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Sequencing Methods 

Genome sequencing (GS) was performed by the Genomics Platform at the Broad Institute of 

MIT and Harvard.   PCR-free preparation of sample DNA (350 ng input at >2 ng/ul) is 

accomplished using Illumina HiSeq X Ten v2 chemistry. Libraries are sequenced to a mean 

target coverage of 30x. GS data was processed through a pipeline based on Picard, using base 

quality score recalibration and local realignment at known indels. The BWA aligner was used for 

mapping reads to the human genome build 38 (GRCh38). Single nucleotide variants and 

insertions/deletions (indels) were jointly called across all samples using Genome Analysis 

Toolkit (GATK) HaplotypeCaller package version 4.0. Default filters were applied to SNV and 

indel calls using the GATK Variant Quality Score Recalibration (VQSR) approach. Annotation 

was performed using Variant Effect Predictor (VEP). GATK-SV1 was used to detect structural 

variants (SVs), which were annotated with the GATK SVAnnotate tool. Mitochondrial DNA 

(mtDNA) single nucleotide and small indel variants were called from GS data using the 

gnomAD-mitochondria pipeline2 and large mtDNA deletions were called by MitoSAlt3. 

ExpansionHunter v5 was used to genotype known disease-associated tandem repeat expansions 

(TREs).4 Lastly, the variant call set was uploaded to seqr for collaborative analysis between the 

CMG and investigator or for analysis by the RGP team.5 

ES was performed prior to GS for many of these cases through a variety of clinical diagnostic 

laboratories or by the Genomics Platform at the Broad Institute.  For these cases, libraries from 

DNA samples (>250 ng of DNA, at >2 ng/ul) were created with an Illumina Nextera exome 

capture (38 Mb target) and sequenced (150 bp paired reads) to cover >80% of targets at 20x and 

a mean target coverage of 80x until January 2019 and thereafter using a Twist exome capture 

(~38 Mb target) and sequenced (150 bp reads) to cover > 90% of targets at 20x and a mean target 
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coverage of 80x. Sample identity quality assurance checks were performed on each sample. The 

ES data was de-multiplexed and each sample's sequence data were aggregated into a single 

Picard BAM file. ES data was subsequently processed similar to GS data as previously 

described. 

 

Analysis 

The Broad CMG analysis team has developed four standard searches that are applied for each 

family (Table S1). We prioritize variants for further study that have high pathogenicity scores 

using common in silico predictors (e.g. REVEL6, CADD7, SIFT8, PolyPhen-29, 

MutationTaster10, MPC11), occur at highly conserved residues as determined by manual review 

on the UCSC genome browser and evaluating the Genomic Evolutionary Rate Profiling (GERP) 

score12.  We visually inspect the read data using the Integrated Genomics Viewer (IGV) for our 

candidate variants to ensure they are not sequencing artifacts. Top candidate variants are 

typically confirmed by an orthogonal method such as Sanger sequencing. 

To detect SVs, we initially utilized multiple SV-calling tools including Manta13, DELLY14, and 

Smoove (https://github.com/brentp/smoove), and more recently applied GATK-SV: an ensemble 

SV detection tool that discovers, genotypes, and resolves the diverse classes of SVs that can be 

captured from GS data, including balanced and unbalanced CNVs, inversions, insertions, 

translocations, and a spectrum of complex SVs. Briefly, GATK-SV maximizes sensitivity by 

harmonizing five algorithms, then adjudicating and re-genotyping SVs from raw read evidence1. 

GATK-SV considers all SV evidence available from GS, including discordant paired-end (PE) or 

split reads (SR) crossing a breakpoint, and normalized read-depth (RD) or B-allele frequencies. 

Each CRAM file is processed with five algorithms, which currently include two PE/SR 

algorithms (Manta13, Wham15), two RD algorithms (cnMOPS16 and GATK-gCNV17), and a 
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mobile element algorithm, MELT18. GATK-SV is publicly available on GitHub 

(https://github.com/broadinstitute/gatk-sv). For CNV analysis, we also apply germline Copy 

Number Variant caller (gCNV), a coverage-based CNV detection method that normalizes 

coverage across the exome by adjusting for systematic bias and uses a probabilistic framework to 

infer copy number from the normalized coverage. We manually evaluate the CNV data, filtering 

out low-quality calls and inherited variants (based on family history) and focus our analysis on 

CNVs overlapping protein-coding genes.  For cases with a strong phenotype pointing to a 

particular gene or genes as the likely candidate, we may also manually search for SVs by 

visually-inspecting the reads across the gene in question (using the Integrated Genomics 

Viewer19). 

To evaluate for tandem repeat expansions (TREs), we run ExpansionHunter v520 on GS samples 

to genotype 60 known disease-associated repeat loci. The locus specifications we use are 

publicly available on github (https://github.com/broadinstitute/str-analysis) and represent the 

same list of loci for which population frequencies are available in the gnomAD browser 

(https://gnomad.broadinstitute.org/short-tandem-repeats?dataset=gnomad_r3). We also run 

REViewer21 to generate read visualizations. Then, to identify candidate pathogenic expansions, 

we evaluate individuals with the most-expanded genotypes for each locus, comparing them to the 

pathogenic threshold and population frequencies for this locus in gnomAD. We also evaluate 

genotype qualities based on reviewing read visualizations. 

To evaluate mtDNA SNVs and indels, we run the mitochondria mode of Mutect2 followed by 

the gnomAD-mitochondria pipeline2. Then, to identify candidate variants, we search for 

“confirmed” variants listed in MITOMAP22 and P/LP variants listed in ClinVar. We finally 

review all mtDNA variants of uncertain significance (VUS) reported in ClinVar and/or with 
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“reported” status in MITOMAP, in addition to unreported variants with pathogenic in silico 

prediction based on mtDNA-specifications of the ACMG/AMP guidelines (APOGEE > 0.5 for 

missense variants; MitoTIP > 12.66 plus HmtVar > 0.35 for tRNA variants), that are absent at 

high heteroplasmy level (>80%) or homoplasmy (>  95%) in reference databases (gnomAD v3 

and HelixMTdb).  

Variant classification 

In order to systematically assess the pathogenicity of the structural variants that we identified, 

the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome 

Resource (ClinGen) standards for classification and reporting of constitutional copy-number 

variants were applied23. Variants in novel gene-disease relationships are classified as VUS until 

the gene-disease relationship has at least moderate evidence supporting it.  CNV associated with 

disorders that follow an autosomal recessive or X-linked mode of inheritance are not addressed 

in these standards and required additional consideration; the classification criteria were modified 

to optimally capture evidence for pathogenicity for the range of variants that we identified. 

Relative proportions of VUS to pathogenic/likely pathogenic variants are presented in Figure S1.  
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Table S1: Standard searches used by the Broad team for ES/GS analysis 

Search  Variant annotations Variant 
frequency 
(Broad callset, 
gnomAD24, 
gnomAD SV1) 

Variant call 
quality 

Annotation 
overrides 
(SpliceAI 
score25) 

Dominant/de 
novo 
restrictive  

Coding variants, essential 
and extended splice site, 
LOF SVs 

0.001 gnomAD  

0.01 callset 

Pass VQSR  
GQ 40 
AB 20 
 

ClinVar LP/P 

SpliceAI >0.2 

Recessive 
restrictive 

Coding variants, essential 
and extended splice site, 
LOF SVs 

0.01 gnomAD  

0.03 callset 

Pass VQSR  
GQ 40 
AB 20 
 

ClinVar LP/P 

SpliceAI >0.2 

Dominant/de 
novo 
permissive 

Coding variants, 
synonymous, splice, 
5/3’UTR, Non-coding 
exons, TFBS, regulatory 
region, 
LOF/intronic/UTR/promoter 
SVs 

0.001 gnomAD  

0.01 callset 

GQ 40 
AB 10 
 

ClinVar 
LP/P/VUS 

SpliceAI >0.1 

Recessive 
permissive 

Coding variants, 
synonymous, splice, 
5/3’UTR, Non-coding 
exons, TFBS, regulatory 
region, 
LOF/intronic/UTR/promoter 
SVs 

0.01 gnomAD  

0.03 callset 

GQ 40 
AB 10 
 

ClinVar 
LP/P/VUS 

SpliceAI >0.1 

Legend: LOF: Loss of function; VQSR: Variant Quality Score Recalibration; GQ: Genotype quality; AB: allele 
balance; LP/P: Likely pathogenic/pathogenic; UTR: Untranslated region; TFBS: transcription factor binding site; 
VUS: Variant of uncertain significance 
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Figure S1.  Classification of variants. Pathogenicity of 284 variants in 218 families solved via 
GS, classified as per the ACMG/AMP/ClinGen standards. 
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Table S2. Diagnoses  
See separate spreadsheet 
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Table S3. Candidates. Candidate novel disease genes identified in this cohort. 
ID Gene 
UWA_LAI963 ABCD3 
HK115 ACSL5 
SCO_PED096 ADGRE3 
BON_B17-59 AFAP1L1 
SOU_FAM00008 AGMAT 
HK103 ANO1 
HK081 ANO2 
RGP_696 ARFGEF3 
CHU_05 ARHGAP6 
RGP_245 BAZ1B 
RGP_12 BLOC1S1 
RGP_655 BOD1 
CHU_23 C10orf71 
RGP_572 CACNA2D3 
RGP_658 CAMK1D 
RGP_284 CAMK4 
HK060 CBX8 
HK017 CDK11B 
RGP_735 CDK16 
IK CDK5RAP3 
RGP_1374 CEP192 
BEG_0761 CFAP46 
RGP_868 CFAP54 
CMG_Laing_Ravencroft_WGS COL5A3 
RGP_1333 DIPK2B 
RGP_45 DNAH17 
RGP_1149 EBF2 
49 ELK1 
UWA_LAI1646 EP400 
RGP_726 EPHA6 
RGP_54 ERICH3 
RGP_1268 ETV1 
827 FAM193A 
RGP_1180 FBXO42 
RGP_375 FGF7 
HK085 FLYWCH1 
RGP_1150 FRG2 
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RGP_86 FRMPD3 
RGP_589 FURIN 
RGP_1129 GFPT1 
RGP_119 GRM4 
HK028 GTF2A1 
HK032 HAPLN2 
HK044 HEATR1 
HK075 HELZ 
RGP_673 HNRNPL 
VCGS_FAM148 HOXC8 
RGP_1016 INTS6L 
CHU_04 ISLR2 
RGP_1479 KCNH8 
RGP_95 KDM4A 
RGP_1392 KDM8 
HK080 KIAA0408 
RGP_1526 KLHL13 
FAM39 LATS2 
RGP_1498 LBX1 
RGP_289 MACO1 
RGP_105 MARCH5 
RGP_20 MAU2 
HK104 MCRS1 
RGP_674 MRPL54 
RGP_1175 MYH1 
BON_B18-54 MYO7B 
RGP_526 NCOR1 
RGP_1425 NCOR2 
RGP_495 NELL2 
RGP_314 OSBPL9, SYNRG 
RGP_1138 PACSIN3 
RGP_329 PKP4 
RGP_1193 PPP1R12C 
RGP_232 PRICKLE3, GNA13 
RGP_1504 PRPF4B 
VCGS_FAM52 PRPS2 
RGP_853 PTPRG 
RGP_53 RAB33A 
MAN_1601 RCOR2 
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RGP_230 RHPN2 
RGP_469 RIMS1 
235 RPL37A 
GI SARNP 
RGP_402 SCRIB 
RGP_522 SCTR 
HK035 SH3GL1 
1024 SHCBP1 
HK072 SMG6 
RGP_1099 SMYD1 
FAM61 SNED1 
RGP_682 SRGAP2 
RGP_731 SRRT 
RGP_5 SSBP3 
RGP_135 SSH1 
RGP_918 SYNM 
CHU_01 TBC1D22A 
RGP_431 THAP12 
RGP_951 THBS2 
RGP_677 TLK1 
RGP_123 TPPP 
FAM29 TPR 
VCGS_FAM147 TRABD2B 
966 TTC28 
RGP_452 TXLNG 
RGP_1101 UNC13B 
VCGS_FAM2 UNC5C 
RGP_1125 VPS37D 
FAM1 WWP1 
RGP_504 ZBTB1 
RGP_763 ZC3H11A 
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Table S4. Diagnostic yield by imputed ancestry 
Ancestry Category Total  

(N, % of cohort) 

Diagnosed  

(N, % of subgroup) 

African/African 
American 

22 (3.0%) 5 (22%)  

Ashkenazi Jewish 33 (4.4%) 20 (61%) 

East Asian 12 (1.6%) 2 (17%) 

European  570 (76.6%) 170 (43%) 

Latino/Admixed 
American 

27 (3.6%) 4 (15%) 

Middle Eastern 2 (0.3%) 1 (50%) 

South Asian 13 (1.7%) 4 (31%) 

Multiple/Unknown 65 (8.7%) 19 (29%) 

   
 

 

 


