
Supplementary Material 1 Relationship Between SARS-CoV-2 RNA Wastewater444

Concentrations and Prevalence445

Table SI 1: Correlation analysis for wastewater concentrations and prevalence. Spearman’s correlation (𝑟) is measured across each study period, where
𝑛 is the number of observations at each spatial resolution and a 95% CI is approximated using a paired bootstrap of 1000 replicates. Among LTLAs which
report at least three wastewater concentration measurements across rounds 3 to 11 (24 July 2020 to 3 May 2021), the median LTLA-level correlation is 0.72,
calculated as the median of each LTLA’s individual correlation between wastewater concentrations and prevalence levels across the rounds. The corresponding
median LTLA correlation between concentration-vaccination interaction and SARS-CoV-2 prevalence is 0.79 across rounds 12 to 19 (20 May 2021 to 31
March 2022).

Rounds Variable
Spatial

Resolution
n

r

(95% CI)

3-11 Concentration LTLA 1572
0.62

(0.59, 0.65)

3-11 Concentration Regional 81
0.83

(0.75, 0.89)

3-11 Concentration National 9
0.98

(0.82, 1.00)

12-19

Concentration-

Vaccination

Interaction

LTLA 2461
0.71

(0.69, 0.73)

12-19

Concentration-

Vaccination

Interaction

Regional 72
0.89

(0.79, 0.94)

12-19

Concentration-

Vaccination

Interaction

National 8
0.93

(0.41, 1.00)
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Supplementary Material 2 Wastewater-Based Model Covariates446

Table SI 2: Covariates used in wastewater-based models for estimating SARS-CoV-2 prevalence. Unless otherwise stated, all covariates are at an LTLA
level. Data originate from the REACT-1 study and the EMHP surveillance programme, aside from the LTLA population estimates (provided by the ONS)
which are used as weights for regional and national predictors.

Variable Units Description
Wastewater Concentration Gene copies per

litre (gc/l)
Estimated LTLA-level wastewater viral concentrations per round. Concentrations are
obtained via the weighted contribution of each treatment plant’s average (normalised)
concentration for the round (described in Materials and Methods).

Neighbour-Averaged Concentration Gene copies per
litre (gc/l)

A spatial weights matrix (with row standardisation) is computed based on the neigh-
bourhood structure of LTLAs, using queen contiguity criterion. The weights of this
sparse matrix are multiplied by the LTLAs’ concentrations for each round to yield a
weighted average of the neighbouring areas’ concentrations.

Vaccination-Log Concentration Interaction Gene copies per
litre (gc/l)

(Fully Vaccinated Proportion) × (Estimated Concentration). Fully vaccinated pro-
portions are the proportion of the LTLA population estimated (by the REACT-1
study) to have received 2 or more vaccination doses, whilst concentrations are the
estimated LTLA-level concentration.

Regional Average Concentration Gene copies per
litre (gc/l)

Average of a region’s wastewater concentrations for a round, weighted by the under-
lying LTLA populations (for whom measurements were available in that round).

National Average Concentration Gene copies per
litre (gc/l)

National average of wastewater concentrations for a round, weighted by the under-
lying LTLA populations (for whom measurements were available in that round).

Concentration Difference Gene copies per
litre (gc/l)

The change in an LTLA’s wastewater concentration from one round to the next.

National Concentration Difference Gene copies per
litre (gc/l)

The change in the national average wastewater concentration from one round to the
next.

Regional Prevalence per Log Concentration % per gc/l For each LTLA, prevalence per log concentration is calculated, and the corresponding
regional average is the weighted average of the LTLA-level values for that round
(where the weights are the LTLA populations). The regional average across the
training period is used as the predictor for the testing set. Region-level prevalence
per log concentration is used due to the noisiness of the LTLA-level estimates.
Prevalence per log concentration can be interpreted as a proxy for population-level
faecal shedding dynamics. Hence, greater values of the prevalence-to-wastewater
variable implies a reduced level of faecal shedding per positive individual.

2



Supplementary Material 3 Out-of-Sample Wastewater-Model-Based Estimates of447

Prevalence448
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Figure SI 1: Iteratively-updated model-based national prevalence estimates in rounds 7-11 (13 November 2020 to 3 May 2021). Visualisation of
national-level gradient boosting model predictions (green) alongside REACT-1 prevalence (blue), for five rounds of REACT-1 study.

Table SI 3: Regional wastewater-model-based estimates for REACT-1 rounds 9-11 (4 February 2021 to 3 May 2021). Summary of accuracy metrics
for regional estimates, drawing comparison across out-of-sample estimates for individual rounds for a model i) which is trained iteratively and ii) which makes
multi-step estimates without any model updating/calibration. Accuracy measures maintain the same interpretation as Table SI 4, albeit now at a regional
level. Average Prevalence is 0.31%, calculated as the mean regional prevalence across rounds 9-11. * The iterative training method involves updating the
wastewater model using data from the additional training round which precedes the testing round.

Training Method Testing Rounds Training Rounds n MAE r Change Detection (95% CI)

Iterative 9-11 3-10* 27 0.20% 0.93 85.2% (66.3%, 95.8%)

Multi-Step 9-11 3-8 27 0.26% 0.84 70.4% (49.9%, 86.3%)

Table SI 4: Out-of-sample LTLA-level predictive performance for REACT-1 rounds 7-11 (13 November 2020 to 3 May 2021). Out-of-sample estimates
are based on a wastewater-based gradient boosting model trained iteratively, including for the regional (*) wastewater-based estimates. n is the total number
of LTLAs in an individual testing round and in the regional (**) case, the total number of regional observations from rounds 7-11. MAE is the Mean Absolute
Error between model-based estimates and REACT-1 prevalence. r represents the Pearson’s correlation between the prevalence and our estimates. Top 25
Common is the number of LTLAs common to the highest predicted prevalence levels and REACT-1 prevalence levels. Change Detection indicates the mean
directional accuracy, whilst the corresponding 95% CI is attained by the so-called Clopper-Pearson method, otherwise known as the Exact Confidence Interval
[32]. Mean Prevalence is the mean average of LTLA-level REACT-1 prevalence estimates (for LTLAs in the wastewater surveillance programme), and is
cited as a guide for appraisal of MAE within rounds. We provide the individual round analysis of regional model-based estimates performance in Table SI 9

Test Round Training Rounds n MAE r Top 25 Common Change Detection (95% CI) Mean Prevalence

7 3-6 146 0.7% 0.08 4 66.4% (58.2%, 74.0%) 1.0%

8 3-7 146 1.0% 0.07 4 69.9% (61.7%, 77.2%) 1.8%

9 3-8 233 0.5% 0.27 8 76.0% (70.0%, 81.3%) 0.5%

10 3-9 299 0.3% 0.23 4 69.2% (63.7%, 74.4%) 0.2%

11 3-10 301 0.2% 0.08 1 57.9% (52.0%, 63.5%) 0.1%

Regional: 7-11 3-10* 45 ** 0.3% 0.76 - 86.7% (76.7%, 96.6%) 0.7%
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Supplementary Material 4 Complementary Use of WBE449
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Figure SI 2: Wastewater-based prevalence estimates using varying training set sizes. From plots a) to d), across rounds 12 to 19 (from 20 May 2021 to 31
March 2022), training set sizes are 40%, 60%, 80%, and 90% respectively per each round’s total number of LTLAs. The plot above is for a randomly-selected
fold amongst the 50 folds considered in our replicated procedure for training-testing split proportions, and model-based prevalence estimates of a fixed test
set improve marginally as more training observations are used to calibrate the model. Nevertheless, with just 40% survey coverage, wastewater-model-based
estimates remain largely representative of underlying prevalence.

Table SI 5: Comparison of wastewater-based prevalence estimates in the early period of rounds 3 to 11 (24 July 2020 to 3 May 2021) using varying
training test set sizes. Wastewater-based gradient boosting models are trained using 40%-90% of each round’s observations and a fixed 10% of observations
per round are used for test set prevalence estimation. The average prevalence across the 50 folds of test sets is 0.54%.

.

Training-Testing MAE r Change Detection

40% - 10% 0.34 % 0.74 74.57%

60% - 10% 0.33 % 0.74 75.14%

80% - 10% 0.32 % 0.76 76.30%

90% - 10% 0.32 % 0.75 74.57%
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Supplementary Material 5 Population-level faecal shedding450
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Figure SI 3: Spatial variability of faecal shedding by round. Visualisations demonstrate the spatial consistency of the prevalence-to-
wastewater relationship, particularly during enhanced wastewater surveillance in the later rounds of the REACT study. The histogram (left)
of the coefficient of variation (CV) values demonstrate that extreme large values of the measure of dispersion are not common, whilst the
plot over time (right) captures that the larger values occur during early rounds with low wastewater surveillance coverage and/or rounds of
low prevalence.
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Supplementary Material 6 Geospatial Population Estimates (GPEs)451

The following section provides further detail regarding the derivation and uncertainty of the GPEs used for our geospatial452

framework and associated analyses.453

Let 𝑎𝑖 𝑗 be the intersection area between the catchment area of STW 𝑖 and LSOA 𝑗 . Then, the LSOA area serviced by any
of the STWs 𝑖 is:

𝐴 𝑗 =
⋃
𝑖

𝑎𝑖 𝑗

Let 𝑝 𝑗 be the Office for National Statistics (ONS) 2019 mid-year population estimate for LSOA 𝑗 . Our geospatial population
estimate (GPE) for the intersection area between the catchment area of STW 𝑖 and the area of LSOA 𝑗 is

𝑔𝑖 𝑗 =
𝑎𝑖 𝑗

𝐴 𝑗

𝑝 𝑗

Thus, for LSOA 𝑗 , our estimate of the LSOA population serviced is:

�̂� 𝑗 =
∑︁
𝑖

𝑔𝑖 𝑗

Summing over all LSOA geographies within an LTLA 𝑘 , we attain our GPE 𝑃𝑘 for each LTLA:

𝑃𝑘 =

𝐽∑︁
𝑗=1

�̂� 𝑗

The GPE for each LTLA enables our mapping of concentrations from an STW level to an LTLA level.454

Our approach of using GPEs represents a predictive approach for aligning WBE with the geographies commonly used by455

public health authorities [28]. Consistent with the reported EMHP population coverage estimates [14], we estimate that the456

wastewater programme had an estimated 74% nationwide testing coverage by its conclusion in March 2022, with a median457

percentage (of population) sampled for LTLAs of 76%.458

The developed approach could, in theory, be applicable to further population-level wastewater monitoring and analyses459

which require alignment of wastewater catchments to geographies used by public health authorities and community studies.460

Nevertheless, limitations exist with our geospatial approach. First, the GPEs do not account for the presence of transient and461

non-resident LTLA populations, which could impact on the wastewater concentrations measured. The transience issue is likely462

to be more pronounced in the late rounds of the REACT-1 analysis, where community lockdowns and other non-pharmaceutical463

interventions are relaxed. Second, we recognise the uncertainty surrounding the mid-year population estimates reported by464

the ONS for LSOAs, which are made for small geographic areas.465

Furthermore, potential limitations may yield unrepresentative population estimates for urban centres and/or for geographies466

which are influenced by time-varying factors such as transient/commuting populations or industrial and agricultural discharges.467

In theory, such factors are controlled via our flow-normalised wastewater concentrations yet cannot be taken into account when468

we weight the contribution of each STW to an LTLA based on time-invariant population estimates). The issue of time-varying469

relationships is likely to depend upon the type and stringency level of simultaneously active non-pharmaceutical interventions.470

Further challenges imposed by the EMHP wastewater surveillance programme include the locations of the 302 STWs. Whilst471

the sampled treatment plants were selected to maximise nationwide coverage and representativeness across England, our GPEs472

(for each LTLA) indicate a highly positively skewed distribution for the estimated proportions of individual LTLA populations473

that are sampled within the EMHP programme (Figure SI 4). The skewness in the distribution of estimated proportions474

of populations sampled is is a likely consequence of the usage of intersection areas in our GPEs. We estimate the median475

LTLA-level proportion of population sampled to be approximately 76%, yet Horesham LTLA, for instance, has an estimated476

testing coverage of only 2.9% based on the GPE, consistent with the EMHP testing coverage estimate for Horesham. These477

few outliers can potentially impact on how representative our wastewater concentrations are when mapped to LTLAs with such478

low testing coverage, and hence, when relating our wastewater data to LTLA-level survey-based prevalence estimates.479
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Figure SI 4: LTLA-level wastewater sampling coverage estimates. The estimated proportions of LTLA populations that are covered by the EMHP
wastewater surveillance programme. The proportions are attained by dividing the LTLA-level GPE by the corresponding ONS LTLA population approximation.

Supplementary Material 7 Wastewater Sources of Uncertainty480

Sources of wastewater measurement uncertainty include the sample volume being too low to enable adequate analysis,481

temperature and time-induced decay, inherent variability of wastewater (possibly due to dilution effects of precipitation), and482

usage of the Theoretical Limit of Detection (TLoD), below which the concentration cannot be reliably measured. The EMHP483

surveillance programme aimed to address several of these measurement uncertainties via the adjustment/normalisation of484

concentrations to account for flow, and by sampling mid-stream during peak load times. Similarly, 3 to 4 samples were taken485

weekly (at each STW) due to the variability and presence of outliers in detected wastewater signals [14, 22].486
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Supplementary Material 8 Sensitivity of Geospatial Mapping Approach487

Table SI 6: Sensitivity analysis for geospatial mapping. Table depicts a diminished relationship between wastewater concentrations and SARS-CoV-2
prevalence, when concentrations from rounds of the REACT-1 are shifted by a lead times of up to six days. Overall correlation measures the correlation
between LTLA-level estimated wastewater concentrations and SARS-CoV-2 prevalence. Mean LTLA concentration correlation is the mean of all the LTLA’s
individual correlations between estimated wastewater concentrations and SARS-CoV-2, whilst the mean LTLA interaction correlation (applicable for rounds
12 to 19) is the average of the LTLA’s individual correlation between our proposed vaccination-log concentration interaction and SARS-CoV-2 prevalence.

Lead Time (Days) Overall Correlation Mean LTLA Concentration Correlation Mean LTLA Interaction Concentration Correlation

0 0.35 0.39 0.75

1 0.32 0.33 0.75

2 0.29 0.31 0.75

3 0.28 0.30 0.75

4 0.28 0.25 0.74

5 0.27 0.25 0.74

6 0.19 0.16 0.66
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Supplementary Material 9 Bayesian Hierarchical Modelling488

To ensure robustness of inferences and extend our analysis beyond a discriminative model, within the Bayesian modelling489

paradigm, we fitted a hierarchical model, which is a generative model type which enables regularisation and spatial effects.490

Our hierarchical model is fit to training periods using Stan v2.31, which employs Hamiltonian Monte Carlo sampling, a variant491

of Markov Chain Monte Carlo (MCMC) [33].492

Let 𝑦𝑖𝑡 be the REACT-1 weighted prevalence estimate for LTLA 𝑖 at time/round 𝑡. Then, our varying effects Bayesian
hierarchical model is as follows:

𝑦𝑖𝑡 ∼ Normal(𝜇𝑖𝑡 , 𝜎2)
𝜇𝑖𝑡 = 𝛽0 + 𝛽𝐿𝑇𝐿𝐴[𝑖 ] ∗ 𝐶𝑖𝑡 + 𝛽𝑅[𝑖 ] ∗ 𝐶𝑖𝑡 + 𝛽𝑁𝑁 [𝑖 ] ∗ 𝑁𝐶𝑖𝑡

𝛽0 ∼ Normal(0, 5)
𝛽𝐿𝑇𝐿𝐴 ∼ Normal(0, 𝜎2

𝐿𝑇𝐿𝐴)
𝜎𝐿𝑇𝐿𝐴 ∼ InvGamma(5, 5)

𝛽𝑅 ∼ Normal(0, 𝜎2
𝑅)

𝜎𝑅 ∼ InvGamma(5, 5)
𝛽𝑁𝑁 ∼ Normal(0, 𝜎𝑁𝑁 )
𝜎𝑁𝑁 ∼ InvGamma(5, 5)
𝜎 ∼ Half-Cauchy(0, 1)

where 𝐶𝑖𝑡 denotes the concentration of LTLA 𝑖 at time/round 𝑡, and 𝑁𝐶𝑖𝑡 denotes the weighted average concentration for493

the neighbours of LTLA 𝑖 at time/round 𝑡. 𝜇 and 𝜎 represent the mean and standard deviation of the assumed Normal494

distribution. 𝛽0 is the baseline prevalence. 𝛽𝐿𝑇𝐿𝐴, 𝛽𝑅, and 𝛽𝑁𝑁 , are parameter vectors corresponding to the LTLA-specific,495

region-specific, and nearest-neighbour specific effects of concentration on the response of prevalence. 𝜎𝐿𝑇𝐿𝐴, 𝜎𝑅, and 𝜎𝑁𝑁496

represent the corresponding standard deviations. Above, we employ an index-variable approach within the linear predictor.497

For example 𝛽𝑅[𝑖 ] maps the LTLA 𝑖 to its corresponding parameter within the region-effect concentration vector. The intuition498

for spatially-varying effects is that in-sewer network characteristics, treatment plant-level, and spatial correlations between499

geographies could influence similarities and differences of both concentrations and prevalence levels. For the late period of500

the REACT-1 analysis, the vaccination-log concentration interaction (described in Table SI 2) takes the place of each of the501

unadjusted wastewater concentrations.502

Throughout the analysis, all covariates are standardised such that they take values in [−1, 1]. Standardisation facilitates503

the above usage of conventional, weakly informative prior distributions throughout our model fitting, and assists in ensuring504

efficient HMC sampling.505

Similar to the gradient boosting setup, the model was trained using several calibration rounds from REACT-1, and its506

predictive performance was estimated out-of-sample using one or more rounds of REACT-1. Our model selection procedure507

involved consideration of the scientific model’s structure, posterior predictive checks, model convergence diagnostics, and508

estimated out-of-sample predictive accuracy (via the ELPD, expected log pointwise predictive density, from the loo package).509

In terms of comparing predictive performance to our gradient boosting model, we generate posterior predictions of the510

response 𝑦𝑖𝑡 . In particular, we use the posterior samples for each observation, and we adopt a conventional approach of using511

the posterior median of these samples as our best estimate (for each observation). We quantify the uncertainty in our inferences512

by deriving credible intervals (by taking specified upper and lower quantiles of these samples). Subsequently, metrics such as513

MAE, for example, are computed as the average absolute difference between the observed prevalence levels and the posterior514

median estimates.515

Throughout both study periods, our best-performing Bayesian hierarchical model did not provide additional predictive516

accuracy in terms of out-of-sample predictive accuracy. Superior accuracy of the gradient boosting model may be a consequence517

of the highly flexible and predictive nature of the modern gradient boosting algorithm (of xgboost) which readily handles518

time-varying non-linearites. Nevertheless, the additional modelling investigation enabled a further robustness check of the519

inferences drawn regarding the reliability of wastewater-based modelling.520
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Supplementary Material 10 Vaccination-Log Concentration Interaction Variable521

522

In terms of the statistical controls in our analysis, there exist obvious limitations with our proposed usage of a simple523

vaccination-concentration interaction. Aside from the potential differential impacts of vaccination on distinct demographies,524

the proposed interaction variable would only remain (possibly) valid for a restricted time period due to impacts of waning525

vaccine-induced immunity. We further do not account for the highly complex nature of naturally-acquired immunity. The526

interaction variable’s usage is additionally challenged by the disparate impact of different variants (and sub-variants) on the527

likelihood of SARS-CoV-2 reinfection. Importantly, we do not draw any causal conclusions regarding the impact of vaccination528

on faecal shedding due to the potential presence of confounding. Indeed, we emphasise, that strong temporal correlation is529

not necessarily indicative of a direct (or causal) relationship with prevalence, as the directional association may be an530

artefact of numerous epidemic conditions. Complex, concurrent epidemic characteristics include a monontonically increasing531

vaccination proportion, similarly rising prevalence levels, waning immunity (either vaccine-induced or naturally-acquired),532

reduced immunity to particular new variants, and other possibly unobserved confounders.533
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Supplementary Material 11 Acronyms534

Table SI 7: Acronyms used throughout this paper.

Variable Meaning Details

95% CrI 95% Credible Interval An unobserved parameter lies in this interval with a specified 95% prob-
ability.

EMHP Environmental Monitoring for Health Protection The EMHP wastewater surveillance programme tested untreated sewage
across England for fragments of SARS-CoV-2. The objectives of the
programme were to monitor wastewater viral concentrations of SARS-
CoV-2 RNA, variants of concern (VOC), and variants under investigation
(VUI).

gc/l Gene copies per litre (gc/l) The reported measuresments of wastewater concentrations obtained via
RT-qPCR and flow normalisation.

GPE Geospatial population estimate Our population estimates for geographies based on a combination of
intersection (spatial) areas and reported population estimates for small
geographies.

LSOA Lower Layer Super Output Area Small regional geographies in England which combine to form an LTLA.
LTLA Lower Tier Local Authority LTLA-level wastewater measurements per round. These are obtained via

the weighted contribution of each treatment plant’s average concentration
for the round (described in Materials and Methods).

MAE Mean Absolute Error The mean average of the absolute difference between the model-based
estimates and the REACT-1 prevalence levels.

MCMC Markov Chain Monte Carlo A family of sampling algorithms which employs the theory of Markov
Chains to sample a random variable.

NPI Non-pharmaceutical intervention In the context of the COVID-19 pandemic, these are public health mea-
sures, excluding medication-based measures, taken to control transmis-
sion of the SARS-CoV-2.

ONS Office for National Statistics An independent producer of national statistics across the UK.
REACT-1 Real-time Assessment of Community Transmission The REACT-1 programme was initiated in May 2020 with an objective

of tracking the spread of SARS-CoV-2 across communities in England.
Across 19 distinct rounds of cross-sectional surveys, random samples of
the English population (over 5 years of age) were taken. Rounds lasted
between 15 and 31 days, and the programme concluded in March 2022.

RNA Ribonucleic acid RNA is a nucleic acid present in all living cells.
RT-PCR Gene copies per litre (gc/l) LTLA-level wastewater measurements per round. These are obtained via

the weighted contribution of each treatment plant’s average concentration
for the round (described in Matrerials and Methods).

RT-qPCR Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR) The quantification method is described in [7]. Briefly, RT-qPCR combines
reverse transcription and quantitative PCR, with the aim of reducing
inhibition in RNA.

STW Sewage treatment works STWs are treatment plants which typically service extensive urban areas
(like towns and cities).

TLoD Theoretical limit of detection The wastewater concentration (160 gc/l) below which the EMHP estimate
that concentration cannot be reliably estimated.

UKHSA United Kingdom Health Security Agency A nationwide organisation in the United Kingdom which assumes respon-
sibility for public health protection.

VOC Variants of Concern SARS-CoV-2 variants that were highlighted by the World Health Or-
ganisation (WHO) to be particularly dangerous in terms of increased
transmissibility.

VUI Variants under investigation SARS-CoV-2 variants were being tracked by the EMHP wastewater
surveillance programme.

WBE Wastewater-based epidemiology WBE involves collection of urine and stool samples from sewage treatment
works (STWs). By subsequently incorporating factors such as daily flow
rates, human excretion rates, and STW catchment population sizes, per-
capita consumption, use, or exposure can be obtained.

WHO World Health Organisation An agency of the United Nations which aims to improve international
public health.
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Supplementary Material 12 Timeline of REACT-1 and Estimated Number of LT-535

LAs in EMHP Programme536

Table SI 8: Dates (DD/MM/YYYY) for individual rounds of the REACT-1 study and the corresponding estimated number of LTLAs which were mapped
to STWs which reported measurements within the corresponding time intervals. Our overall studied period, where the EMHP wastewater surveillance
programme coincides with the REACT-1 study, covers from rounds 3 to 19 (from 24 July 2020 to 31 March 2022.

Round Number Round Start Date Round End Date Number of LTLAs

1 01/05/2020 01/06/2020 -

2 19/06/2020 07/07/2020 -

3 24/07/2020 11/08/2020 145

4 20/08/2020 08/09/2020 145

5 18/09/2020 05/10/2020 146

6 16/10/2020 02/11/2020 146

7 13/11/2020 03/12/2020 146

8 06/01/2021 22/01/2021 146

9 04/02/2021 23/02/2021 233

10 11/03/2021 30/03/2021 299

11 15/04/2021 03/05/2021 301

12 20/05/2021 07/06/2021 303

13 24/06/2021 12/07/2021 306

14 09/09/2021 27/09/2021 307

15 19/10/2021 05/11/2021 309

16 23/11/2021 14/12/2021 309

17 05/01/2022 20/01/2022 309

18 08/02/2022 01/03/2022 309

19 08/03/2022 31/03/2022 309
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Supplementary Material 13 Wastewater Variant Detections537

From a public health perspective and for our analysis, the ability to track variants is important to understand the relationship538

between wastewater concentrations and our community prevalence estimates. Specifically, the EMHP programme raised the539

conjecture of an Omicron effect which results in lower viral faceal shedding and substantially alters the relationship between540

wastewater signals and clinical measures [14]. The variant detections were attained via genomic sequencing of wastewater541

samples from both STWs and sewer network sites across England, and detections were reported as either a confirmed or542

a possible status. More recently, the importance of accounting for the predominant variant was demonstrated by research543

of clinical cases showing that Omicron infections yielded the lowest community-level SARS-CoV-2 waste shedding rates,544

compared to the early/parental SARS-CoV-2 and Delta variant [20]. Within our analysis, we have documented the apparent545

reduced population-level faecal shedding induced by the onset of the Omicron BA.1 and BA.2 sub-variants.546
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Supplementary Material 14 Further Results547
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Figure SI 5: Iteratively-updated wastewater-model-based prevalence estimates for rounds 7 to 11 (13 November 2020 to 3 May 2021). Visualisation
depicts REACT-1 prevalence versus wastewater-model-based estimates for the corresponding round.

Table SI 9: Regional out-of-sample predictive performance by round. Summary of regional out-of-sample wastewater-based predictive performance
by round for REACT-1 rounds 7 to 11 (13 November 2020 to 3 May 2021) and rounds 15 to 19 (19 October 2021 to 31 March 2022), where out-of-sample
wastewater-based estimates were obtained based on a gradient boosting model trained iteratively at an LTLA level. Measures of accuracy have the same
interpretation as Table SI 4, albeit now at a regional level. Average regional prevalence is provided as a reference for accuracy measures.

Testing Round Training Rounds n MAE Change Detection (95% CI) Average Prevalence

7 3-6 9 0.37% 66.7% (29.9%, 92.5%) 1.0%

8 3-7 9 0.70% 88.9% (51.8%, 99.7%) 1.6%

9 3-8 9 0.37% 88.9% (51.8%, 99.7%) 0.5%

10 3-9 9 0.17% 88.9% (51.8%, 99.7%) 0.2%

11 3-10 9 0.05% 77.8% (40.0%, 97.2%) 0.1%

15 12-14 9 0.47% 100.0% (66.4%, 100.0%) 1.6%

16 12-15 9 0.50% 55.6% (21.2%, 86.3%) 1.4%

17 12-16 9 2.88% 100.0% (66.4%, 100.0%) 4.7%

18 12-17 9 1.21% 77.8% (40.0%, 97.2%) 2.8%

19 12-18 9 1.63% 100.0% (66.4%, 100.0%) 6.3%
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Figure SI 6: Iteratively-updated wastewater-model-based prevalence estimates for rounds 15 to 19 (19 October 2021 to 31 March 2022). Visualisation
depicts REACT-1 prevalence versus wastewater-model-based estimates for the corresponding round.
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Figure SI 7: Iteratively-trained wastewater model’s prevalence estimates in rounds 15 to 19 (19 October 2021 to 31 March 2022). Gradient Boosting
model’s regional estimates are shown (green), alongside REACT-1 prevalence (blue). All out-of-sample estimates are made iteratively for individual (single
round) test sets. The key insights are i) the Omicron BA.1 peak (round 17) is undetected by the calibrated wastewater model and its concentrations, and ii)
re-calibration during the Omicron wave enables identification of rises in regional prevalence in the Omicron BA.2 peak (Round 19).

Table SI 10: Out-of-sample predictive performance for REACT-1 rounds 15-19 (19 October 2021 to 31 March 2022),. LTLA-level predictions are
made based on a gradient boosting model trained iteratively. All accuracy measures are defined as reported in Table SI 4.

Testing Round Training Rounds n MAE r Top 25 Common Change Detection (95% CI) Average Prevalence

15 12-14 309 0.9% 0.02 2 79.0% (74.3%, 83.7%) 1.6%

16 12-15 309 1.0% 0.09 0 68.9% (62.8%, 73.4%) 1.4%

17 12-16 309 2.5% 0.04 3 68.6% (63.1%, 73.7%) 4.2%

18 12-17 309 1.5% 0.03 2 75.7% (70.6%, 80.4%) 2.8%

19 12-18 309 2.2% -0.02 1 86.0% (81.7%, 89.7%) 6.5%
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