1 Supporting information 2 Two years of longitudinal measurements of human adenovirus group F, norovirus GI and GII, 3 rotavirus, enterovirus, enterovirus D68, hepatitis A virus, Candida auris, and West Nile Virus 4 nucleic-acids in wastewater solids: A retrospective study at two wastewater treatment plants 5 6 7 Alexandria B. Boehm^{1*}, Marlene K. Wolfe², Bradley J. White³, Bridgette Hughes³, Dorothea 8 Doung³ 9 1. Department of Civil & Environmental Engineering, School of Engineering and Doerr 10 School of Sustainability, Stanford University, 473 Via Ortega, Stanford, CA, USA 94305 11 2. Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory 12 University, 1518 Clifton Rd, Atlanta, GA, USA, 30322 13 3. Verily Life Sciences LLC, South San Francisco, CA, USA, 94080 14 15 16 17

- 18 * Author to whom correspondence should be addressed. Email: <u>aboehm@stanford.edu</u>, Tel:
- 19 650-724-9128
- 20

21 Additional details related to the EMMI guidelines. Thirty-six samples were selected at 22 random for this analysis; this represents 8% of the samples processed in the study. As 23 described in the methods section, each sample was run as template in three different PCR 24 reactions; 1 for PMMoV, 1 for rotavirus, SARS-CoV-2, WNV, HuNoV GII, and HAdV, and 1 for 25 EVD68, HAV, EV, HuNoV GI, and C. auris. The average (standard deviation) number of 26 partitions (droplets) for each of the three reactions (across the 10 replicates) was 164164 27 (38851) for the reaction for PMMoV, 174321 (20126) for the reaction for rotavirus, SARS-CoV-2, 28 WNV, HuNoV GII, and HAdV, and 185497 (24410) for the reaction for EVD68, HAV, EV, HuNoV 29 GI, and C. auris. The volume of the partitions, as reported by the machine vendor is 0.00085 µL. 30 The mean and standard deviation of copies per partition for each target is shown in Table S2.

- 31
- 32

33

34

Table S1. Parameters used in the development of new primers and probes using Primer3Plus
 (https://primer3plus.com/, accessed 7/16/23).

- Product size ranges: 60-275
- Primer size: min 15, opt 20, max 36
- Primer melting temperature: min 50°C, optimal 60°C, max 65°C GC% content: min 40%, optimal 50%, high 60%
- concentration of divalent cations = 3.8 mM
- 42 concentration of dNTPs needs to be 0.8 mM
- 43 Internal Oligo: size min 15, optimal 20, max 30
- Internal Oligo: Melting temp min 62°C, optimal 63°C, max 70°C
- Internal Oligo: GC% min 30%, optimal 50%, max 80%

46

47

48

49 Table S2. For each target measured in this study, the mean and standard deviation (sd) of the

total number of copies of target per partition. Num is the number of samples out of a random 36

51 included in this analysis that had detectable target in them and thus contributed to the

52 calculated mean and standard deviation. A value of 0 indicates that of the random 36 samples

selected, none of them had the target present in them. Abbreviations for the targets are

54 provided in the main text except "Rota" is rotavirus and SC2 is the N gene of SARS-CoV-2.

Target	EVD68	HAV	EV	HuNoV GI	C. auris	Rota	SC2	WNV	HuNoV GII	HAdV	PMMoV
mean	1.04x10⁻ ₃	9.91x10⁻⁵	1.02x10⁻ ₃	8.93x10⁻ ₄	0	1.20x10 ⁻⁴	1.37x10 ⁻³	0	1.12x10 ⁻²	5.03x10 ⁻²	0.15
sd	1.18x10⁻ ₃	1.59x10 ⁻⁴	3.65x10⁻ ₄	7.94x10⁻ ₄	0	1.14x10 ⁻⁴	1.22x10 ⁻³	0	8.57x10 ⁻³	3.58x10 ⁻²	0.069
num	19	15	36	36	0	23	36	0	36	36	36

55

56

57 Figure S1. EMMI checklist.58

Environmental Microbiology Minimum Information Checklist

Study Description Study: reropective_2 Date:	Incomental Sample Traduced by Control of the sample performed by any breather performed by the sample treatment performed by the sample treatm	Sample Reduction Performed Derrifugation was used, as described in the methods	Nucleic Acid Extraction Methods provided in the paper.	Reverse Transcription Performed One Step RT-PCR	PCR Detection 	Analysis Provided in methods	
Control Checklist Step performed Step has control info	vironmental Sample Sampling Treatment	Sample Reduction	Nucleic Acid Extraction	Reverse Transcription	PCR Detection	Nogativa	
Control replicates Control introduced Internal/External Independent/Parallel Step has control info # control replicates Control replicates Data Handling reported		0 External Parallel 10 External	2 External Parallel 10 E	2 External • Paratel • 10	2 E Esternal • Parallet • Esternal • • • • • • • • • • • • • • • • • • •	Controls Positive Controls	
Process Checkli Environmental Sampling Procedure B Sampling Procedure Sample amount, mean, range Sampling locations, dates, times Sample Treatment Performed Performed Reagents	St Sample Reduction Performed Reduction procedure Reagents Concentration Factor Nucleic Acid Extraction Extraction procedure Amount extracted, amount obtained Extract storage conditions	qPCR or Target ge length Thermoc and time Master n vendors, Additive concentr reference	dPCR ene name, amplico ycling temperatur s ki: composition, concentrations s: vendors, ations s: amount added, ment (if any) sequences, ations, vendors, ss	n I Amp (proi es Prob linstr Equi ana) I Inhii Unhii Used Num foun	 Amplicon confirmation method (probe, melt curve, etc) Probe sequence, concentration, vendor, reference Instrumentation Equivalent volume of sample analyzed by PCR Inhibition assessment procedure Inhibition control description (if used) Number samples tested and found inhibited 		
Reverse Transcription Performed One or two step CDNA storage conditions (Reaction temperatures and Reaction reagents and cor Priming method Reaction volume, added to Inhibition assessment pro- Inhibition control descript Number samples tested and	if two step) d times ccentrations emplate amount cedure ion (if used) kd found inhibited	Analysis Threshol Technica well mer Partition Partition Targetcc mean, va Program analysis Explanat example	- dPCR d settings I replicates, numbrig ing s measured, numbri riance volume used for dPCR used for dPCR ion of control resu plots	Analy Analy rr, Tech er, Calit Ca	Analysis - qPCR Analysis - qPCR CR Activation of handling failed negative controls Calibration standards: description and source Method of quantifying standards Calibration curve slope Calibration curve slope Calibration curve R2 Lowest standard measured or 95% LOD Cq value determination method		

59

60

61 Figure S2. Concentrations of HuNoV G1 and GII, rotavirus, HAdV, EV, HAV, EVD68 and C. auris

62 in wastewater solids at OSP and SJ normalized by concentrations of PMMoV. Error bars show

63 standard deviation of the ratio propagated by assuming the errors are symmetric and described

64 by the larger of the lower or error bar from the original measurements. The black line shows a 5-

65 adjacent sample trimmed average. A gray symbol at the top of the plot indicates a value that is

66 higher than the y-axis scale.

67