
Supplementary Material 

S1A Proof that  , where  and 

 provided that:	 


	 	 	 	 

1) Conditional exchangeability: , holds within each confounder strata , 

for 
1

2) Consistency: If , , for 


3)  is constant over confounder strata 
2

Proof


First, we note that:


, 


with the first equality due to consistency and the second due to assumption 1) above.  
This indicates that:


	 


that is the ratio of conditional probabilities of disease under exposure and non-exposure 

in stratum  equates to the causal relative risk in stratum , which we assume is a 

constant 


Now note that


PAF = πc
RRC − 1

RRC
πc = P(X = 1 |Y = 1)

RRC =
P(Y1 = 1)
P(Y0 = 1)

Yx ⊥ X |C = c c
x ∈ {0,1}

X = x Y = Yx x ∈ {0,1}

RRC(c) =
P(Y = 1 |X = 1,c)
P(Y = 1 |X = 0,c)

= K C = c

P(Y = 1 |X = x, c) = P(Yx = 1 |X = 1,c) = P(Yx = 1 |c) x ∈ {0,1}

RRC(c) =
P(Y = 1 |X = 1,c)
P(Y = 1 |X = 0,c)

=
P(Y1 = 1 |c)
P(Y0 = 1 |c)

= K

C = c c

K

 Technically ‘mean’ conditional exchangeability, that is  1

for any values  is sufficient
P(Y*a = 1 |X = a , C = c) = P(Y*a = 1 |C = c)

{a , a*} ∈ {0,1}2

 Note, in the proof below and subsequent proofs, we utilise upper case letters to represent random variables and lower 2

case letters to represent values those random variables may take.  We assume for simplicity that the distribution of 
confounders is discrete, so that we can represent expectations of functions of confounder variables over the 
population:  as a sum over differing values , with  is shorthand for .  We also 

abbreviate conditional expectations of confounder variables such as:  as .   

EC f (C ) ∑
c

f (c)P(c) P(c) P(C = c)

P(X = 1 |C = c) P(X = 1 |c)



	 


indicating that  for all confounder strata 


The proof proceeds as follows:


 

 

  (by assumption 1)


   (by consistency)





























RRC =
P(Y1 = 1)
P(Y0 = 1)

=
E(P(Y1 = 1 |C ))
E(P(Y0 = 1 |C ))

=
E(P(Y0 = 1 |C ) P(Y1 = 1 |C)

P(Y0 = 1 |C) )

E(P(Y0 = 1 |C ))
= K

RRC(c) = RRC c

PAF =
P(Y = 1) − P(Y0 = 1)

P(Y = 1)

=
P(Y = 1) − EC(P(Y0 = 1 |C ))

P(Y = 1)

=
P(Y = 1) − EC(P(Y0 = 1 |X = 0,C ))

P(Y = 1)

=
P(Y = 1) − EC(P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EX,C(P(Y = 1 |X, C )) − EC(P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EC(P(X = 1 |C )P(Y = 1 |X = 1,C ) + P(X = 0 |C )P(Y = 1 |X = 0,C )) − EC(P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EC(P(X = 1 |C )P(Y = 1 |X = 1,C ) + P(X = 0 |C )P(Y = 1 |X = 0,C ) − P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EC(P(X = 1 |C )P(Y = 1 |X = 1,C ) − P(X = 1 |C )P(Y = 1 |X = 0,C )) *

P(Y = 1)

= (RRC − 1)
EC(P(X = 1 |C )P(Y = 1 |X = 0,C ))

P(Y = 1)
(since RRC =

P(Y = 1 |X = 1,C )
P(Y = 1 |X = 0,C )

)

=
(RRC − 1)

RRC

EC(P(X = 1 |C )P(Y = 1 |X = 1,C ))
P(Y = 1)

(since RR−1
C =

P(Y = 1 |X = 0,C )
P(Y = 1 |X = 1,C )

)

=
P(X = 1,Y = 1)

P(Y = 1)
×

RRC − 1
RRC

 (since P(X = 1,Y = 1) = EC(P(X = 1,Y = 1 |C )))

= P(X = 1 |Y = 1) ×
RRC − 1

RRC

= πc
RRC − 1

RRC



S1B.  Proof that   under


1) Marginal exchangeability:  for 

2) Consistency: If , , for 


Proof 
Under the above marginal exchangeability assumption, one can show equality of the 
causal and unadjusted relative risks:


 


where assumption 1 is necessary for the first equality and assumption 2 for the second 
equality.


 (assumptions 1 and 2)





 

   

An application of Bayes’ Rule (which here will demonstrate that: , 

see Section 3 of the Supplementary material) then shows that the above expression 
equals:


PAF = π
RRU − 1

1 + π(RRU − 1)

Yx ⊥ X x ∈ {0,1}
X = x Y = Yx x ∈ {0,1}

RRC =
P(Y1 = 1)
P(Y0 = 1)

=
P(Y1 = 1 |X = 1)
P(Y0 = 1 |X = 0)

=
P(Y = 1 |X = 1)
P(Y = 1 |X = 0)

= RRU

PAF =
P(Y = 1) − P(Y0 = 1)

P(Y = 1)
=

P(Y = 1) − P(Y = 1 |X = 0)
P(Y = 1)

=
P(Y = 1 |X = 0)P(X = 0) + P(Y = 1 |X = 1)P(X = 1) − P(Y = 1 |X = 0)

P(Y = 1)

=
P(X = 1)(P(Y = 1 |X = 1) − P(Y = 1 |X = 0))

P(Y = 1)

=
P(X = 1)P(Y = 1 |X = 1)(1 − RR−1

U )
P(Y = 1)

= πc(1 − RR−1
U )

πc =
πRRU

1 + π(RRU − 1)






Since we have also shown , this can also be expressed as:





Note that no assumptions regarding effect modification were necessary in the above 
derivation. 

PAF =
πRRU

1 + π(RRU − 1)
(1 − RR−1

U ) =
π(RRU − 1)

1 + π(RRU − 1)

RRU = RRC

PAF =
π(RRC − 1)

1 + π(RRC − 1)



Section 2 

Expressions for Miettinen’s formula under effect modification 
In this section, we give proofs of more general formulations of Miettinen’s formula.  We 

assume 1) and 2) from Section S1, but now allow the causal relative risk:  to vary 

over covariate strata .


S2A  Expression for Miettenin’s PAF  when the causal relative risk  varies 

over confounder strata:  

First we show that:


	 


where  is the causal relative risk within stratum 


Proof: 
The steps to show this result are identical to as in Supplementary Section 1A, up to the 
asterisk in that proof. The proof proceeds as follows











		 	 	 	 	 	 (1)


RRC(c)

c

RRC(c)

PAF = EC|Y=1(P(X = 1 |Y = 1,C )
RRC(C ) − 1

RRC(C )
)

RRC(c) =
P(Y1 = 1 |C = c)
P(Y0 = 1 |C = c)

C = c .

PAF =
EC(P(Y = 1,X = 1 |C )

RRC(C) − 1
RRC(C) )

P(Y = 1)

=
EC(P(Y = 1 |C )P(X = 1 |Y = 1,C )

RRC(C) − 1
RRC(C) )

P(Y = 1)

=
∑c P(c)P(Y = 1 |C )P(X = 1 |Y = 1,C ) RR(c) − 1

RR(c)

P(Y = 1)

= ∑
c

P(c |Y = 1)P(X = 1 |Y = 1,C )
RR(c) − 1

RR(c)

= EC|Y=1(P(X = 1 |Y = 1,C )
RRC(C ) − 1

RRC(C )
)



When individual data  is available from the population of interest, the above 

formula:  can re be used to estimate 

PAF by averaging  over the subset of cases in the data: 

 where   is the estimated relative risk of disease for an individual 

with covariates  .  Regression type methods can facilitate estimation of  . 


	 	 	 


S2B  Original formulation for Miettinen’s formula: 
  	 

Here we will show that:


	 


where  is the causal relate risk:  in the subpopulation exposed to 

the risk factor. 


Proof 

We start with the expression for PAF that was proven in S2A


	 	 	 


	 	 	  		 (2)


Since 


  = 


(ci, xi, yi)i≤N

PAF = EC|Y=1(P(X = 1 |Y = 1,C )
RRC(C ) − 1

RRC(C )
)

I{xi = 1}
̂RRC(ci) − 1

̂RRC(ci)

{i ≤ N : yi = 1} ̂RRC(ci)

ci
̂RRC(ci)

PAF = P(X = 1 |Y = 1)
RRe − 1

RRe

RRe
P(Y1 = 1 |X = 1)
P(Y0 = 1 |X = 1)

PAF = EC|Y=1(P(X = 1 |Y = 1,C )
RRC(C ) − 1

RRC(C )
)

= ∑
c

P(c |Y = 1)P(X = 1 |Y = 1,c)
RRC(c) − 1

RRC(c)

P(X = 1 |Y = 1,c) P(Y = 1)P(X = 1 |Y = 1)P(c |X = 1,Y = 1)/P(c)P(Y = 1 |c)



and , (2) equals:


	 	 	  	 	 (3)


Noting  and 

, 

it follows that the above display is equal to

	 	 	

 	 (3)	 


Noting:


	 


and , the above equals:


 	 	 (4)	 


Finally, letting the causal relative risk in risk in the exposed be: 

where the first equality assumes consistency and the second equality assumes 
conditional exchangeability and consistency , it follows that in general PAF can be 
expressed as: 


	 	 	 	 	 	 	 	 	 (5)	 


P(c |Y = 1) = P(c)P(Y = 1 |c)/P(Y = 1)

P(X = 1 |Y = 1)∑
c

P(c |X = 1,Y = 1)
RRC(c) − 1

RRC(c)

RRc(c) − 1
RRc(c)

=
P(Y = 1 |X = 1,c) − P(Y = 1 |X = 0,c)

P(Y = 1 |X = 1,c)

p(c |X = 1,Y = 1) = P(Y = 1 |X = 1,c)P(c)P(X = 1 |c)/P(X = 1)P(Y = 1 |X = 1)

P(X = 1 |Y = 1)∑
c

P(c)P(X = 1 |c)[P(Y = 1 |X = 1,c) − P(Y = 1 |X = 0,c)]
P(X = 1)P(Y = 1 |X = 1)

P(c)P(X = 1 |c)/{P(X = 1)P(Y = 1 |X = 1)} = p(c |X = 1)/P(Y = 1 |X = 1)

∑
c

P(c |X = 1)P(Y = 1 |X = 1,c) = P(Y = 1 |X = 1)

P(X = 1 |Y = 1)
P(Y = 1 |X = 1,c) − ∑c P(c |X = 1)P(Y = 1 |X = 0,c)

P(Y = 1 |X = 1)

RRe =
P(Y1 = 1 |X = 1)
P(Y0 = 1 |X = 1)

=
P(Y = 1 |X = 1)

EC|X=1P(Y0 = 1 |X = 1,C )
=

P(Y = 1 |X = 1)
EC|X=1P(Y = 1 |X = 0,C )

P(X = 1 |Y = 1)
RRe − 1

RRe



S3.  Proof that under the assumptions of S1,  

By S1A, the result will be true if ; this can be proven using Bayes’ 

Rule.


Proof: 

	 


This implies that:





PAF =
πRRU

1 + π(RRU − 1)
RRC − 1

RRC

πc =
πRRU

1 + π(RRU − 1)

πc = P(X = 1 |Y = 1)

=
P(X = 1,Y = 1)

P(Y = 1)

= π
P(Y = 1 |X = 1)

πP(Y = 1 |X = 1) + (1 − π)P(Y = 1 |X = 0)

= π
1

π + (1 − π)RR−1
U

=
πRRU

1 + π(RRU − 1)

PAF = [
πRRU

1 + π(RRU − 1)
]
RRC − 1

RRC



S4.  Derivation of Formula (5) in the main manuscript for relative bias under the 

assumptions in S1 

Remembering that   and under the assumptions in S1, 

, it follows that:














PAFL = π
RRC − 1

1 + π(RRC − 1)

PAF = [
πRRU

1 + π(RRU − 1)
]
RRC − 1

RRC

B =
PAFL

PAF

=
(RRC − 1)(1 + π(RRU − 1))

RRU(1 + π(RRC − 1))
×

RRC

RRC − 1

=
1 + π(RRU − 1)
1 + π(RRC − 1)

×
RRC

RRU

=
1 + π(RRU − 1)

1 + π(C × RRU − 1)
× C



S5.  Generalisation of Miettinen’s formula for continuous (or multi-category) 

exposure distributions 

For a strata of confounders,  we will assume that 

 is constant over all confounder strata  

for each exposure value   


We assume without loss of generality, that the Minimum risk exposure value is 0 (MREV = 

0), and write,   for the causal relative risk at exposure value , 

relative to the MREV.  Note this is somewhat an abuse of notation since in section S3, we 

used  to refer to the causal relative risk in confounder stratum .  In practice, 

we use context to distinguish  and , with the convention that we always 

use fixed  to represent confounder strata and fixed  to represent an exposure value.   


Below, we also assume conditions 1 and 2 (conditional exchangeability and consistency) 

given in S1, but now relative to the continuously distributed exposure ; previously the 

implicit assumption was a binary exposure.


Finally, note the symbol  is used to denote a generic density function for the exposure , 

with its arguments determining the precise density or conditional specified.  


Proof 

Note similarly to in S1:


	 


C = c

RR(x, c) =
P(Y = 1 |X = x, C = c)
P(Y = 1 |X = 0,C = c)

= Kx C = c

x .

RRC(x) =
P(Yx = 1)
P(Y0 = 1)

X = x

RRC(c) C = c

RRC(c) RRC(x)

c x

X

π X

RR(c, x) =
P(Y = 1 |X = x, c)
P(Y = 1 |X = 0,c)

=
P(Y1 = x |c)
P(Y0 = 1 |c)

= Kx



where the second equality follows by using both consistency and conditional 
exchangeability assumptions/ 


which implies that, for each fixed value 


	 


	 


so that  


It then follows that:




















Now noting that:





x

RRC(x) =
P(Y1 = 1 |X = x)
P(Y0 = 1 |X = x)

=
EC(P(Y1 = 1 |C, X = x))
EC(P(Y0 = 1 |C, X = x))

=
EC(P(Y0 = 1 |C, X = x) P(Y1 = 1 |C, X = x)

P(Y0 = 1 |C, X = x) )

EC(P(Y0 = 1 |C, X = x))
= Kx

P(Y = 1 |X = x, c)
P(Y = 1 |X = 0,c)

= RRC(x)

PAF =
P(Y = 1) − P(Y0 = 1)

P(Y = 1)

=
P(Y = 1) − EC(P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EX,C(P(Y = 1 |X, C )) − EC(P(Y = 1 |X = 0,C ))

P(Y = 1)

=
EC( ∫ π(x |C )(P(Y = 1 |X = x, C ) − P(Y = 1 |X = 0,C ))d x)

P(Y = 1)

=
EC( ∫ π(x |C ) RR(x, C) − 1

R(x, C) P(Y = 1 |X = x, C )d x)

P(Y = 1)

=
∑c P(c)( ∫ π(x |c) RR(x, c) − 1

R(x, c) P(Y = 1 |X = x, c)d x)

P(Y = 1)

π(x |c, Y = 1) =
P(Y = 1 |X = x, c)P(c)π(x |c)

P(c)P(Y = 1 |c)
=

P(Y = 1 |X = x, c)π(x |c)
P(Y = 1 |c)



so that

 

, the previous displayed equation must equal:








	 	 	 	 	 	 	 	 (1)





With the second last line using Fubini’s theorem to reverse the order of integration,  the 
iterated expectation 

 and 

. 

P(c)π(x |c)P(Y = 1 |X = x, c)
P(Y = 1)

=
π(x |c, Y = 1)P(c)P(Y = 1 |c)

P(Y = 1)
= π(x |c, Y = 1)P(c |Y = 1)

= ∑
c

P(c |Y = 1)[∫ π(x |C, Y = 1)
RR(x, c) − 1

RR(x, c)
d x]

= ∫ ∑
c

[P(c |Y = 1)π(x |c, Y = 1)
RRC(x) − 1

RRC(x)
]d x

= ∫ π(x |Y = 1)
RRC(x) − 1

RRC(x)
d x

= EX|Y=1[
RRC(X ) − 1

RRC(X )
]

EC|Y=1π(x |C, Y = 1) = ∑
c

P(c |Y = 1)π(x |c, Y = 1) = π(x |Y = 1)

RR(x, c) = RRC(x)



S6.  Proof of generalisation of Miettinen’s formula for continuous (or multi-category) 

exposure distributions when causal relative risks vary over confounder strata: 

The proof iqs essentially the same as the preceding proof.  Note the penultimate line can 
be re-expressed as:





which is the formula in question.


EC|Y=1(∫ π(x |C, Y = 1)
RR(x, c) − 1

RR(x, c)
d x = EC|Y=1[EX|C,Y=1[

RR(X, C ) − 1
RR(X, C )

]]



S7.  Proof of formula (7) 




Plugging the above expression into equation (1) in section S5 gives:


 

π(x |Y = 1)

=
π(x)P(Y = 1 |x)

∫
x

π(x)P(Y = 1 |x)d x
 (Bayes' Rule)

=
π(x)RRU(x)

∫ π(x)RRU(x)d x
 (Divide above and below by P(Y = 1 |0))

=
π(x)RRU(x)
EX(RRU(X ))

PAF = ∫
π(x)RRU(x)
EX(RRU(X ))

RRC(x) − 1
RRC(x)

d x =
EX(RRU(X )

RRC(X ) − 1
RRC(X ) )

EX(RRU(X ))



S8.  Analysis of the derivatives of the Relative Bias equation (4) 

 


= 


= 


=    for all C


Derivative with respect to :








 


This derivative is negative for  and positive for 


(In each case, smaller prevalences increase relative biases - but should decrease absolute 
biases)


d
dC

1 + π(RRU − 1)
1 + π(C × RRU − 1)

× C

(1 + π(RRU − 1))(1 + π(C × RRU − 1)) − CπRRU(1 + π(RRU − 1))
(1 + π(C × RRU − 1))2

(1 + π(RRU − 1))(1 + π(C × RRU − 1) − CπRRU)
(1 + π(C × RRU − 1))2

(1 + π(RRU − 1))(1 − π)
(1 + π(C × RRU − 1))2

>
(1 − π)2

(1 + π(C × RRU − 1))2
> 0

π

d
dπ

1 + π(RRU − 1)
1 + π(C × RRU − 1)

× C

=
−(1 + π(RRU − 1))(C × RRU − 1)) + (1 + π(C × RRU − 1))(RRU − 1)

(1 + π(C × RRu − 1))2
× C

=
RRU(1 − C )

(1 + π(C × RRu − 1))2
× C

C > 1 C < 1



As , 


As , 


C → ∞
1 + π(RRU − 1)

1 + π(C × RRU − 1)
× C → 1 +

(1 − π)
πRRU

C → 0
1 + π(RRU − 1)

1 + π(C × RRU − 1)
× C → 0



S9.   Proof of Equation (10). Relative bias for a positive continuous exposure with 

, where  and  is constant for 

 

 

 

 

 

 

where the second last and last lines follow from the assumption that 

 when .  The proof of equation (11) is almost identical.


MREV = 0 0 < 1 − π = P(X = 0) < 1 C =
RRC(X )
RRU(X )

X > 0

B =
PAFL

PAF

=
EX(RRC(X )) − 1

EX(RRC(X ))
EX(RRU(X ))

EX(RRU(X ) RRC(X ) − 1
RRC(X ) )

=
1 − π + πEX|X>0(RRC(X )) − 1

1 − π + πEX|X>0(RRC(X ))
1 − π + πEX|X>0(RRU(X ))

πEX|X>0(RRU(X ) RRC(X ) − 1
RRC(X ) )

= C
1 − π + πEX|X>0(RRU(X ))
1 − π + πEX|X>0(RRC(X ))

= C
1 + π(EX|X>0(RRU(X )) − 1)

1 + π(C × EX|X>0(RRU(X )) − 1)

RRC(X ) = C × RRU(X ) X > 0



S10.  Expressing, ,  as weighted 

averages of . 

Here we again assume that conditional exchangeability: , holds within 

each confounder strata , for , and consistency: If , , for 

 

 

   

 (By exchangeability) 

  (By consistency) 

 

Similarly, we can show that 


 

RRC =
P(Y1 = 1)
P(Y0 = 1)

RRe =
P(Y1 = 1 |X = 1)
P(Y0 = 1 |X = 1)

RRC(c)

Yx ⊥ X |C = c

c x ∈ {0,1} X = x Y = Yx

x ∈ {0,1}

RRC =
P(Y1 = 1)
P(Y0 = 1)

=
EC{P(Y1 = 1 |C )}
EC{P(Y0 = 1 |C )}

=
EC{P(Y1 = 1 |X = 1,C )}
EC{P(Y0 = 1 |X = 0,C )}

=
EC{P(Y = 1 |X = 0,C )}
EC{P(Y = 1 |X = 1,C )}

=
EC{(P(Y = 1 |X = 0,C )RRC(C ))}

EC{P(Y = 1 |X = 0,C )}

RRe =
EC|X=1{P(Y = 1 |X = 0,C )RRC(C )}

EC|X=1{P(Y = 1 |X = 0,C )}



Relative and absolute bias of the unadjusted Levin formula 

 

 

   

Expressing  in terms of  

 

 

 

Under the assumption of no effect modification, this simplifies to  for 
all  

 

PAF = [
πRRU

1 + π(RRU − 1)
]
RRC − 1

RRC

PAFL,U =
π(RRU − 1)

1 + π(RRU − 1)

⟹
PAFL,U

PAF
=

RRC

RRC − 1
RRU − 1

RRU
= C

RRU − 1
CRRU − 1

RRU RRC

RRU =
P(Y = 1 |X = 1)
P(Y = 1 |X = 0)

=
EC|X=1P(Y = 1 |X = 1,C )
EC|X=0P(Y = 1 |X = 0,C )

=
EC|X=1(RR(C )P(Y = 1 |X = 0,C ))

EC|X=0P(Y = 1 |X = 0,C )

RR(c) = RRC
c

= RRC ×
EC|X=1P(Y = 1 |X = 0,C )
EC|X=0P(Y = 1 |X = 0,C )


