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Abstract 
Background and Aims: Predic7on and early detec7on of heart failure (HF) is crucial to mi7gate its 
impact on quality of life, survival, and healthcare expenditure. In this study, we explored the 
predic7ve value of serum metabolomics (168 metabolites detected by proton nuclear magne7c 
resonance (1H-NMR) spectroscopy) for incident HF.  
 
Methods: We leveraged data of 68,311 individuals and > 0.8 million person-years of follow-up from 
the UK Biobank (UKB) cohort to assess individual metabolite associa7ons and to train models to 
predict HF risk in individuals not previously considered at risk. Specifically, we (I) fi?ed per-metabolite 
COX propor7onal hazards (COX-PH) models to assess individual metabolite associa7ons and (II) 
trained and internally validated elas7c net (EN) models to predict incident HF using the serum 
metabolome. We benchmarked discrimina7ve capaci7es against a comprehensive, well-validated 
clinical risk score (Pooled Cohort Equa7ons to Prevent HF, PCP-HF1).  
 
Results: During median follow-up of ≈ 12.3 years, several metabolites showed independent 
associa7on with incident HF (90/168 adjus7ng for age and sex, 48/168 adjus7ng for PCP-HF; false 
discovery rate (FDR)-controlled P < 0.01). Performance-op7mized risk models effec7vely retained key 
predictors represen7ng highly correlated clusters (≈ 80 % feature reduc7on). The addi7on of 
metabolomics to PCP-HF improved predic7ve performance (Harrel’s C: 0.768 vs. 0.755.; con7nuous 
net reclassifica7on improvement (NRI) = 0.287; rela7ve integrated discrimina7on improvement (IDI): 
17.47 %). Simplified models including age, sex and metabolomics performed almost as well as PCP-HF 
(Harrel’s C: 0.745 vs. 0.755, con7nuous NRI: 0.097, rela7ve IDI: 13.445 %). Risk and survival 
stra7fica7on was improved by the integra7on of metabolomics. 
 
Conclusions: The assessment of serum metabolomics improves incident HF risk predic7on. Scores 
based simply on age, sex and metabolomics exhibit similar predic7ve power to clinically-based 
models, poten7ally offering a cost- and 7me-effec7ve, standardizable, and scalable single-domain 
alterna7ve to more complex clinical scores. 
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Introduc2on 
Heart failure (HF) is a major global health problem associated with high morbidity and mortality. 
Rising life expectancy, absolute popula7on growth, detrimental lifestyle changes and improved 
survival aler diagnosis all contribute to an increasing prevalence of HF2-5. The clinical management of 
HF is complex, encompassing mul7modal therapeu7c strategies including improved surveillance and 
pa7ent educa7on, pharmacotherapy, device implanta7on and invasive/surgical approaches. Whilst 
valuable for affected individuals, these therapeu7c efforts impose enormous stress on healthcare 
systems6-8.  
 
Importantly, most HF cases are poten7ally preventable via aggressive control of risk factors9 which 
therefore represents a highly cost-effec7ve approach10. As with any preven7ve measures, the early 
iden7fica7on of individuals at risk is crucial as appreciated by recent HF guidelines, which emphasize 
the requirement for standardized screening strategies11, 12. 
 
Current HF risk scores focus mainly on commonly acknowledged risk factors, e.g. including smoking 
history, systolic blood pressure and cholesterol levels. Several itera7ons of such clinical risk scores 
have been suggested in recent years, which olen require the integra7on of data from heterogenous 
sources for acceptable performance13. Although most scores mainly comprise rou7nely available 
features, the combina7on of verbal interviews, physical measurements and clinical chemistry is 7me-
consuming, expensive, and difficult to standardize.  
 
Metabolites represent the end products of cellular processes and reflect the dynamic interac7ons 
between genes, environment and lifestyle factors. In recent years, proton nuclear magne7c 
resonance (1H-NMR) spectroscopy metabolomic profiling of serum samples has emerged as an 
effec7ve assay to predict lifestyle14-16, disease onset and severity17-23, mul7morbidity24, and all-cause 
mortality25, 26. Several single metabolites have been associated with incident HF27, 28. However, a 
systema7c assessment and adequate benchmarking of the predic7ve value of serum metabolomics 
for incident HF has not been undertaken.  
 
Here, we exploit the UK Biobank (UKB) resource to assess the suitability of serum metabolomics for 
HF risk stra7fica7on. Within UKB, large-scale metabolomic characteriza7on (168 individual 
metabolites) via 1H-NMR spectroscopy has been conducted on ≈ 120,000 baseline serum samples 
collected between 2006 and 201019, 29. Par7cipants underwent extensive phenotypic characteriza7on 
at enrolment and then health records follow-up to date. We first tested per-metabolite incident HF 
associa7ons and describe a range of associated metabolites. Subsequently, elas7c net (EN)-
regularized COX propor7onal hazards (COX-PH) models were trained on 80 % of the dataset to 
generate risk scores relying on different combina7ons of age and sex, a state-of-the-art clinical HF risk 
predic7on model (Pooled Cohort Equa7ons to Prevent HF, PCP-HF), and the serum metabolome. We 
extensively assessed model performance and clinical u7lity on the remaining 20 % par77on and find 
that metabolomics can enhance PCP-HF performance. Models solely relying on age, sex and 
metabolomics performed almost as well as PCP-HF, thus poten7ally displaying a promising alterna7ve 
to more complex clinical scores. Our study applies machine learning to allow for minimising the 
number of measured features whilst preserving predic7ve performance.  
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Methods 
 
Study design and popula0on 
The study was conducted within UKB, a large-scale prospec7ve cohort represen7ng the general UK 
popula7on. 500,000 individuals were voluntarily enrolled between 2006 -2010 (eligibility criteria: (I) 
aged 40-69 years at recruitment, (II) capacity to consent, (III) living within 20-25 miles of one of the 
assessment centres) via 22 assessment centres30 and par7cipants received extensive baseline 
characteriza7on via touchscreen ques7onnaires, verbal interviews, physical measurements, and the 
collec7on of relevant biological specimens. UKB regularly adds to their extensive resource via 
con7nued imaging programs, analysis of previously collected materials and ongoing clinical follow-up 
via electronic health records (Hospital Episode Sta7s7cs in England, Pa7ent Episode Database for 
Wales, and Scoosh Morbidity Record) and death register (NHS England and NHS Central Register) 
linkage. 
 
Recently, UKB has incorporated serum 1H-NMR metabolomics on ≈ 120,000 non-fas7ng, venous 
serum samples of randomly selected study par7cipants. This analysis was conducted in coopera7on 
with Nigh7ngale Health Plc, who provide a well-established 1H-NMR plaporm with broad regulatory 
approval31. Measured metabolites span rou7nely measured lipids as well as detailed lipoprotein 
subclass profiling, several amino acids, ketone bodies, glycoly7c intermediates and markers of fluid 
balance and inflamma7on. We included all 168 original metabolite measurements.  
 
This study included all UKB par7cipants with non-missing values for the complete panel of 168 
original 1H-NMR serum metabolite measurements in their ini7al assessment centre visit blood draw 
(55,253 female and 49,047 male par7cipants, n = 104,300). We further excluded all par7cipants with 
incomplete PCP-HF parameters (n = 17,654), those who already had or were considered at risk for HF 
(previous HF diagnosis, previous coronary artery disease (CAD) diagnosis or lipid-modifying 
pharmacotherapy; n = 15,842) or whose metabolomic measurements included data over 5 standard 
devia7ons (SD) from the mean (n = 2,493). In a final cohort of 68,311 pa7ents, we inves7gated the 
associa7on of the serum metabolome with incident HF. Subsequently, the cohort was split into 
deriva7on (80 %) and valida7on (20%) par77ons stra7fied by HF. We trained EN models to predict 
incident HF risk on the deriva7on split, and subsequently assessed their predic7ve capaci7es in the 
valida7on par77on (Figure 1).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 23, 2023. ; https://doi.org/10.1101/2023.08.21.23294202doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.21.23294202
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 1: Study overview. A"er exclusion of individuals at risk, per-metabolite COX-PH models were fi@ed on 
the full cohort. StaDc cohort parDDon (80 % derivaDon, 20 % validaDon) allowed training and subsequent 
internal validaDon of risk predicDon models. PCP-HF: Pooled Cohort EquaDons to Prevent HF, CPH: COX 
proporDonal hazards model, EN: elasDc net, CV: cross-validaDon. 
 
Endpoint defini0on 
Endpoint defini7ons were adapted as defined elsewhere32, 33. Onset of HF was defined as the earliest 
occurrence of (I) clinical diagnosis of HF (electronic health records), or (II) death by HF (death 
registers). Pa7ents who self-reported HF in the baseline verbal interview were excluded from the 
study as having HF. We did not consider individuals with hypertrophic cardiomyopathy as having HF. 
Detailed defini7ons of all endpoints, including relevant UKB data fields and disease codes, can be 
found in Supplementary Table 1. 
 
Benchmark HF risk model and predictor extrac0on 
PCP-HF is a well-validated model for 10-year HF risk, which has been developed on 7 smaller, 
community-based U.S. cohorts1. PCP-HF includes basic sociodemographic parameters (age, race, sex), 
pa7ent history (current smoking, hypertension treatment, diabetes treatment), physical 
measurements (systolic blood pressure, body mass index, QRS dura7on), and clinical chemistry (total 
cholesterol, high-density lipoprotein cholesterol (HDL-C)). All PCP-HF components except QRS 
dura7on (due to a lack of individuals that underwent ECG within UKB) were extracted from the UKB 
dataset. PCP-HF weighs QRS dura7on rela7vely weakly (original average risk equa7on coefficients: 
QRS dura7on: 0.92, age: 29.28, BMI: 15.23) and has been validated externally by the authors without 
the inclusion of QRS dura7on34. Clinical chemistry parameters were derived from non-NMR 
measurements that had been conducted at a central UKB laboratory between 2014 and 201735. 
Systolic blood pressure was rou7nely measured twice a few moments apart; we selected the lower 
reading. Where automated blood pressure readings were faulty manual measurements were 
conducted, which have been used by us in such cases. All relevant data fields and corresponding 
disease/medica7on codes can be found in Supplementary Table 2. 
 
Survival analysis for individual metabolite associa0ons 
All metabolites were log-normalized and standardized to a mean of 0 and a standard devia7on of 1. 
We assessed incident HF via fiong of COX-PH models for each individual metabolite (conducted using 
the survival package in R). Models were adjusted for age and sex or the complete panel of PCP-HF 
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characteris7cs (also including age and sex; Supplementary Tables 3 and 4). P-values were adjusted for 
mul7ple tes7ng using the Benjamini-Hochberg method.  
 
Elas0c net model genera0on and evalua0on 
To select metabolites with the highest predic7ve capaci7es, we trained EN-regularized COX-PH 
models on the deriva7on cohort (baseline characteris7cs in Supplementary Table 5). Models were 
trained using an internal to the deriva7on cohort 10-fold cross-valida7on approach and model 
hyperparameters were op7mized for discrimina7ve performance (Harrel’s C; most regularized model 
within one standard error of maximum performance; conducted using the hdnom package). All model 
coefficients and hyperparameters can be found in Supplementary Tables 6 and 7. Using the fi?ed 
model coefficients, we calculated individual HF risk for the valida7on cohort. We assessed 
discrimina7ve capaci7es via calcula7on of Harrel’s C, as well as sensi7vity and specificity at the 
Youden point. We implemented compara7ve metrics and calculated case, non-case and overall 
con7nuous net reclassifica7on improvement (NRI) as well as absolute and rela7ve integrated 
discrimina7on improvement (IDI) (performance within the deriva7on cohort is reported in 
Supplementary Tables 8 and 9). Receiver operator characteris7c (ROC) curves were generated using 
the pROC package, decision curve analysis (DCA) plots using the dca package on the calibra7on 
cohort (see below). Individuals were grouped into risk quin7les according to predicted HF risk. Both 
incidence and survival were plo?ed according to risk quin7le. Calibra7on plots of absolute predicted 
vs. observed 10-year HF risk were generated on all individuals that had not been censored prior to 10 
years of follow-up for reasons other than the development of HF. Model feature Spearman 
correla7ons were calculated and plo?ed using the corrplot package. Network visualiza7on followed a 
standard weighted gene co-expression network analysis workflow36. Metabolite correla7ons were 
calculated and transformed into an adjacency matrix using a sol thresholding power of β = 30 
(chosen via visual inspec7on of scale-free topology fit index R2 and mean connec7vity). Network 
edges were dichotomized via hard thresholding (threshold = 0.2) of the subsequently generated 
topological overlap matrix to generate an unweighted network view. Metabolite nodes were coloured 
in saturated colours if they were represented in the final PCP-HF + Metabolomics model and 
shrunken according to the degree of connec7vity (higher connec7vity – smaller size). Network 
genera7on and visualiza7on were conducted using the WGCNA37 and the igraph packages. 
 
Significance, soLware, and code availability 
All analyses were conducted in R (v.4.2.3). Sta7s7cal significance was false discovery rate (FDR)-
controlled using the Benjamini-Hochberg method as appropriate, significance was defined as 
adjusted P < 0.01. The full code will be available upon publica7on.  
 
Data availability 
UKB’s data is publicly available to approved researchers at h?ps://www.ukbiobank.ac.uk/enable-
your-research. UKB data was accessed under applica7on ID 98729. Detailed endpoint and predictor 
defini7ons can be found in Supplementary Tables 1 and 2.  
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Results 
 
Study cohort 
Amongst the eligible study popula7on, the median age at recruitment was 57 years (IQR 49 - 62) and 
55.84 % were female. Individuals who would eventually develop HF (n = 1,460 (2.14 %)) were more 
likely to be older, male, and exhibited a range of different baseline characteris7cs and incident 
endpoint frequencies (Table 1). This included highly significant differences for several 
sociodemographic and lifestyle factors (age, sex, educa7on, smoking status and alcohol 
consump7on), clinical chemistry measurements (HDL cholesterol, triglycerides, glucose, glycated 
haemoglobin, crea7nine and C-reac7ve protein), physical measurements (systolic blood pressure, 
waist-to-hip ra7o and BMI) and the incidence of hypertension and CAD. All significant changes 
followed the expected direc7on. 
 

Characteris*c Incident Heart Failure Whole Cohort, n = 68,327 

Yes, n = 1,460 No, n = 66,851 

Sociodemographics 

Age at recruitment (years) * 62 (IQR 57-66) 56 (IQR 49-62) 57 (IQR 49-62) 

Sex *    

Female 619 (42.397 %) 37,528 (56.137 %) 38,147 (55.843 %) 

Male 841 (57.603 %) 29,323 (43.863 %) 30,164 (44.157 %) 

Ethnicity    

Black 21 (1.438 %) 862 (1.289 %) 883 (1.293 %) 

White 1439 (98.562 %) 65,989 (98.711 %) 67,428 (98.707 %) 

Higher EducaOon * 333 (22.808 %) 22,649 (33.880 %) 22,982 (33.643 %) 

Lifestyle factors 

Current smoker * 235 (16.096 %) 6,752 (10.100 %) 6,987 (10.228 %) 

Alcohol consumpOon * 1,323 (90.616 %) 62,621 (93.672 %) 63,944 (93.607 %) 

Daily physical acOvity 
(minutes) 

100 (IQR 50-178.75) 100 (IQR 60-180) 100 (IQR 60-180) 

Clinical chemistry 

Total cholesterol (mmol l-1) 5.913 (IQR 5.174-6.568) 5.886 (IQR 5.212-6.6) 5.887 (IQR 5.211-6.6) 

HDL cholesterol (mmol l-1) * 1.326 (IQR 1.124-1.59) 1.423 (IQR 1.202-1.688) 1.421 (IQR 1.2-1.686) 

LDL cholesterol (mmol l-1) 3.754 (IQR 3.207-4.291) 3.717 (IQR 3.2-4.266) 3.718 (IQR 3.2-4.266) 

Triglycerides (mmol l-1) * 1.663 (IQR 1.19-2.298) 1.477 (IQR 1.067-2.109) 1.481 (IQR 1.069-2.113) 

Glucose (mmol l-1) * 4.970 (IQR 4.648-5.358) 4.898 (IQR 4.581-5.248) 4.899 (IQR 4.583-5.25) 

Glycated haemoglobin (%) * 3.58 (IQR 3.32-3.84) 3.47 (IQR 3.24-3.71) 3.47 (IQR 3.24-3.71) 

CreaOnine (µmol l-1) * 73.65 (IQR 63.625-83.5) 70 (IQR 61.3-80.1) 70.1 (IQR 61.3-80.2) 

C-reacOve protein (mg l-1) * 2.05 (IQR 1.02-4.44) 1.31 (IQR 0.65-2.68) 1.32 (IQR 0.65-2.71) 

Physical measurements 

Systolic blood pressure 
(mmHg) * 

140 (IQR 128-152) 132 (IQR 121-145) 132 (IQR 121-145) 

BMI (m2/kg) * 28.098 (IQR 25.224-31.971) 26.445 (IQR 23.977-29.458) 26.480 (IQR 23.995-29.507) 

Waist/hip raOo * 0.91 (IQR 0.849-0.967) 0.863 (IQR 0.798-0.925) 0.864 (IQR 0.798-0.926) 

Past medical history 

Treatment for Diabetes * 25 (1.712 %) 350 (0.524 %) 375 (0.549 %) 

Treatment for Hypertension * 448 (30.685 %) 8,629 (12.908 %) 9,077 (13.288 %) 

Family history of heart 
disease * 

677 (46.370 %) 26,947 (40.309 %) 27,624 (40.44 %) 

Incident Endpoints 

Hypertension * 1,029 (70.479 %) 19,816 (29.642 %) 20,845 (30.515 %) 

Coronary artery disease * 469 (32.123 %) 1,868 (2.794 %) 2,337 (3.421 %) 
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Table 1: Popula8on characteris8cs at baseline and incident endpoints. Listed clinical chemistry measurements 
were not 1H-NMR-derived. Median (IQR) for conDnuous, n (%) for categorical variables. Mann-Whitney-U for 
conDnuous, Chi-Square for categorical variables; BH-correcDon for mulDple tesDng. * P < 0.01. 
 
Several individual metabolites are associated with incident HF. 
Individual metabolite associa7ons with incident HF were assessed via per-metabolite fiong of COX-
PH models. Models adjusted for age and sex revealed 90/168 (54 %)) significant metabolite 
associa7ons. Fewer significant metabolite associa7ons (48/168 (29 %)) were observed in models 
more extensively adjusted for all PCP-HF features. The overlap of significant metabolites was 25/168 
(15 %) (detailed sta7s7cs for all metabolites in Supplementary Table 4). 
 
Within age- and sex-adjusted models (Figures 2A and B), we observed consistent associa7on pa?erns 
for several lipoprotein subspecies. The concentra7on of very low-density lipoprotein (VLDL) par7cles, 
as well as their (free/esterified) cholesterol, phospholipid, triglyceride and total lipid contents, were 
posi7vely associated with incident HF. Inverse associa7ons were observed for HDL and, to a lesser 
extent, low-density lipoprotein (LDL) subspecies. Numerous addi7onal metabolites were significantly 
associated with incident HF, including predominantly posi7ve correla7ons of different ketone bodies, 
glycoly7c metabolites, and glycoprotein acetyls. Within the measured amino acids, higher levels of 
alanine, glutamine, glycine and his7dine were nega7vely associated with incident HF, whilst 
phenylalanine and tyrosine showed a posi7ve associa7on. Levels of apolipoproteins, lipoprotein sizes, 
total cholines and phospha7dylcholines, phosphoglycerides and sphingomyelins showed significant 
nega7ve associa7ons. The degree of fa?y acid (FA) satura7on influenced incident HF associa7on; 
saturated and monounsaturated FAs were found to be posi7vely associated, whilst levels of all other 
FAs including the degree of FA unsatura7on were nega7vely associated with incident HF. Significant 
inverse associa7ons with incident HF were found for albumin.  
 
Following adjustment for PCP-HF (Figures 2C and D), we observed more heterogenous metabolite 
associa7on pa?erns within metabolite groups. Amongst different lipoprotein subclasses, VLDL and 
HDL par7cles showed the most significant associa7ons with HF. We observed that larger HDL par7cles 
were posi7vely associated with HF, whilst smaller VLDL subspecies showed inverse associa7ons. 
These effects were supported by the associa7ons of lipoprotein par7cle sizes (significantly posi7ve for 
HDL and nega7ve for VLDL). Similar to age- and sex-adjusted models, (free/esterified) cholesterol, 
phospholipid, triglyceride and total lipid content of the different lipoprotein par7cles correlated well 
with the associa7ons of their respec7ve concentra7ons. Ketone bodies and glycoprotein acetyls were 
posi7vely associated with incident HF. Albumin, as well as all significantly associated amino acids, 
were inversely associated with HF. The concentra7ons of omega-3 FAs and docosahexaenoic acid 
were found to be nega7vely associated with incident HF. No glycoly7c metabolite reached the 
significance threshold. 
 
Concentra7on of albumin (HR = 0.800 (0.760 - 0.843), P = 8.5 × 10-15), the degree of unsatura7on of 
FAs (HR = 0.801 (0.761 - 0.844), P = 8.5 × 10-15) and glycoprotein acetyls (HR = 1.250 (1.186 – 1.318), P 
= 8.7 × 10-15) were most significantly associated with incident HF in age and sex adjusted models. 
Following adjustment for PCP-HF characteris7cs, the most significant associa7ons were observed for 
free cholesterol (HR = 1.348 (1.225 – 1.482), P = 1.349 × 10-7), cholesterol (HR = 1.342 (1.217 – 1.479), 
P = 1.934 × 10-7), and phospholipid (HR = 1.307 (1.196 – 1.429), P = 1.934 × 10-7) content of VLDLs.  
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Figure 2: Individual metabolite associa8ons. Per-metabolite COX-PH models adjusted for age and sex (A), or 
PCP-HF features (C) reveal several metabolites significantly associated (FDR-controlled P < 0.01, dark grey 
labels) with incident HF. Bar colours illustrate the direcDonality of associaDons: posiDve (red), negaDve (blue). 
Forrest plots (B and D) illustrate hazard raDos of the 20 most significant features (sorted by P, in descending 
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order; green: adjusted for age + sex, orange: adjusted for PCP-HF). PCP-HF: Pooled Cohort EquaDons to Prevent 
HF. 
 
U0liza0on of serum metabolomics improves incident HF risk discrimina0on. 
Our dataset was split in a deriva7on (80%) and valida7on (20%) cohort stra7fied by HF prevalence. 
Pa7ent baseline characteris7cs and incident endpoints were well-balanced between the two 
par77ons (Supplementary Table 5). We fi?ed EN-regularized COX-PH models for either age and sex or 
the complete PCP-HF set on the deriva7on cohort, both with and without the addi7on of serum 
metabolomics. Final models retained age and sex, 9/10 (PCP-HF model) and 7/10 (PCP-HF + 
Metabolomics model) addi7onal clinical features as well as 21/168 (Age & Sex + Metabolomics 
model) and 16/168 (PCP-HF + Metabolomics model) metabolites (Supplementary Tables 6 and 7, 
including individual feature coefficients and op7mized model hyperparameters).  
 
Model performance was evaluated on the valida7on cohort (n = 13,662; ≈ 170,000 person-years of 
follow-up). At various risk thresholds, ROC and DCA curves of models that integrated metabolomics 
showed superior performance over their respec7ve non-metabolomic benchmarks (Figure 3). Of 
note, the combina7on of age, sex and metabolomics and PCP-HF exhibited undula7ng curves, with 
both respec7ve models performing be?er within certain threshold ranges. To assess model 
performance, we calculated Harrel’s C, sensi7vity, and specificity at Youden. We compared models via 
calcula7on of con7nuous NRI and IDI. Generally, we found that models trained under inclusion of 
metabolomic profiles possessed improved discriminatory capaci7es (Age & Sex vs. Age & Sex + 
Metabolomics: ΔC = 0.044 (P = 1.741 × 10-17 amongst deriva7on cross-valida7on splits), NRI = 0.667; 
PCP-HF vs. PCP-HF + Metabolomics: ΔC = 0.013 (P = 3.664 × 10-8 amongst deriva7on cross-valida7on 
splits), NRI = 0.287; Tables 2 and 3). In line with these findings, we consistently observed posi7ve IDIs 
when adding metabolomic features (Table 3). The comprehensive PCP-HF model showed only modest 
reclassifica7on improvements over the model including age, sex, and metabolomics (ΔC = 0.010 (P = 
2.451 × 10-8 amongst deriva7on cross-valida7on splits), NRI = 0.097, rela7ve IDI = 13.445 %).  

 
Figure 3: Internal model valida8on. Receiver operator characterisDc (ROC; A) and decision curve analysis (DCA; 
B) curves illustrate discriminaDve performance of the different models. Smoothened curves (bold) are 
superimposed on individual data points (fine). PCP-HF: Pooled Cohort EquaDons to Prevent HF.  
 
 
 
 
 

Age & Sex Age & Sex
+ Metabolomics
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Harrell‘s C 0.701 0.744 0.755 0.768

Sensitivity 0.723 0.753 0.719 0.640

Specificity 0.592 0.627 0.664 0.757
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Age & Sex Age & Sex  

+ Metabolomics 
PCP-HF PCP-HF  

+ Metabolomics 
Harrell‘s C 0.701 0.744 0.755 0.768 

Sensi5vity 0.723 0.753 0.719 0.640 
Specificity 0.592 0.627 0.664 0.757 

 
Table 2: Internal model valida8on: absolute discrimina8ve capaci8es. Model performance is assessed in the 
validaDon parDDon. SensiDvity and Specificity are calculated at the Youden point. PCP-HF: Pooled Cohort 
EquaDons to Prevent HF. 
  

Age & Sex  
vs. 
Age & Sex + 
Metabolomics 

Age & Sex  
vs. 
PCP-HF 

Age & Sex  
vs. 
PCP-HF + 
Metabolomics 

Age & Sex + 
Metabolomics 
vs. 
PCP-HF 

Age & Sex + 
Metabolomics  
vs. 
PCP-HF + 
Metabolomics 

PCP-HF  
vs.  
PCP-HF + 
Metabolomics 

NRI       

Cases 0.644 0.192 0.548 -0.233 0.110 0.699 

Non-Cases 0.023 0.380 0.164 0.330 0.221 -0.412 

Overall 0.667 0.571 0.712 0.097 0.331 0.287 

IDI       

Absolute (%) 0.525 0.671 0.886 0.146 0.361 0.215 

Rela5ve (%) 93.681 119.722 158.097 13.445 33.259 17.465 

 
Table 3: Internal model valida8on: metrics of rela8ve performance. Model performance is assessed on the 
validaDon parDDon. NRI: Net reclassificaDon improvement, IDI: Integrated discriminaDon improvement. PCP-HF: 
Pooled Cohort EquaDons to Prevent HF. 
 
Metabolomics facilitate accurate HF risk predic0on. 
To further explore the transla7onal poten7al of our risk models we assessed cumula7ve HF incidence, 
model calibra7on and HF-free survival according to predicted risk. Stra7fica7on of HF incidence 
amongst risk quin7les was improved following the addi7on of serum metabolomics (IncidenceHF, top risk 

quin:le: Age & Sex = 4.61 %, Age & Sex + Metabolomics = 5.38 %, PCP-HF = 5.56 %, PCP-HF + 
Metabolomics = 5.78 %; IncidenceHF, bo>om risk quin:le: Age & Sex = 0.55 %, Age & Sex + Metabolomics = 
0.15 %, PCP-HF = 0.26 %, PCP-HF + Metabolomics = 0.11 %; Figure 4A). The largest differences in HF 
incidence amongst risk quin7les were observed using the combina7on of clinical characteris7cs and 
metabolomics (ΔIncidenceHF, top vs. bo>om risk quin:le: 5.67 %; Figure 4A). Model calibra7on was assessed on 
all individuals who had completed 10 years of follow-up or developed HF beforehand. We observed 
fair, highly similar calibra7on in all models except the more inaccurate model based solely on age and 
sex (Figure 4B). Finally, Kaplan-Meier plots highlight survival stra7fica7on for the complete follow-up 
period, which appears superior in more extensive models including both clinical PCP-HF 
characteris7cs and metabolite features (Figure 4C). In summary, we observed marked improvements 
in all models over the very basic age and sex model. Notably, the simple addi7on of metabolomics to 
such models closely resembles the more extensive PCP-HF model.  
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Figure 4: Metabolomics improve risk and survival stra8fica8on. CumulaDve HF incidence (A), model calibraDon 
(observed vs. predicted incident HF risk; B) and HF-free survival (C) according to risk quinDle (blue shades). 
CalibraDon was assessed on a follow-up Dmeframe of 10 years; all individuals who were censored prior to 10 
years for reasons other than the development of HF were excluded. PCP-HF: Pooled Cohort EquaDons to 
Prevent HF. 
 
Effec0ve feature reduc0on using elas0c net models. 
Reducing the number of measured features is essen7al to provide preven7ve screening in a cost-
efficient manner. In our work, the selec7on of features containing most predic7ve informa7on is 
achieved via EN-regularized COX regression models, which were trained in a 10-fold cross-valida7on 
approach. 
Figure 5A demonstrates the poor correla7on of retained features. Network visualiza7on of the 
measured metabolites highlights the effec7ve representa7on of highly connected clusters by single 
metabolites whilst several, uncorrelated metabolite features were included in the final model (Figure 
5B). The retained metabolites included five amino acids, four lipoprotein subspecies, three ketones, 
glucose, omega-3 FAs, glycoprotein acetyls and albumin (model coefficients of all clinical and 
metabolite features in Supplementary Table 6).  
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Figure 5: Metabolic risk is effec?vely represented by key features. Correla5on plot of retained clinical and metabolite 
features of the most comprehensive PCP-HF + Metabolomics model (A) and network visualiza5on of the measured 
metabolome (B). Network edges represent adjacency > 0.2. Nodes are highlighted in saturated colours if they were used by 
the final model. Node size is shrunk according to node connec5vity. 
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Discussion 
 
The current life7me prevalence of HF is approximately 20%8. A large propor7on of these cases could 
be prevented9. Improved risk stra7fica7on is vital for the effec7ve implementa7on of preven7ve 
strategies. Several incident HF risk predic7on models have been suggested in recent years but none 
has yet been clinically adopted. Although many approaches achieve good discrimina7ve 
performance, available models come with limita7ons such as deriva7on from inadequately sized, 
nonrepresenta7ve cohorts or the integra7on of heterogenous and poorly standardizable data 
sources13.  
 
HF is well-described to have a strong metabolic basis. This applies both locally, where cardiac 
metabolism plays a central role in cardiac remodelling processes38, and systemically, where 
hemodynamic changes potently induce metabolic altera7ons in several organs39. Moreover, several 
HF risk factors are associated with broad metabolic perturba7ons40. Measuring the blood 
metabolome thus has rich poten7al to allow versa7le inferences on cardiac pathophysiology and risk 
profile via a single blood draw.  
 
Within this study comprising 68,311 individuals, > 0.8 million person-years of follow up and 1,460 HF 
cases, we highlight the value of serum metabolomics for the predic7on of incident HF. Our results 
reveal a range of incident HF - associated metabolites, even aler adjustment for clinical HF risk. 
Moreover, we show that the serum metabolome can be leveraged to improve state-of-the-art clinical 
risk predic7on models. Narrow models relying only on a combina7on of age, sex and metabolomics 
perform as well as more complex models that incorporate mul7ple clinical parameters. 
 
Our finding of associa7on of incident HF with individual metabolites includes overlap with previously 
reported associa7ons and accepted pathomechanisms. For example, high levels of atherogenic VLDL 
(subspecies) increased the risk of incident HF. The concentra7ons of HDL and its subspecies, 
possessing an7-atherogenic proper7es, were found to be inversely associated with incident HF. The 
posi7ve associa7on of ketone bodies (which are commonly elevated in the serum of HF pa7ents and 
used as a cardiac fuel source in such seongs41), glycoly7c metabolites (also increasingly u7lized by 
the failing heart42 and closely associated with metabolic risk factors43), and glycoprotein acetyls 
(reflec7ve of detrimental systemic inflamma7on44, 45) were also not unexpected. Individuals with 
higher levels of amino acids and albumin were less likely to develop HF, consistent with the common 
observa7on of decreased levels of those metabolites in seongs of increased cardiac workload46, 47. In 
line with previously published results from PROSPER and FINRISK27, tyrosine and its precursor 
phenylalanine were posi7vely associated with incident HF, in contrast to all other amino acids. This 
phenomenon has been repeatedly observed and extensively discussed in the context of altered 
protein uptake and turnover, impaired renal clearance or the u7lisa7on of those amino acids for the 
synthesis of catecholamines27, 48, 49. The degree of FA unsatura7on was inversely associated with HF, 
thus likely reflec7ng underlying HF risk factors that arise from the par7cipant’s diet and lifestyle14. In 
alignment with previous studies, we demonstrate that 1H-NMR serum metabolomics are well-suited 
to consistently capture common metabolic signatures of cardiometabolic risk factors, cardiac 
remodelling and HF.  
 
Importantly, several metabolite associa7ons were retained even aler adjustment for clinical HF risk, 
thus sugges7ng that the serum metabolome contains informa7on on HF risk that is not effec7vely 
captured by clinical risk scores. We therefore assessed whether we could improve on exis7ng risk 
stra7fica7on tools via the integra7on of 1H-NMR metabolomics. Previous studies have convincingly 
shown that metabolomics provide addi7ve predic7ve value over clinical risk stra7fica7on for a mul7-
disease spectrum17, 18, 23. Our results, benchmarking against a HF-specific risk score and specifically 
excluding high-risk pa7ents, align with such results as they demonstrate improved discrimina7ve 
performance upon considera7on of serum metabolomics.  
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The performance of rela7vely simple models only including age, sex and the plasma metabolome was 
strikingly good, in some indices even outperforming PCP-HF (consistent amongst deriva7on and 
valida7on par77ons). From our perspec7ve, a single-domain assay such as 1H-NMR metabolomics 
offers several advantages over the limita7ons that come with currently available risk predic7on 
models: (I) Clinical risk scores olen strongly focus on commonly acknowledged high-risk factors (e. g. 
history of valvular heart disease, previous diagnosis of CAD). Such models might therefore exhibit 
excellent discriminatory capaci7es but preferen7ally select subpopula7ons who were already 
considered at risk or are even already receiving targeted preven7ve measures50.Individuals without 
obvious risk constella7ons might par7cularly benefit from targeted screening strategies. With the 
excep7on of hypertensive par7cipants (hypertensive treatment is considered by PCP-HF), our models 
were trained and evaluated on such pa7ents that might have otherwise been overlooked. Moreover, 
(II) assays for 1H-NMR serum metabolomics are highly reliable and inexpensive31, 51. The methodology 
enables capturing via a single blood draw (as already collected in many countries as part of rou7ne 
health checks) of extensive systemic informa7on that might otherwise require interviews, clinical 
chemistry, physical measurements and imaging. Such heterogenous data sources are difficult to 
standardize, expensive to collect, and less effec7vely scalable. In addi7on, (III) as shown in recent 
approaches17, 18, 23, serum metabolomics simultaneously inform on mul7-disease risk for several 
en77es other than HF. Whilst disease-specific benchmarking against the clinical state-of-the-art is 
warranted, simultaneous mul7-disease predic7on might further expand the u7lity of serum 
metabolomics. 
 
The strengths of our study are its large sample size and the exclusion of pa7ents already known to be 
at risk, thereby also avoiding treatment-associated biases that could arise from e. g. lipid-modifying 
therapy. We benchmarked for disease-specific, validated clinical risk scores and used a well-
established metabolomic plaporm that has received regulatory approval19. However, several 
challenges remain before clinical implementa7on. The UKB popula7on is known to be not fully 
representa7ve, with generally older and healthier individuals compared to the sampling popula7on 
(“healthy volunteer” bias52). Moreover, predictor variable collec7on was highly standardized within 
UKB, which might not be directly transferable to a healthcare system level. Although we confirmed 
internal validity, our results would s7ll benefit from external valida7on in a different popula7on. 
Plasma samples were taken in a non-fas7ng state, which might lead to some variability. Finally, the 
metabolomic assay that was employed provides measurements for a wide range of lipids and lipid 
subspecies but is rela7vely restricted for other low-molecular weight metabolites.  
 
In conclusion, we demonstrate that 1H-NMR serum metabolomics could poten7ally be effec7vely 
implemented as a single-domain screening tool for incident HF risk. We demonstrate that machine 
learning can be effec7vely applied to reduce the number of features used for risk predic7on (80-90 % 
feature reduc7on) whilst simultaneously preserving predic7ve performance. In the context of HF, 
several large metabolite clusters were effec7vely represented by single key metabolite features with 
high predic7ve value. This generates overt poten7al for a cost-effec7ve implementa7on, thus 
poten7ally facilita7ng clinical adop7on.  
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