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Depression is a widely prevalent psychiatric illness with variable
levels of severity that necessitate different approaches to treatment.
To enhance the management of this condition, there is a growing
interest in utilizing mobile devices, especially smartphones, for re-
mote monitoring of patients. This study aims to build prediction
models for depression severity based on active and passive features
collected from patients with major depressive disorder (MDD) and
healthy controls to assess the feasibility of remote monitoring of
depression severity.
Using data from 142 participants (85 healthy controls, 67 MDD) we
extracted features such as GPS-derived mobility markers, ecological
momentary assessments (EMA), age, and sex to develop machine
learning models of depression severity on the different diagnostic
subgroups in this cohort.
Our results indicate that the employed models outperformed base-
line estimators in random split scenarios. However, the improve-
ment was marginal in user-split scenarios, highlighting the need for
larger and more diverse samples for clinical utility. Among the fea-
tures, mood EMA emerged as the most influential predictor, fol-
lowed by GPS-derived mobility features. Models also showed a
significant association between depression severity and average re-
ported mood, as well as GPS-derived mobility markers such as num-
ber of places visited and percent home.
While predicting composite depression scores is important, future
studies could explore predicting individual symptom items or symp-
tom groups for a more comprehensive assessment of depression
severity. Challenges for clinical utility include participant dropout,
which could be addressed through more engaging app design to pro-
mote user adherence. Harmonization of phone-derived measures is
also crucial to facilitate model transfer across studies.
In conclusion, this study contributes valuable evidence supporting
the potential utility of smartphone data for mood state monitoring
and predicting depression severity. Future research should focus
on predicting depression further ahead in time and addressing the
challenges identified to create more robust and effective depression
monitoring solutions using smartphone-based data.

Digital Phenotyping | Remote Monitoring | GPS | Depression | Psychiatry
Correspondence: v_hols01@uni-muenster.de

Introduction
Depression is a widespread psychiatric illness that affects
millions of individuals worldwide, with a lifetime prevalence

of 20% [1], projected to be the lead contributor to global dis-
ease burden by the year 2030 [2]. Being an ever-increasing
burden on our healthcare systems, there is an increasing need
for improved monitoring and predictive tools to enhance the
management of this condition. As relying solely on human
judgement is costly and subject to potential biases attention
in recent years has turned to mobile devices for the quantita-
tive assessment of behaviour [3, 4]. Sometimes referred to as
digital phenotyping smartphones and mobile technology have
opened up new possibilities for remote monitoring and data
collection, providing valuable insights into the daily lives of
individuals with depression [5, 6].
Since the inception of the iPhone in 2008 the prevalence of
smartphones has rapidly increased with smartphone penetra-
tion reaching >80% in the United States and 50% worldwide
[7, 8]. The widespread use of smartphones has made them
a prime target for digital phenotyping efforts, with multiple
uses in a range of different mental health conditions such as
Bipolar disorder, OCD and MDD [9–11]. Smartphones are
often used to collect both active measures, such as momen-
tary ecological assessments and passive measures, such as
GPS-derived mobility markers, device usage or app usage. A
key challenge for the application of remote monitoring via
smartphones is the reliable prediction of depression severity
for in-time intervention and improved treatment monitoring.
In previous studies of depressed populations, multiple differ-
ent smartphone-derived measurements have been used such
as social interactions, location, activity measures, EMAs
and phone use [11]. For EMAs, it has been shown that
depressed individuals report lower average mood ratings
[12, 13]. These EMA-reported mood ratings are also signif-
icantly associated with composite scores of depression such
as PHQ-9 [14, 15]. Similarly, GPS-derived mobility mark-
ers such as percent home or the number of locations vis-
ited have been shown to be altered in depression [16], while
also correlating strongly with depression severity over time
[17, 18]. Daily GPS features and mood do not seem to be
strongly related however, with substantial day-to-day vari-
ability [16, 17].
These promising findings have prompted researchers to har-
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ness smartphone-derived sensor data for the prediction of
psychiatric diagnoses, utilizing an array of sensor-based fea-
tures. Multiple studies have effectively classified individ-
uals based on their depression status, achieving accuracies
ranging from 0.60 to over 0.85 [19–22]. These studies uti-
lized a range of different features such as GPS, screen status
or internet connectivity. Beyond diagnosis prediction, some
investigations have attempted to forecast depression sever-
ity through smartphone data. While certain studies, such as
those by Asare et al. and Ware et al., focused on predicting
individual symptoms using classifiers, others, including Saeb
et al., Wang et al., Pedrelli et al., and Lewis et al. have pre-
dicted depression severity on a continuous scale [17, 23, 24].
For continuous predictions, the PHQ-9 and Hamilton Depres-
sion Rating Scale (HAM-D) were commonly used with a sub-
set of studies incorporating alternative metrics like the PHQ-
8. Notably, varying model performances were reported, with
some studies yielding inconclusive outcomes at the popula-
tion level [16]. It is noteworthy that the majority of these
models relied on passive sensing measures, with only a lim-
ited number incorporating active measures such as Ecological
Momentary Assessments (EMAs).
Contributing to a growing body of evidence, our study con-
structs prediction models for depression severity by leverag-
ing both active and passive features obtained from individuals
with major depressive disorder (MDD) and healthy controls.
Through the utilization of permutation feature importances
and statistical modelling techniques, we not only replicate in-
sights from prior research but also introduce supplementary
evidence by addressing the integration of missing data within
our machine learning frameworks. We are hopeful that the
outcomes of our research will help to guide forthcoming in-
vestigations in the realm of digital phenotyping.

Methods
The primary goal of the study was to analyze the feasibility
of mood prediction from active and passive smartphone data
in a clinical population. We also analyzed the statistical re-
lationships of the different predictors to our target to inform
potential future studies. In this section we first describe our
cohort and then our preprocessing and analysis methods used
in this study.

Subjects. N=1550 Participants from the ReMAP study with
available GPS data, demographic information, ecological
momentary assessments and sleep questionnaires from the
Remote Monitoring in Psychiatry (ReMAP) study with data
between January 2019 and September 2022 were selected for
further processing. All study participants were recruited as
part of ongoing longitudinal cohort studies. For more infor-
mation on these studies please refer to the supplementary ma-
terial. After pre-processing quality control, processing and
post-processing quality control 207 Participants remained, of
which 156 were either healthy controls (N=96) or diagnosed
with major depressive disorder (N=60). Patients were re-
cruited and assessed at the Institute for Translational Psychi-
atry, Department of Psychiatry at the University of Muenster.

Current and lifetime psychopathological diagnoses were as-
sessed using the Structured Clinical Interview for DSM-IV
(SCID-I). Patients included those with mild, moderate, se-
vere and (partially) remitted MDD. All subjects were edu-
cated about study aims, data collection, data security and fi-
nancial compensation. The study was approved by the local
institutional review board and Informed consent was obtained
from each subject. Further information about study design
can be found in the supplement as well as our previous work
[25, 26].

Quality Control. Geolocation data underwent quality con-
trol before (pre-processing quality control) and after pro-
cessing (post-processing quality control). For pre-processing
quality control, a custom script was used that automatically
discarded participants with less than 30 days of data or with
a minimum timestamp difference >6 hours, indicating low
data density. We also discarded all data points during peri-
ods where individual participants were isolated at home due
to COVID-19 infections. After this automated quality con-
trol step accuracy data over time was plotted and visually in-
spected. If there were missing periods for >30% of collection
time or other anomalies data was discarded. After processing
daily location maps from the DPLocate pipeline were plotted
and visually inspected. If anomalies were detected data was
discarded and did not enter the final statistical analysis.

Geolocation Data Processing. Geolocation was processed
using the DPLocate pipeline. Data were converted to Matlab
format, signal epochs were extracted using a threshold of 1
datapoint and temporally filtered. Points of interest (POIs)
were extracted using the modified Density-Based Clustering
Algorithm with Noise (DBSCAN), calculating the 80 most
visited locations with the maximum number of epochs in
their 50 meters neighbourhood and then pruning overlapping
clusters to find the most visited locations [27, 28]. Epochs
were assigned to POIs, the home location was estimated as
the most commonly visited location and metrics of inter-
est were calculated from these epochs. These metrics were:
Average Distance from home, Radius of Mobility, Percent
Home and the number of places visited.
The pipeline was run using MatLab 2019a.

Psychometric Questionnaire Data. For the assessment of
depressive symptoms, the German version of the Beck De-
pression Inventory (BDI) was used [29]. The questionnaire
was administered every 2 weeks through the ReMAP phone
app as specified by the study protocol. For temporal granu-
larity, a daily ecological momentary assessment of mood and
sleep consisting of two items with a sliding scale (0-10) was
delivered through the study app at random times between 8
am and 10 pm. Users were notified via push notifications.
Both the BDI and EMA questionnaires have been externally
validated in our previous work [25, 26].

Predictive Data Processing. For our predictive models,
the data was averaged over the 2-week period prior to BDI
administration. 2-week windows with less than 5 data points
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were labelled as missing and assigned a missing value of
1 for that time window. This was done to model miss-
ingness within the data while preserving an adequate sam-
ple size. Predictors were GPS-derived mobility markers
(percent home, number of places visited, radius of mobil-
ity, distance from home), ecological momentary assessments
(mood, sleep quality), age, sex and phone platform.

Predictive Modelling. All machine learning models were
developed using the PHOTONAI package [30]. Four differ-
ent predictive models were used: Random Forest, Automatic
Relevance Determination Regression, Huber Regression and
a Support Vector Machine. Every model was evaluated using
a nested 10x10-Fold cross-validation with the best model be-
ing selected on mean absolute error and grid search as an op-
timizer strategy. Additionally, mean squared error, Spearman
rank correlation and Pearson correlation were calculated. We
also calculated a baseline estimate (referred to as a "Dummy
Estimator") by predicting the sample mean. After pipeline
training and evaluation we calculated the permutation feature
importance to assess the importance of different predictors.
To evaluate our predictive models under different conditions
we trained each pipeline on two different data splits. First,
we split the data randomly (random split), leading to data
from most participants being available in the training and test
set. This was done to model a scenario where some user data
is already available for model tuning. Second, we also per-
formed a user split where some users were held out in the test
set and not seen during training. This was done to estimate
how well the model might generalize to new unseen partic-
ipants. A potential time split was not performed due to the
high variability in the amount of data points per user.

Inferential Modelling. To gain insight into the nature of the
statistical relationships within the data we built linear regres-
sion models for the different predictors. We modelled the
relationship between BDI and different predictors using lin-
ear mixed models with a random intercept for each subject
with age and sex as covariates. Modelling the group relation-
ship we used the averaged values of the predictors in a linear
regression. All statistical analyses were performed using the
statsmodels Python package.

Results
Prediction Model. To predict the BDI sum score from mo-
bile data we we trained each estimator model on either pa-
tients with major depressive disorder (MDD), healthy con-
trols (HC) only or both of them combined (Comb). 142 sub-
jects went into the analysis with 85 HC and 57 MDD patients.
The age range spanned 18 to 67 years with a median age of
35 years. Demographic information on each subgroup can
be found in the supplementary materials. BDI was predicted
in each of the subgroups using both a random split and user
split, leading to 24 different classifier pipelines, excluding the
Dummy estimator.
Predicting BDI score in the MDD subgroup was best
achieved by the Random Forest in the random split cohort

Demographic variable Value
Age range 18 - 67

Age median 35 ± 14.04
Sex ratio 103 female, 39 male

MDD-HC ratio 57 MDD, 85 HC
BDI range 0 - 47

Table 1. Demographic Summary of all subjects used for predicting BDI using
machine learning models. For further information on subgroups see appendix.

with a mean absolute error of 5.301 and a mean squared
error of 44.543. However, the other classifiers showed a
highly similar predictive performance, with no classifier be-
ing clearly superior. Each classifier performed better than
the dummy estimator with a mean absolute error of 7.25 In
the user split the classifiers performed even more similarly
with no clear best classifier. Here the estimators performed
only slightly better than the dummy estimator (Mean abso-
lute error: 7.59). For each pipeline, we also performed a
permutation test to quantify whether the correlation between
the true and predicted values was due to chance. All models
performed significantly above chance with p-values <0.001.
Predicting BDI score in the HC subgroup was again best
achieved by the Random Forest in the random split subgroup
with a mean absolute error of 3.793 and a mean squared error
of 27.101. All estimators performed better than the dummy
estimator (Mean absolute error: 5.962). In the user split sub-
group, the results between the estimators were much more
similar with the SVR ranking as the best classifier, however,
most classifiers still performed better than the dummy esti-
mator (Mean absolute error: 6.139). The permutation test
was again significant for each model (p<0.001).
Predicting BDI score in the combined group was again best
achieved by the random forest when using a random split
with a mean absolute error of 3.793 and a mean squared error
of 27.101. All estimators outperformed the Dummy (Mean
absolute error: 5.962). The SVR was the best estimator in
the group split with a mean absolute error of 4.259 and a
mean squared error of 32.921. In the combined group all es-
timators performed highly similarly both in the random and
the user split condition. In the combined condition all models
performed above chance (p<0.001)

Feature importances. For each pipeline, we also calculated
the permutation feature importance using 100 permutations.
In the MDD subgroup with random splitting, the most impor-
tant feature was reported mood, with the missingness of the
mood EMA as the second most important feature. The num-
ber of places visited, percent home, age, GPS missingness,
platform and sleep were other notable features. While dif-
ferent in exact importance score, the most important features
where highly similar among estimators. With the group split
GPS missingness was the most important feature with mood
EMA, number of places visited, percent home and missing-
ness of the mood EMA as other important predictors. How-
ever, these should be interpreted with caution as the different
estimators did not perform much better than the Dummy es-
timators.
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Fig. 1. Predicting BDI. Predicting BDI in a random split scenario, all estimators performed better than the dummy estimator that was predicting the average BDI score, with
very similar mean absolute errors between the different estimators. The random forest performed best for the MDD subgroup (MAE: 5.316, Pearson’s R: 0.637, Permutation
p-value: p<0.001) and Combined subgroup (MAE: 3.791, Pearson’s R: 0.704) while the ARD Regression performed best in the HC subgroup (MAE: 2.280, Pearson’s R:
0.753, Permutation p-value: p<0.001). In the user split scenario, the estimators did not perform much better than the dummy estimator. The best estimator in the group split
scenario was the random forest for the MDD (MAE: 7.183, Pearson’s R: 0.475, Permutation p-value: p<0.001), HC (MAE: 2.786, Pearson’s R: 0.383, Permutation p-value:
p<0.001) and Combined (MAE: 4.259, Pearson’s R: 0.610, Permutation p-value: p<0.001) subgroups. The performance here should be interpreted with caution however as
no estimator strongly outperformed the dummy estimator. *MAE: Mean absolute error.

In the HC subgroup with random splitting, the most impor-
tant feature was the mood EMA followed by missingness of
the mood EMA, sex and age. Again, feature importances
were highly similar among estimators. With user splitting
the most important feature was number of places visited, fol-
lowed by mood EMA missingness, percent home, GPS miss-
ingness, age and sex. Again these need to be interpreted with
caution as the estimators did not perform much better than
the Dummy estimator.
In the combined group with random splitting, the most im-
portant feature was the mood EMA, followed by GPS miss-
ingness, mood EMA missingness, sex and number of places
visited. With user splitting the most important feature was
mood EMA followed by GPS missingness, mood EMA miss-
ingness percent home and age. Within both splitting scenar-
ios, there was a high degree of similarity between the feature
importances for the different estimators.

BDI correlates with decreased mobility. With GPS-
derived mobility measures as being some of the important
features in our predictive models we next looked at the as-
sociation between different geolocation-derived metrics and
BDI scores. This was done in an exploratory manner to pro-
vide possible explanations for the observed performance.
We predicted BDI using either percent home or number of
places visited with age and sex as covariates in a linear mixed
model with a variable intercept for each subject. We also ran
each model separately for the depressed (MDD) and healthy
(HC) subgroups to account for differences in trends when

analyzing the different subgroups compared to analyzing all
subjects together, also known as Simpson’s paradox [31].
When predicting BDI using percent home in the MDD
subgroup, neither percent home (p=0.796, z=0.259), age
(p=0.767, z=0.297) nor sex (p=0.793, z=-0.262) were signif-
icant predictors of BDI. In the HC subgroup percent home
was a significant predictor (p<0.001, z=3.958), while age
(p=0.405, z=0.833) and sex (p=0.293, z=1.051) were not.
When predicting BDI using number of places visited in the
MDD subgroup, the number of places (p=0.003, z=3.016)
was a significant predictor, while age (p=0.758, z=0.308) and
sex (p=0.788, z=-0.269) were not. In the HC subgroup nei-
ther number of places (p=0.171, z=-1.369), age (p=0.383,
z=0.872) nor sex (p=0.253, z=1.142) was significant.

BDI correlates with worsened mood and sleep. As the
mood EMA was one of the strongest predictors in all models
with good predictive performance, we investigated the utility
of self-reported measures of mood and sleep (ecological mo-
mentary assessments, EMAs) by using them as predictors of
BDI. As before we ran two separate regressions for HC and
MDD to account for a potential Simpson’s paradox [31].
For predicting BDI from self-reported mood we used 3753
data points from 132 subjects (53 MDD, 79 HC). We used a
linear mixed model as described above with age and sex as
covariates. For the MDD subgroup, we found a significant
effect of mood (p<0.001, z=-22.612), but not age (p=0.931,
z=0.087) or sex (p=0.943, z=0.071). In the HC subgroup,
we again found a significant effect of mood (p<0.001, z=-
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Fig. 2. Permutation Feature Importance. We calculated the permutation feature importance for every pipeline. Mood EMA emerged as the most important predictor in the
random split scenario for every pipeline. Other important features were the missingness of the mood EMA, the missingness of the GPS data, the number of places visited,
the percent home, age and sex. For the user split the pipelines did not perform much better than the Dummy estimator for the MDD subgroup therefore interpreting the
feature importance is not encouraged. In the combined subgroup where the pipelines outperformed the Dummy estimator mood again emerged as the most important
feature with GPS missingness, mood EMA missingness, percent home and age as additional important features. *Mood: Mood EMA, sleep: Sleep EMA, numPlaces:
Number of places visited, percentHome: Percent home, percentHomep: normalised percent Home, homDist: Distance from home, radiusMobility: Radius of Mobility, age:
age, sex: Sex, platform: phone platform, GPS_missing: missingness of GPS data, mood_miss: Missingness of mood EMA, sleep_miss: Missingness of sleep EMA,
percenthome_miss: Missingness of percent home, percenthomep_miss: Missingness of normalised percent home, numplaces_miss: Missingness of number of places,
radMobil_miss: Missingness of Radius of Mobility, homDist_miss: Missingness of radius of Mobility

23.653), but not age (p=0.343, z=0.947) or sex (p=0.345,
z=0.730).
For predicting BDI from self-reported sleep we used 3781
data points from 132 subjects (54 MDD, 78 HC). For the
MDD subgroup, we found a significant effect of self-reported
sleep (p<0.001, z=4.267), but not age (p=0.739, z=0.333) or
sex (p=0.782, z=-0.276). For the HC subgroup, we found a
significant effect of self-reported sleep (p=0.004, z=-2.912),
but not age (p=0.448, z=0.759) or sex (p=0.278, z=1.084).

Diagnosis correlates with mobility markers. After estab-
lishing the relation between BDI and geolocation markers of
mobility we looked at the association between GPS-derived
mobility markers and diagnosis. We extracted the average
percent home and average number of places visited for each
healthy control and each subject with a diagnosis of major
depressive disorder. 156 individuals (60 MDD, 96 HC) were
included in the analysis (see Table 16). We predicted one of
the two mobility measures, average mood EMA response or
average sleep EMA response with diagnosis, age and sex as
predictors using a linear regression model.
Predicting percent home we saw a significant effect of sex
(p<0.001, t=3.621), diagnosis (p=0.009, t=2.633) and age
(p=0.018, t=2.389). A diagnosis of MDD was associated
with an increased amount of time spent home (coeff=1.538,
CI=0.384 - 2.692). Predicting the number of places visited
we saw a significant effect of sex (p=0.016, t=-2.429), di-
agnosis (p=0.010, t=-2.593) and age (p=0.019, t=-2.376). A
diagnosis of MDD was associated with a decreased number
of places visited (coeff=-0.552, CI=-0.972 - -0.0131). When

predicting average mood we found a strongly significant ef-
fect for diagnosis (p<0.001, t=-6.869) where a diagnosis of
MDD was negatively correlated with (coeff=-1.537, CI=-
1.98 - -1.095), without a significant effect for age (p=0.645,
t=-0.461) or sex (p=0.816, t=-0.233). For average reported
sleep we found no significant effect of diagnosis (p=0.897,
t=-0.130). The effects for diagnosis on number of places,
percent home and average mood remained significant even
after adjusting for multiple comparisons using the Bonferroni
method.

Discussion
This study aimed to explore the feasibility of predicting
symptom scores from smartphone data, focusing on an area
that had received limited attention in previous research, com-
pared to classification. Unlike earlier models that primarily
concentrated on predicting item-level symptoms or overall
diagnosis state, our analysis focused on predicting symptom
scores using different estimators. Most previous studies used
machine learning models to classify patients based on their
phone data as depressed or healthy [11, 17, 20]. Other stud-
ies had demonstrated success in predicting specific aspects
of depression but still used classifiers to predict individual
symptom-level items, rather than predicting composite scores
that rate depression severity [32, 33]. Notably some studies
predicted depression severity using composite scores, using
psychometric instruments other than BDI. These studies also
did not explicitly model missingness as they mostly relied on
passive features. Here our study adds to a growing body of
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Fig. 3. Predictors of BDI. GPS-derived mobility markers are partially significant predictors in the MDD subgroup (number of places: p=0.003, percent home: p=0.796) as
well as the HC subgroup (number of places: p=0.171, percent home: p<0.001)BDI is also significantly associated with mood (p<0.001), sleep (p=0.004) in the MDD
subgroup as well as the HC subgroup (mood: p<0.001; sleep: p<0.001).

evidence for the utility of monitoring depressive symptoma-
tology.
Our results show that employed models outperformed the
Dummy baseline estimator in a random split scenario, albeit
with only a marginal improvement in a user split scenario.
This is in line with previous findings by Lewis et al, which
found that classifiers work better than baseline estimators in
random and time-split scenarios, but not in user-split scenar-
ios [24]. First, these models should be evaluated in larger,
more heterogeneous samples, as the relatively small dataset
used in the study may have impacted the models’ perfor-
mance. Larger and more diverse samples could yield better
results. Secondly, models should be trained in cohorts where

individuals show greater variability of symptom ranges en-
abling models to leverage more meaningful within-person
variation. Third, for clinical deployment, it might be nec-
essary to collect a few data points from a user and then adjust
the model based on this user’s data. To further improve pre-
diction accuracy, model personalization using mixed effects
machine learning models, as proposed by Lewis et al., could
be considered [24].
Among the features analyzed using permutation feature
importance, the mood ecological momentary assessment
(EMA) emerged as the most influential predictor, backed by
highly significant effects in our mixed models, followed by
the missingness of different signals and GPS-derived mobil-
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Fig. 4. Diagnosis predicts lower mood, more time at home and decreased number of places. When using diagnosis as a predictor for GPS-derived mobility features we find
a significantly increased percent home (p=0.009) and a significantly decreased number of places visited (p=0.010). A diagnosis of depression also predicts a significantly
lower average mood (p<0.001). We do not find evidence for a significant difference in average self-reported sleep quality (p=0.897).

ity features. The assessment of feature importance was only
meaningful in the random split scenario as in the user-split
scenarios models failed to significantly predict mood above
baseline. In this scenario interpreting feature importances
should not be attempted. For future studies, it might be im-
portant to effectively model missingness as it may provide
crucial information for machine learning models to achieve
accurate predictions.

In our investigation using mixed modelling to explore the
connection between distinct predictors and BDI scores, we
confirmed the robust predictive capability of mood EMAs,
while also establishing significant effects for GPS-derived
mobility markers. These findings reinforce the strength of
EMAs as a key indicator of depression severity. Previous
research has consistently demonstrated substantial links be-
tween EMA scores and depression scales within psychiatric

populations and other study groups [15, 34]. The empirical
evidence for GPS-derived mobility markers also aligns with
existing studies, which have highlighted the correlation be-
tween alterations in these markers and shifts in depressive
symptoms [35]. Despite notable levels of missing data in
our GPS records, we replicate effects from prior investiga-
tions. Enhancing the frequency and reliability of data sam-
pling could potentially yield more robust and meaningful es-
timates. However, it’s important to note that while EMAs
exhibit effectiveness, their reliance on active user participa-
tion may limit their widespread adoption in certain contexts
[34], thus impacting their clinical utility.

Considering the group-level findings, we show that depres-
sion is significantly associated with the average reported
mood and GPS-derived mobility markers. Both number of
places and percent home have previously been shown to be
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significantly associated with a diagnosis of depression across
multiple studies [11, 17]. The average sleep quality has also
been previously associated with depression [36–38], yet we
are unable to reproduce this finding. While this might be due
to depressed patients experiencing different levels of symp-
tom severity being ignored when examining the average, self-
reported sleep did not emerge as a strong predictor of BDI
score in the feature importance analysis. Overall our group-
level analysis is in line with findings from previous studies.
While predicting composite scores is an important task in re-
mote monitoring, it may not fully capture the variability in
patient symptoms. Depression is considered a highly het-
erogeneous disease, with some authors suggesting it might
be multiple diseases disguised under a common symptom.
Therefore, to gain a more comprehensive overview of a pa-
tient’s condition, predicting individual items or symptom
groups such as in latent factor models might provide a more
holistic view of depression severity and is potentially easier
to predict as these categories are better reflected in measured
outcomes than composite scores. These factor models have
also been shown to track multiple dimensions of psychiatric
illness as well as general psychopathology [39].
Other challenges for clinical utility concern participant
dropout, especially for models that rely on active features
such as EMAs. To address this future apps will need to be
carefully designed to become more engaging and promote
user adherence, without strongly altering user behaviour.
Models derived exclusively from passive sensing are less
prone to these problems as they do not rely on active user par-
ticipation. Nonetheless, the lack of standardization among
sensors across various studies and applications introduces
challenges in the transference of models. Sensor harmo-
nization, a pivotal challenge, is influenced by factors such
as the diversity in the count and categories of phone sensors
captured in different studies. In this context, our study of-
fers valuable insights into the array of phone-derived metrics
that hold significance for predicting depression severity, con-
tributing to a deeper understanding of this challenge.
Overall, this study contributes valuable evidence to the po-
tential utility of smartphone data in mood state monitoring.
However, future studies should explore the prospect of pre-
dicting depression further ahead in time, potentially serving
as an early-warning tool for better intervention and manage-
ment of the condition. Additionally, addressing the chal-
lenges and limitations identified in this study could pave the
way for more robust and effective depression monitoring so-
lutions using smartphone-based data.
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Supplementary Material

A. ReMAP App. The Remote Monitoring Application in
Psychiatry (ReMAP) app was developed by researchers from
the Department of Psychiatry at the University of Münster. It
enables high-resolution monitoring of activity using smart-
phone sensors, including geolocation, steps, walking dis-
tance, and acceleration. The app also incorporates active
self-reports on sleep, mood, and voice samples. Every two
weeks, participants were given the option to complete the
Beck Depression Inventory (BDI) with a random variance
of two days. Participation in the self-reporting was volun-
tary, and it was not a requirement for financial compensa-
tion. ReMAP was used as an additional assessment tool for
participants in various ongoing longitudinal studies, primar-
ily focusing on neuroimaging studies involving structural and
functional MRI assessments, genotyping, and the evaluation
of various clinical variables.

B. ReMAP Participants. The sample for the analyses in
this paper was drawn from several ongoing longitudinal co-
horts. Included samples stem from the Marburg/Münster Af-
fective Disorder Cohort Study (MACS, n=95) (Vogelbacher
et al., 2018), the Münster Neuroimage Cohort (MNC, n=27)
(Dannlowski et al., 2016; Opel et al., 2019), two subsamples
of the SFB-TRR58 cohort (n=23; Z02 Münster cohort and
SpiderVR Münster cohort (Schwarzmeier et al., 2020)), the
TIP (n=6) cohort and the SEED cohort (n=5). All cohorts
comprise healthy control (HC) participants, as well as differ-
ent patient groups. Both, the MACS and the MNC cohorts
include major depressive disorder (MDD) and bipolar disor-
der (BD) patients under current or former inpatient treatment.
The SFB-TRR58 sample includes patients with a spider pho-
bia (SP). The TIP sample includes patients with a social anx-
iety disorder (SAD), MDD, or comorbid SAD and MDD. For
our analyses, we excluded all patients that did not meet the
criteria for healthy controls or major depressive disorder.

C. Predictive Modelling. Results for all the different esti-
mator pipelines can be found in table 4. Condition refers to
the subgroup the pipeline was trained on, while split refers
to the splitting procedure for the data. Tables 2 and 3 pro-
vide information on the HC and MDD subgroups used in the
predictive modelling.

D. Mixed Modelling of BDI. The demographics and results
for the different regression models on BDI can be seen in
tables 5 to 15. The formula for the linear mixed models can
be read as BDI ∼ var +age+sex+(1|subject) where var
stands for the variable of interest such as mood EMA, sleep
EMA, percent home or the number of places visited.

E. Linear model for diagnosis effects. Tables 16 to 20
provide information on the linear models used to investigate
diagnosis effects. The formula for the linear models can be
read as var ∼ diagnosis + age + sex, with var standing for
the variable of interest. Note that the the average for the vari-
able of interest is used in these models.
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Demographic variable Value
Age range 19-62

Age median 37.0 ± 12.61
Sex ratio 42 female, 15 male

BDI range 0-47
BDI median 7 ± 8.75

Table 2. Demographic Summary for the MDD subgroup of the BDI prediction model.

Demographic variable Value
Age range 18-67

Age median 35.0 ± 15.00
Sex ration 61 female, 24 male
BDI range 0-31

BDI median 2 ± 4.56

Table 3. Demographic Summary for the HC subgroup of the BDI prediction model.

Condition Split Estimator MAE MSE Spearman Pearson r-pval
Comb User ARD 4.261 32.976 0.549 0.608 <0.001
Comb User Dummy 6.14 56.842 0 0 0
Comb User HuberRegressor 4.260 32.977 0.550 0.607 <0.001
Comb User RandomForest 4.259 32.929 0.550 0.610 <0.001
Comb User SVR 4.260 32.980 0.549 0.609 <0.001
Comb Random ARD 3.794 27.070 0.713 0.701 <0.001
Comb Random Dummy 5.962 54.033 0 0 0
Comb Random HuberRegressor 3.798 27.122 0.712 0.706 <0.001
Comb Random RandomForest 3.791 27.064 0.713 0.704 <0.001
Comb Random SVR 3.797 27.112 0.713 0.706 <0.001
HC User ARD 2.787 12.163 0.353 0.384 <0.001
HC User Dummy 3.823 23.598 0 0 0
HC User HuberRegressor 2.787 12.163 0.353 0.384 <0.001
HC User RandomForest 2.786 12.160 0.353 0.383 <0.001
HC User SVR 2.787 12.162 0.353 0.384 <0.001
HC Random ARD 2.280 9.024 0.678 0.753 <0.001
HC Random Dummy 3.620 20.845 0 0 0
HC Random HuberRegressor 2.289 9.102 0.676 0.752 <0.001
HC Random RandomForest 2.288 9.094 0.677 0.749 <0.001
HC Random SVR 2.286 9.080 0.678 0.751 <0.001
MDD User ARD 7.183 74.887 0.373 0.475 <0.001
MDD User Dummy 7.591 82.810 0 0 0
MDD User HuberRegressor 7.183 74.887 0.373 0.475 <0.001
MDD User RandomForest 7.183 74.874 0.374 0.475 <0.001
MDD User SVR 7.184 74.886 0.374 0.473 <0.001
MDD Random ARD 5.324 45.026 0.679 0.645 <0.001
MDD Random Dummy 7.258 76.661 0 0 0
MDD Random HuberRegressor 5.327 45.109 0.677 0.643 <0.001
MDD Random RandomForest 5.316 45.344 0.677 0.637 <0.001
MDD Random SVR 5.322 44.895 0.678 0.644 <0.001

Table 4. Results for the different classifiers trained on the MDD cohort. Condition refers to the subgroup, split to the data splitting and estimator to the estimator used in the
pipeline. *MAE: Mean absolute error; MSE: Mean squared error; Spearman: Spearman Rank Correlation; Pearson: Pearson correlation; r-pval: p-value of the permutation
test for the correlation between predicted and true values of the target variable.

Demographic variable Value
Age range 18-67

Age median 35.5 ± 14.09
Sex ratio 101 female, 39 male

MDD-HC ratio 56 MDD, 84 HC

Table 5. Demographic Summary for estimating the effect of GPS-derived mobility markers on BDI (N=140, 4011 data points).
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E Linear model for diagnosis effects

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 10.525 5.874 1.792 0.073 -0.988 22.037
sex[T.w] -0.795 3.030 -0.262 0.793 -6.734 5.145
age 0.032 0.107 0.297 0.767 -0.178 0.242
percHome 0.007 0.027 0.259 0.796 -0.045 0.059
userId Var 89.596 5.015

Table 6. Model summary for correlating BDI with percent home in MDD.

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept -2.092 1.549 -1.351 0.177 -5.128 0.943
sex[T.w] 0.870 0.828 1.051 0.293 -0.752 2.493
age 0.021 0.025 0.833 0.405 -0.028 0.070
percHome 0.036 0.009 3.958 0.000 0.018 0.054
userId Var 9.844 0.772

Table 7. Model summary for correlating BDI with percent home in HC.

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 10.372 5.376 1.929 0.054 -0.164 20.908
sex[T.w] -0.812 3.020 -0.269 0.788 -6.731 5.107
age 0.033 0.107 0.308 0.758 -0.177 0.243
numPlaces 0.193 0.064 3.016 0.003 0.068 0.319
userId Var 89.000 4.995

Table 8. Model summary for correlating BDI with number of places in MDD.

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 1.271 1.346 0.944 0.345 -1.368 3.911
sex[T.w] 0.952 0.833 1.142 0.253 -0.682 2.585
age 0.022 0.025 0.872 0.383 -0.027 0.071
numPlaces -0.037 0.027 -1.369 0.171 -0.091 0.016
userId Var 9.983 0.779

Table 9. Model summary for correlating BDI with number of places in HC.

Demographic variable Value
Age range 18-67

Age median 36.5 ± 14.17
Sex ration 97 female, 35 male

MDD-HC ratio 53 MDD, 79 HC

Table 10. Demographic Summary for estimating the effect of self-reported mood on BDI (N=132, 3753 data points).

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 20.763 4.889 4.247 0.000 11.180 30.346
sex[T.w] 0.197 2.761 0.071 0.943 -5.214 5.607
age 0.008 0.094 0.087 0.931 -0.177 0.193
mood -1.619 0.072 -22.612 0.000 -1.759 -1.479
userId Var 66.379 4.425

Table 11. Model summary for correlating BDI with self-reported mood in MDD.

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 9.336 1.191 7.841 0.000 7.002 11.670
sex[T.w] 0.247 0.714 0.345 0.730 -1.153 1.647
age 0.020 0.021 0.947 0.343 -0.022 0.062
mood -1.047 0.044 -23.653 0.000 -1.134 -0.961
userId Var 6.784 0.634

Table 12. Model summary for correlating BDI with self-reported mood in HC.
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Demographic variable Value
Age range 18-67

Age median 36.5 ± 14.17
Sex ration 97 female, 35 male

MDD-HC ratio 54 MDD, 78 HC

Table 13. Demographic Summary for estimating the effect of sleep on BDI (N=132, 3781 data points).

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 14.298 5.664 2.524 0.012 3.197 25.400
sex[T.w] -0.884 3.201 -0.276 0.782 -7.159 5.390
age 0.036 0.108 0.333 0.739 -0.176 0.248
sleep -0.480 0.112 -4.267 0.000 -0.700 -0.259
userId Var 89.351 5.186

Table 14. Model summary for correlating BDI with self-reported sleep in MDD.

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 2.664 1.445 1.844 0.065 -0.168 5.495
sex[T.w] 0.922 0.850 1.084 0.278 -0.745 2.589
age 0.019 0.026 0.759 0.448 -0.031 0.069
sleep -0.191 0.066 -2.912 0.004 -0.320 -0.062
userId Var 9.683 0.796

Table 15. Model summary for correlating BDI with self-reported sleep in HC.

Demographic variable Value
Age range 18-67

Age median 33 ± 13.89
Sex ration 113 female, 43 male

MDD-HC ratio 60 MDD, 96 HC

Table 16. Demographic Summary for estimating the effect of diagnosis on GPS-derived mobility markers (N=156).

coef std err t P>|t| [0.025 0.975]
Intercept 85.6205 1.113 76.896 0.0 83.421 87.82
sex[female] 2.4234 0.669 3.621 0.0 1.101 3.746
diagnosis[MDD] 1.5383 0.584 2.633 0.009 0.384 2.692
age 0.0516 0.022 2.389 0.018 0.009 0.094

Table 17. Model Summary for correlating Percent Home with Diagnosis.

coef std err t P>|t| [0.025 0.975]
Intercept 6.119 0.406 15.088 0.0 5.318 6.92
sex[T.w] -0.5921 0.244 -2.429 0.016 -1.074 -0.111
diagnosis[T.MDD] -0.5517 0.213 -2.593 0.01 -0.972 -0.131
age -0.0187 0.008 -2.376 0.019 -0.034 -0.003

Table 18. Model Summary for correlation Number of Places with diagnosis.

coef std err t P>|t| [0.025 0.975]
Intercept 7.5547 0.43 17.572 0.0 6.705 8.405
sex[T.w] -0.0603 0.259 -0.233 0.816 -0.573 0.452
diagnosis[T.MDD] -1.5372 0.224 -6.869 0.0 -1.98 -1.095
age -0.0038 0.008 -0.461 0.645 -0.02 0.012

Table 19. Model Summary for correlating Mood with Diagnosis.

coef std err t P>|t| [0.025 0.975]
Intercept 7.8337 0.328 23.899 0.0 7.186 8.482
sex[T.w] -0.1227 0.197 -0.625 0.533 -0.511 0.266
diagnosis[T.MDD] -0.0219 0.169 -0.13 0.897 -0.356 0.312
age -0.0098 0.006 -1.566 0.12 -0.022 0.003

Table 20. Model Summary for correlating self-reported sleep with Diagnosis.
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