity (inverse Simpson index). b) Number of contigs or viral genomes at 

different stages of the analysis per sample: total number of metagenome contigs, putative viral genomes, filtered 

genomes (medium quality, high quality and complete) and observed vOTUs after read mapping. c) Pairwise 

Spearman's rank correlation coefficients (rho) of the measures in a). 

 

vOTU taxonomy and functional potential  

Of 18 494 vOTUs, 6036 (32.6%) were assigned taxonomy based on their gene similarity to reference 

genomes. A majority of these vOTUs (n = 4091, 22.1% of all) were only assigned to a taxonomic order 
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or class, and were more widely dispersed than family-annotated genomes (Fig.3). The vOTUs that were 

assigned taxonomic family (1135), represented only 6.1% of all vOTUs. Overall, 19 viral families were 

identified. The most frequent viral family was Microviridae (Fig. 4a), with 528 members. Four families, 

and 416 vOTUs, of the order Crassvirales (Suoliviridae, Intestiviridae, Crevaviridae, and Steigviridae) 

were identified. In addition, the families Peduoviridae, Inoviridae, and Winoviridae were each 

identified with at least 20 members (Supplementary Table 2). A large fraction of genomes belonging to 

the class Caudoviridicetes belonged to lineages with the former46 morphology-based classifications 

Siphoviridae, Myoviridae and Podoviridae (n=2849). The fraction of uncovered vOTU diversity, 

according to Chao1 estimates, differed by family, with 60% and 74% of Crevaviridae and Winoviridae 

respectively, being detected. On the other hand, the detection rates of Microviridae and Inoviridae were 

much lower, with 9.9% and 7.3% identified respectively (Supplementary Table 2). Multiple vOTU 

characteristics differed markedly between viral families, including genome size (Fig. 4b), genome 

integration (Fig.4c), gene annotation frequency (Fig. 4d), and the rate at which auxiliary metabolic 

genes were detected (Fig. 4e).  

Intestiniviridae, Suoliviridae, Steigviridae, and Inoviridae genomes were almost exclusively identified 

as unintegrated (Fig. 4c), while genomes of the Crevaviridae and Microviridae families had a small, 

but not insignificant fraction of integrated genomes. On the other hand, most genomes of the 

Peduoviridae and Winoviridae families were identified in an integrated state. 

AMGs were detected in 24.3% of vOTUs, being more commonly detected in Crassvirales (67.5%), and 

less common in Microviridae vOTUs (1.1%). AMGs from “Organic nitrogen” and “Miscellaneous” 

functional groups were detected in 12.8% and 11.7% of vOTUs, respectively, being about five times 

more prevalent than any other functional group or combinations of these (Supplementary Fig. 2). On a 

family level, the prevalence of the “Organic nitrogen” group of AMGs was almost absent from vOTUs 

belonging to Crassvirales (0.2%), being largely confined to viruses of the Peduoviridae family, and 

those without a family annotation (Fig. 4e). AMGs of the “Miscellaneous” group (almost exclusively 

genes related to pyrimidine deoxyribonucleotide synthesis) were detected in a majority (67.1%) of the 

Crassvirales vOTUs, and in particular those belonging to Steigviridae (78.8%) and Intestiniviridae 

(88.1%).  

Abundance was assessed by mapping reads from all samples to each vOTU. This increased the total 

number of detected viruses in each sample (mean identified genomes per sample 48; mean observed 

vOTUs 215). Out of 18 494 vOTUs, 2576 were detected in ≥1% of the population. A mean of 24.4% 

of viral abundance by sample were attributed to vOTUs with any taxonomic annotation (range 7.9-

83.0%; Fig. 4f). Crassvirales vOTUs were detected in 70.6% of samples and constituted up to 75.4% 

of viral abundance (median 0.6%). Overall, Crassvirales vOTUs, and especially those of the 

Intestiviridae family, were more abundant when detected, whereas Microviridae and Peduoviridae were 

less abundant. 
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Figure 3: Clustering of the vOTUs based on their gene similarity on a protein level. Green - vOTUs that had 

taxonomic family annotation, orange - vOTUs that were assigned taxonomic order, but not family, grey - vOTUs 

with no taxonomic assignment, purple - reference viral genomes. Outlier vOTUs (those with no significant 

associations) were excluded from visualization. 
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Figure 4: Genome annotation and population distribution. (a) Taxonomic classification of vOTUs at the 

family level. The vOTUs belonging to families with fewer than 20 representatives are categorized as “other”. The 

“unknown” group constitutes those not clustering with any reference genomes, whereas those clustering with 

reference genomes annotated at higher levels are labeled “higher order”. Light gray bars indicate the total number 

of genomes (pre-dereplication) according to the taxonomic assignment of their representative vOTUs. b) Genome 

size distribution for genomes belonging to each taxonomic category. Genomes included in the plot include those 

that are not classified as “complete”; for stratification by completeness, see Supplementary fig. 1. c) The 

percentage of viral genomes classified as integrated. The dashed line represents the overall percentage of 

integrated genomes. d) Percentage of annotated genes per vOTUs according to viral family. e) The fraction of 

genomes carrying genes annotated with AMGs by AMG category and family. Asterisks indicate significant 

deviations in AMG category prevalence for one family when compared to the rest (post-hoc Fisher exact test, *p 

< 0.05, **p < 0.01, ***p<0.001; p-adjustment by Bonferroni). MISC: Miscellaneous; Carbon: Carbon utilization 

f) Prevalence and mean abundance (if detected) for the vOTUs with at least 2 constituent genomes by taxonomic 

assignment. The 2D density contour lines indicate the overall distribution of prevalence and abundance for vOTUs 

(≥ 2 constituent genomes).  

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2023. ; https://doi.org/10.1101/2023.08.24.23294548doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.24.23294548
http://creativecommons.org/licenses/by-nc/4.0/


 

12 

The gut virome reflects individual health-related lifestyle, including smoking, physical 
activity and carbohydrate intake 
We assessed differences in virome alpha and beta diversity to determine how the gut virome varied by 

individuals’ diet, lifestyle and demography. Out of 25 selected variables (Supplementary Table 3), we 

identified 9 significant associations with alpha diversity as measured by the inverse Simpson’s index 

(Fig. 5a). Among these, the largest effect sizes were found for physical activity (positive association), 

alcohol consumption (positive association), and dietary carbohydrate consumption (negative 

association). Viral beta diversity was significantly associated with 17/25 variables assessed (Fig. 5b), 

several being health-related lifestyle factors. Indeed, the strongest association was observed for a 

composite HLI, with other lifestyle variables being relatively strongly associated, including dietary fiber 

consumption, physical activity, and smoking, among others. Assessing differential abundance of 

individual vOTUs, we identified several representative genomes being associated with the same set of 

variables (Fig. 5c). Here, the highest numbers of differentially abundant vOTUs were found for smoking 

and physical activity (Fig. 5d). Dietary fiber consumption was also associated with a high number of 

differentially abundant vOTUs (Fig. 5d, Supplementary Fig.4). Among differentially abundant vOTUs, 

there was no skew in the frequency of any viral families, nor with the frequency of viruses with a lytic 

or lysogenic lifestyle (data not shown). On the other hand, we observed a clear over-representation of 

AMGs across the differentially abundant vOTUs (Supplementary Fig. 3), being especially evident for 

those related to smoking. Due to the inclusion of participants from a high-risk screening population, 

there was an over representation of colorectal cancer. To assess whether this might have influenced the 

observed associations, we performed sensitivity analyses excluding any participants with colorectal 

cancer and found no overall differences in identified associations (Supplementary Fig. 5a-c). 

Overall, 69 vOTUs were related to at least one lifestyle or demographic variable, with 22 being 

associated with multiple. As an example, one vOTU (CRCbiome_vOTU05693, no taxonomic 

assignment) was negatively associated with smoking, and positively correlated with physical activity 

and dietary fiber consumption (Fig. 5d). This vOTU was identified in 62.2% of participants, and was 

representative of 23 viral genomes, none of which were found to be integrated in a host genome. Gene 

annotation (44% of predicted genes) identified genes encoding an integrase, an DNA topoisomerase 

and two methyltransferases (Fig. 5e), indicating a potential capacity of this vOTU to integrate a bacterial 

host genome. DNA methylase, which is crucial for host defense and epigenetic regulation, was also 

identified in the CRCbiome_vOTU05693 genome.  
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Figure 5: Associations of viral diversity with diet, lifestyle and demographic variables. a) Effect sizes of 

alpha diversity of vOTU abundance as measured by the inverse Simpson index by ANOVA. b) Effect sizes of 

associations between vOTU beta diversity (Bray-Curtis index) by PERMANOVA. Effect sizes for alpha and beta 

diversity are derived using the omega squared measure from ANOVA tests of the association between diversity 

measures and each variable, with correction for sample sequencing coverage. *p < 0.05, **p < 0.01, ***p < 0.001. 

c) Number of significantly differentially abundant vOTUs identified by MaAsLin2, colored by direction of 

association. For continuous variables, the top and bottom tertiles were compared. d) Volcano plots showing the 

relationship between effect size (log2 fold change) and significance level (q-value) for vOTUs for physical 

activity, smoking and fiber intake, from top to bottom. The red dotted line indicates the significance threshold. 

MUFA: mono-unsaturated fatty acids, PUFA: poly-unsaturated fatty acids, TFA: trans fatty acids, SFA: short-

chain fatty acids, BMI: body mass index, HLI: healthy lifestyle index. e) Genomic map representation of 

CRCbiome_vOTU05693, associated with smoking, physical activity and dietary fiber intake, with predicted genes 

with annotations in green, without annotations in gray, and integrase gene annotation highlighted in red. 

 

Discussion 
 

The gut microbiome, and the gut virome in particular, has largely been studied using either 

fresh stool samples or stool samples preserved in buffers designed for snap-shot stabilization of the 

microbiome59. Here we show that analysis of the gut virome using samples collected in a routine setting 

and stored in a FIT buffer designed for hemoglobin stabilization is feasible. The reliability of the FIT 

sampling kits in the analysis of bacteria has repeatedly been demonstrated24,60,61, but to the best of our 

knowledge, the present study is the first to demonstrate this for viruses. Use of FIT samples enabled an 
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in-depth characterization of the viral constituents of the human gut, and allowed us to discern 

associations between the gut virome and important health-related lifestyle factors, although 

interpretation of findings remains hampered by the incompleteness of reference databases. 

Even though FIT samples are designed to capture as little as 10 mg of fecal matter, only a minor 

fraction of samples (<1%) failed to produce sequencing data, and viruses were identified in all samples 

with sufficient data.  Stability under storage conditions and DNA quality and quantity are key for the 

reliability of generated data. Our finding that DNA concentration, sequencing depth and viral diversity 

were only negligibly affected by sample storage duration lend support to the use of FIT kits as a suitable 

sampling methodology for virome characterization. FIT sampling is widely employed in population 

based colorectal cancer screening programs, highlighting the potential for large-scale virome studies 

across the world. 

In this extensive analysis of the gut virome in 1034 Norwegian adults, we identified over 18 

000 vOTUs representing more than 49 000 complete, high- or medium quality viral genomes detected 

across the population. Despite a large sample size for a relatively homogeneous population, our 

estimates of species richness show that increased sampling would be required to more fully describe 

the gut virome in this setting. Moreover, due to the exclusive measure of DNA as a source of genetic 

information, our analyses do not include RNA viruses. Still, the uncovered viral diversity is substantial, 

and is in line with studies using microbiome-adapted sampling methodology2,3. Two thirds of the 

vOTUs detected in our study were not represented in current state-of-the-art reference databases. 

Furthermore, only one fifth of those that were represented, were assigned taxonomy at the level of 

family, clearly demonstrating the lack of data on the human virome. Using the newly ratified 

taxonomy44, we found Microviridae to be the most commonly assigned viral family among the vOTUs, 

with most Microviridae vOTUs being representative of a small number of genomes. On the other hand, 

vOTUs annotated as Crevaviridae, one of the families belonging to Crassvirales order, consisted of 

significantly larger clusters of genomes, indicating that a larger fraction of Crevaviridae genomes were 

identified when compared to Microviridae. This finding of a highly diverse group of Microviridae 

vOTUs is in line with current understanding of this viral family; the high rate of mutations and 

recombination in their characteristically small genomes not only facilitates rapid evolution and 

adaptation, but also leads to high intra-family diversity62.  

Along with Crevaviridae viruses, other viruses of the Crassvirales order displayed lower 

diversity, and, with the exception of the Steigviridae viruses, had a higher fraction of genes annotated. 

Viruses of the Steigviridae family have likely followed an independent evolutionary path from other 

Crassvirales viruses, potentially acquiring novel genes and functions via mechanisms like horizontal 

gene transfer63. Other observed characteristics of the Crassvirales viruses such as their size (97-131 

kb), almost exclusively lysogenic nature, and high prevalence and abundance, are consistent with other 

studies14,64. 
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We found about a third of viral genomes to be integrated in the genome of its host. Genome 

integration is a common manifestation of a lysogeny, employed by temperate viruses. Lysogeny is one 

of two predominant viral life cycles, with the other being the lytic one65. The lytic cycle involves viral 

replication, resulting in host cell destruction and the release of new viruses. In contrast, the lysogenic 

cycle represents a dormant state, wherein the viral genome is replicated in sync with its host, often being 

integrated into the host genome, creating a prophage which can be activated to revert to the lytic cycle 

under certain conditions. Strategies for the study of phage lifecycles include the identification of phages 

with a potential for transition to a lysogenic state, and direct detection of host genome insertion66,67. The 

former of these is hampered by poor database coverage, and does not provide a measure of actual 

lysogeny, whereas the latter, which we employed, does provide such a measure, but does not count 

phages whose lysogenic state occurs in a rolling cycle replicating or plasmid-like state within the host 

cell. There were clear differences between viral families in their propensity for genome integration, 

where in contrast to the almost exclusively lytic Crassvirales and Inoviridae viruses, two viral families, 

Peduoviridae and Winoviridae, contained mainly prophages. Interestingly, in a recent study on 

prophages in infants and adults, Peduoviridae was among the most frequently detected, whereas 

Winoviridae phages were not listed68.  

Auxiliary metabolic genes (AMGs) are important for phage modulation of bacterial function69. 

The two most common AMG categories identified in the current population included nitrogen 

metabolism and nucleotide synthesis (pyrimidine deoxyribonucleotide synthesis, or MISC in Fig. 3e). 

These AMGs can enhance viral replication efficiency by boosting the bacterial host's pyrimidine 

synthesis and providing a selective advantage to the virus. This could disrupt the bacterial host’s 

pyrimidine balance, leading to potential cell resource misallocation, nucleotide overproduction, or DNA 

damage. The small genomes of the Microviridae contained few AMGs. In general, when detected, viral 

genomes tended to contain multiple AMGs per genome. AMGs were common in Crassvirales vOTUs, 

with nucleotide synthesis genes being over-represented and organic nitrogen AMGs being under-

represented. Genes involved in metabolism of organic nitrogen were primarily found in the 

Peduoviridae family and within vOTUs that remained unclassified at the family level.  

Lifestyle factors have been shown to exhibit significant associations with the bacteria of the 

gut70. However, far less is known for the viral fraction. We conducted a comprehensive analysis of how 

viral abundance was related to individual diet, lifestyle and demographics factors, measured in broad 

and generalizable terms. Virome alpha diversity displayed some variation, but not as pronounced as the 

beta diversity. We found lifestyle factors such as physical activity, dietary fiber and alcohol 

consumption to have consistent associations with gut virome alpha and beta diversity. Although  

differences in lifestyle assessment and categorization make direct comparisons difficult, recent studies 

of various populations have found alcohol intake, as well as diets reflecting a higher intake of fiber to 

be associated with virome characteristics3,13,14, while no associations were found for physical activity. 
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Smoking has been extensively studied for its genetic and epigenetic effects in human cells71,72. We 

found smoking to be associated with beta diversity, in line with some3, but not all13 prior reports. 

Contrary to what has been reported previously2, we did not find an association between gut virome 

composition and participant age. However, our results are in line with a recent report showing 

maintained diversity in subjects of advanced age73.  

Consistent with beta-diversity differences, individual vOTUs were differentially abundant 

according to subject lifestyle. Differentially abundant vOTUs displayed no propensity towards 

particular viral clades, nor genome integration state, but we did observe an intriguing over-

representation of AMGs, particularly for vOTUs associated with smoking. Notably, we find that several 

of them were differentially abundant with regard to a number of diet, lifestyle and demographic factors. 

Moreover, an index capturing multiple aspects of a healthy lifestyle (healthy lifestyle index; HLI) was 

found to have the largest effect size in relation to gut virome beta diversity. This suggests that several 

lifestyle factors that affect health may act in concert to shift virome composition. There has been a 

recent trend in public health research focusing on the overall pattern of lifestyle choices, rather than 

individual factors74. 

An example illustrative of the challenges and promise of gut virome analyses was our 

identification of CRCbiome_vOTU05693 as being negatively associated with smoking, and positively 

associated with physical activity and dietary fiber intake. While being a possibly important indicator of 

a health associated lifestyle, no taxonomic information was possible to derive from current reference 

databases. None of the annotated genes were AMGs, but indicated a capacity for host genome 

integration, host defense, epigenetic gene regulation and maintenance of genome stability75. Still, none 

of its 23 constituent genomes were identified in an integrated state. These observations highlight the 

need for continued studies and expansion of reference databases for the gut virome, and functional 

studies of particular viruses.  

Collectively, these associations indicate that lifestyle choices may influence the composition 

and viral make-up of the gut virome. While evidence is limited, recent intervention studies have shown 

that a short-term change of diet can lead to significant alterations in both the human and mouse gut 

virome11,76. It is likely, though, that alterations in viral abundances are accompanied by, or even 

precipitated by shifts in abundance of their bacterial hosts. 

The main strength of this study includes a large population, which draws on participant 

recruitment carried out as part of a population-based Norwegian screening trial, inviting all residents of 

a defined age range and geographic region27. Standardized data collection included rich and high-quality 

data on participant diet and lifestyle. Minimal technical interference in the high quality metagenomes 

enabled detailed analyses of virome taxonomy, annotation and lifecycle. Comprehensive analyses of 

alpha and beta diversity, vOTUs differential abundance, and the nuances between them, provide a multi-

faceted depiction of the virome. Despite these strengths, there are limitations to consider. The 

participants had a FIT positive test, meaning that they had traces of blood in their stool samples. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2023. ; https://doi.org/10.1101/2023.08.24.23294548doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.24.23294548
http://creativecommons.org/licenses/by-nc/4.0/


 

17 

Therefore, the proportion of individuals with premalignant or malignant colorectal cancer lesions is 

higher than in the general population. Sensitivity analyses excluding participants with a malignancy did 

not, however, impact the study outcomes.  

This study shows that the virome can be reliably profiled using FIT samples, by identifying 

more than 18000 vOTUs from over 1000 individuals and identifies the virome as being deeply 

connected to host lifestyle and demography. The associations between the gut virome and subject 

lifestyle suggests a potential for the gut virome to serve as a source of biomarkers. While microbiome 

studies have identified gut bacteria as disease biomarkers77, development of viral biomarkers will 

require large-scale studies defining sources and measures of gut virome variation.   
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