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1. Methods 35 

1.1 DNA extraction for long-read and short-read sequencing 36 

After biomass concentration, filters were cut into small pieces using sterilized forceps 37 

and transferred to a 2 mL tube containing 0.1 mL glass beads for bead-beating. Immediately 38 

prior to bead-beating, 1 mL CTAB buffer was added to each sample tube. Sample tubes were 39 

vortexed for 30 seconds then incubated at 95°C for 5 minutes. Then, sample tubes were removed 40 

from heat and allowed to be cooled at room temperature for no more than 2 minutes. Next, 41 

sample tubes were bead beaten at max speed in a Mini-Beadbeater 24 (3,500 RPM; 112011, 42 

BioSpec) for 1 minute. After bead-beating, samples were briefly centrifuged and added with 40 43 

μL proteinase K and 20 μL RNase A, then incubated at 70 °C for 10 minutes for lysis treatment. 44 

During the incubation, Maxwell RSC cartridges were setup following the manufacture’s manual. 45 

A volume of 300 μL lysate from each sample tube was transferred to the cartridge. Each 46 

cartridge was also added with 300 μL lysis buffer. Finally, all cartridges with added sample 47 

lysate and reagents were loaded on to the instrument for automated extraction using the 48 

“Maxwell® RSC instrument with the PureFood GMO Protocol”. After DNA extraction, DNA 49 

was eluted into 100 μL EB and stored in -80 °C before library preparations. 50 

 51 

1.2 EpicPCR 52 

1.5 mL WWTP influent sample (n=3) was centrifuged at 10,000 g for 1 minute at 4 °C. 53 

600 mL of final effluent sample (n=3) were centrifuged at 5,000 g for 10 minutes at 4 °C. Cell 54 

pellets were collected in a 2 mL microcentrifuge tube and washed in DNA grade ultrapure water 55 

for three times. Next, cells were agitated again using a vortex mixer at max speed (3000 RPM) 56 

for 45 seconds. Then, cells were diluted and stained with DAPI (4',6-diamidino-2-phenylindole) 57 



to perform cell count estimation on a Neubauer hemocytometer using a fluorescent microscope 58 

(IX 71, Olympus). A final cell count of 1 - 1.4 ×107 in 30 μL of cell-water suspension was used 59 

for polyacrylamide bead formation and cell lysis treatment as previously described1. 60 

Next, fusion PCR and nested PCR were performed for each target per sample (n=3 each 61 

sample type). Fusion PCR was conducted within 24 hours after bead formation and cell lysis to 62 

prevent DNA degradation. For fusion PCR, PCR mastermix containing fusion templates (45 μL 63 

polyacrylamide bead solution), fusion PCR primers (the forward ARG primer F-sul1, F-ermB or 64 

F-tetO, the reverse 16S rRNA primer 1492R, and the linker primer RL-sul1-519F′, RL-ermB-65 

519F′ or RL-tetO-519F′), Phusion HF DNA Polymerase (New England Biolabs), and emulsion 66 

stabilizers were homogenized in ABIL emulsion oil as previously described2. Fusion PCR 67 

conditions were optimized as follows: initial denaturation at 94 °C for 30 s; 35 cycles of 68 

denaturation at 94 °C for 5 s, primer annealing at 55 °C for 30 s, and extension at 72 °C for 30 s; 69 

a final extension step at 72 °C for 5 min. The primer sequences and amplicon sizes can be found 70 

in Table 1. Immediately after the fusion PCR reaction, 1 mM EDTA was added to the pooled 71 

sample, followed by diethyl ether/ethyl acetate wash2. Next, Monarch PCR & DNA Cleanup Kit 72 

(New England Biolabs) was used for DNA extraction from the washed beads. The purified DNA 73 

was eluted in 37 μL of EB and was subject to nested PCR. Next, nested PCR was performed 74 

using the purified fusion PCR products. 75 

Nested PCR mastermix consisting of Phusion HF DNA polymerase, HF buffer, F’-sul1, 76 

F-ermB or F-tetO, and reverse 16S rRNA primer 1391R was divided into quadruplicate aliquots 77 

and combined with the purified fusion PCR products. The nested PCR program consisted of an 78 

initial denaturation for 30 s at 98 °C, followed by 38 cycles of denaturation at 98 °C for 5 s, 79 

primer annealing at 60 °C (for sul1) or 58 °C (for ermB) or 55 °C (for tetO) for 30 s, extension at 80 



72 °C for 45 s, and a final extension step at 72 °C for 10 min. The final PCR products were 81 

loaded onto a 1.5% TAE agarose gel to confirm the expected product via electrophoresis (125 V, 82 

50 minutes). DNA products of approximately 1 kbps in size were extracted using a Monarch gel 83 

extraction kit (New England Biolabs). The nested PCR products were purified again using 84 

AMPure XP beads and subject to library preparation. 85 

 86 

1.3 Integrated pipeline for analyzing long-read and short-read sequencing data 87 

 We processed long-read and short-read sequencing reads in an integrated pipeline as 88 

shown in Fig. 1. 89 

1.3.1 Detections of ARG-carrying reads and ARG-carrying contigs, and the associations 90 

between ARGs and MGEs 91 

 Long-read sequencing reads were screened for ARGs against the CARD database 92 

(V3.2.2) using BLAST (https://blast.ncbi.nlm.nih.gov) with a threshold of 70% identity and 70% 93 

length coverage. Short-read sequencing reads were assembled and processed using the resistance 94 

gene identifier (RGI, version 5.2.13). Only contigs carrying the ARGs for which RGI produced 95 

“perfect” or “strict” match were selected for further analysis. To explicitly compare long-read 96 

and short-read sequencing on resistome characterization, ARG copy numbers generated by both 97 

methods were normalized against sequencing depth as previously described4,5 to attain the 98 

relative ARG abundance in reads per billion bases sequenced (RPB). Classification of ARGs was 99 

conducted based on the oncology index file curated by CARD database. ARGs corresponding to 100 

at least two drug classes were classified as “multidrug” subtype. Beta-lactam resistant ARGs 101 

which confer resistance to carbapenem were selected and categorized as the “carbapenem” 102 

subtype.  103 



 ARG-carrying reads (long-read sequencing) and contigs (short-read sequencing) were 104 

subject to BLASTX under the minimum E-value 1×10-5 with a length and identity threshold of 105 

70% using a MGE database curated by NanoARG 4. Long-read and short-read sequencing read 106 

statistics are provided in Table 2. 107 

 To evaluate the results of the comparison between long- and short-read sequencing in 108 

terms of ARG-host identification, we downloaded three publicly available datasets from two 109 

previous studies6,7. Both studies conducted long-read and short-read sequencing technologies to 110 

sequence the same wastewater samples. Details on the datasets are provided in Table 3.  111 

 112 

1.3.2 Sample-wise taxonomical abundance estimation for long-read and short-read 113 

sequencing data 114 

 The sample-wise taxonomical abundance estimation for long-read data was performed 115 

via Centrifuge v1.0.4. The program was run directly on ONT and Illumina reads and Centrifuge 116 

generated a report that contained the sample abundances.   117 

 118 

2. Results and discussion 119 

2.1 EpicPCR sequencing statistics 120 

 During read QC, we noticed that even though the size of PCR products was verified via 121 

electrophoresis, 50.94% of sequenced DNA still had a read length of shorter than 1 kbps, which 122 

may have been due to DNA fragmentation during gel purification and library preparation. We 123 

performed an alignment step during which reads were scrutinized for perfect match (i.e., 100% 124 

identity and 100% coverage) against the corresponding reverse linker primer sequence. This 125 

alignment step is the key to exclude false positives as it filtered out a substantial body of 126 



relatively short reads, which were likely partially fused PCR products. As a result, after this 127 

alignment step, the vast majority (71.8%) of remaining reads had a length falling within the 128 

range of 1007-1089 bps (i.e., the expected length range of nested PCR products given the primer 129 

design). Furthermore, the ARG portion of the remaining reads aligned to the corresponding ARG 130 

references in SARG database with relatively high sequence similarity and coverage. The average 131 

identity of alignment was 93.8 ± 3.1% for ermB, 93.9 ± 3.0 % for sul1, and 94.2 ± 3.0% for 132 

tetO. The average length coverage of alignment was 96.4 ± 9.8% for ermB, 99.4 ± 6.9 % for 133 

sul1, and 77.5 ± 5.3% for tetO. With respect to the 16S rRNA gene portion of reads, most 134 

remaining reads (91.8 ± 9.4%) passed the 16S rRNA gene alignment criteria of Emu (i.e., the 135 

16S rRNA annotation tool used in this study)8 and generated species-level classifications. These 136 

results underscore the successful acquisition of ARG-16S rRNA gene fusion structures. 137 

 138 

2.2 Direct comparison of long- and short-read sequencing for resistome analysis 139 

2.2.1 Long-read sequencing resulted in the detection of a more diverse and abundant 140 

resistome as compared to short-read sequencing 141 

We first compared long- and short-read sequencing in their ability to characterize the 142 

diversity of ARGs (defined as the number of unique ARGs) and the relative abundance of ARGs 143 

(the copy number of ARGs normalized to sequencing depth) present in the samples. Overall, for 144 

raw wastewater (WWTP influent), long-read sequencing detected 347 ARGs with a total ARG 145 

relative abundance of 614 reads per billion bases (RPB), whereas short-read sequencing detected 146 

191 ARGs with a total ARG relative abundance of 341 RPB. The total ARG relative abundance 147 

generated by both methods was comparable to previous metagenomic analyses that quantified 148 

ARGs of wastewater samples collected from western countries9–11. Therefore, in our study, long-149 



read sequencing detected a significantly more diverse and abundant ARG profile as compared to 150 

short-read sequencing, which was surprising since the long-read sequencing depth was much 151 

shallower - only 10.12% of that of the short-read counterpart. One explanation for the better 152 

performance of long-read sequencing is its higher ARG detection sensitivity, underscored by the 153 

significantly higher proportion of ARG-associated reads among all long-read sequencing reads 154 

(0.0576%) as compared to the proportion of ARG-associated contigs among all short-read-155 

assembled contigs (0.0119%). 156 

The greater detection sensitivity of long-read sequencing is likely the result of a better 157 

preservation of the information of raw reads as compared to short-read sequencing. To elaborate, 158 

for short-read sequencing data, only 34.3% of raw reads mapped to the analyzed contigs, 159 

indicating a significant read loss during de novo assembly, which is a common issue for 160 

environmental metagenomes12–14. Of note, the analyzed contigs corresponded to those passed the 161 

length filter (1,500 bp), which accounted for approximately 23.1% of all assembled contigs, 162 

indicating the length of the assembled contigs was a limiting factor of ARG detection by short-163 

read sequencing. In this study, short-read assembly was treated as a necessary step to avoid false 164 

positives caused by highly similar and relatively short ARG reference sequences. After de novo 165 

assembly, only 0.0125% of the assembled contigs passed through the filter of the ARG 166 

alignment step (based on RGI “perfect” and “strict” matches for ARG calling)3. For long-read 167 

processing, 100% of reads were directly subject to ARG alignment because no assembly was 168 

needed, and 14.8% of reads passed the filter of the ARG alignment step. Assembly of long reads 169 

was not performed due to the limited coverage (data not shown). Therefore, the number of ARG-170 

carrying reads via long-read sequencing was greater than the number of ARG-carrying contigs 171 

via short-read sequencing (Table 2). Another reason long-read sequencing may have been more 172 



sensitive is because, on average, the size of the ARG-carrying reads (mean size=5,387 bp) was 173 

significantly larger than the ARG-carrying contigs (mean size=3,488 bp; p=1.592e-05). Longer 174 

reads increased the likelihood of detecting multiple ARGs on the same reads. The number and 175 

fraction of long reads carrying more than one ARG (413; 23.7%) were greater than the number 176 

and fraction of contigs carrying more than one ARG (24; 10.7%). In addition, the contigs that 177 

carried more than one ARGs were carrying two or three ARGs, whereas 26.6% of the long reads 178 

that carried more than one ARGs were carrying at least three and up to six ARGs. Taken 179 

together, long-read sequencing resulted in higher ARG detection sensitivity than short-read 180 

sequencing by preventing read loss and through the generation of extended length of ARG-181 

carrying reads.  182 

However, both methods identified a comparable ARG composition with respect to ARG 183 

subtypes; each method detected the same suite of 20 ARG subtypes in wastewater (Fig. 2a). 184 

Approximately 90% of the total ARGs detected by each method belonged to subtypes of 185 

sulfonamide, macrolide-lincosamide-streptogramin (MLS), tetracycline, multidrug, carbapenem, 186 

aminoglycoside, antiseptics, and non-carbapenem-beta-lactams. The consistency between long-187 

read and short-read sequencing in characterizing ARG subtypes has also been reported in other 188 

studies of wastewater samples and activated sludge samples6, mock bacterial communities15, and 189 

a plant population with a known bacteria spike4.190 



2.2.2 Long-read sequencing detected more ARGs located on chromosomes, plasmids, and 

on different types of mobile genetic elements (MGEs) as compared to short-read 

sequencing 

Next, we compared the genetic location of ARGs assigned by each sequencing method. 

Both methods captured ARGs distributed across different genetic locations, namely, plasmid and 

chromosome. In addition, the associations between ARGs and MGEs (transposases, integrases, 

recombinases, and integrons) were also recovered. Long-read sequencing exhibited a greater 

abundance of ARGs that were associated with every single genetic location as compared to 

short-read sequencing (Fig. 2b). More specifically, long-read sequencing showed a significantly 

higher abundance of plasmid-associated ARGs, 6-fold higher than that of short-read sequencing, 

and a strikingly higher abundance of class 1 integron-integrase genes (IntI1)-associated ARGs, 

16-fold higher than that of short-read sequencing (Fig. 2b). The less sensitive detection of MGE-

associated ARGs by short-read sequencing was likely the result of the de novo assembly process. 

To elaborate, the variable copy number and the highly homologous and repetitive sequence 

compositions of MGEs make it problematic to assemble MGE-associated reads. As shown in a 

previous study, 82-94 % of chromosomal sequences were correctly assembled and binned, but 

only 38-44 % of genomic islands and 1-29 % of plasmid sequences were identified in a simulated 

low-complexity short-read metagenome 16. A similar degree of read loss during short-read 

assembly was also observed in several other studies of wastewater metagenomes5,12,17,18. Long-

read sequencing, on the other hand, does not require assembly as it generates long reads that can 

be directly searched against MGE databases. Therefore, long-read sequencing can overcome the 

data loss issue associated with assembly, making it more feasible to detect ARG-MGE linkages. 
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So far, only a handful of studies have compared using long-read and short-read 

sequencing to determine the genetic locations of ARGs in wastewater samples. One study that 

obtained reads via Nanopore sequencing and contigs assembled from Illumina-sequencing reads 

found that both resulted plasmid-associated ARGs for all major subtypes of ARGs in wastewater 

and activated sludge samples6. Similarly, in this study, ARGs were found to be primarily located 

on plasmids rather than chromosomes (Fig. 2b). In addition, ARGs were mostly co-located with 

transposases and IntI1 (Fig. 2b). We also investigated the distribution of ARGs across different 

genetic locations with respect to ARG subtypes (Fig. 2c). For ARGs conferring resistance to 

carbapenem, multidrug, MLS, diaminopyrimidine, aminoglycoside, tetracycline, nucleoside, and 

bacitracin, long-read sequencing demonstrated a consistent or slightly wider MGE distribution 

range compared to short-read sequencing (Fig. 2c). However, the distribution patterns of 

sulfonamide resistance genes, peptide resistance genes, rifamycin resistance genes, and 

antiseptics resistance genes were distinct for each method. Short-read sequencing assigned these 

ARGs only to plasmids whereas long-read sequencing assigned these ARGs not only to plasmids 

but also to other MGEs (Fig. 2c). This inconsistency was likely due to the significantly lower 

number of ARG-associated contigs detected by short-read sequencing for those specific ARGs 

(data not shown), which limited its ability to fully capture the potential of those ARGs being 

associated with MGEs. While this is not the first study to elucidate the genomic locations of 

ARGs by investigating the genetic context of ARGs, it is the first to explicitly compare long-read 

and short-read sequencing in profiling the distribution of ARGs across genomic locations (i.e., 

chromosomes, plasmids, and other MGEs) in wastewater. 

 

2.3 Host range detected by epicPCR 
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 For sul1 hosts, epicPCR classified 61 Proteobacteria species and nine Bacteroidetes 

species (Table 5). NCBI Reference Sequence Database (RefSeq) reported consistent sul1-host 

phylum associations, more than 99% (25,195) of the reference sequences associated with sul1 in 

bacteria were assigned to Proteobacteria. In previous studies characterizing hosts of sul1 in 

wastewater, Bacteroidetes was identified as the dominant host phyla along with 

Proteobacteria19,20. To focus on the host range at the family level, the top three host families of 

sul1 classified by epicPCR are Rhodocyclaceae, Aeromonadaceae, and Comamonadaceae, which 

was consistent with the sul1 host range profiled by another targeted method using proximity 

ligation21. For ermB hosts, epicPCR identified 17 Proteobacteria species, 12 Bacteroidetes 

species, two Firmicute species, and one Fusobacteria species (Table 5). In RefSeq, ermB was 

predominantly associated with Proteobacteria (2,415 records), followed by Firmicutes (33 

records). Recently, ermB has been found more frequently in Bacteroidetes species and was 

characterized as mobilizable based on its association with certain conjugative transposons22,23. 

Lastly, for tetO hosts, epicPCR detected 59 Firmicutes species, 6 Proteobacteria species, and 2 

Bacteroidetes species. Consistently, according to NCBI RefSeq, tetO was found to be associated 

with Firmicutes (121 records), Proteobacteria (111 records), and Bacteroidetes (16 records). 

Almost all hosts detected by long-read sequencing were subsets of the host range detected by 

epicPCR as discussed in the manuscript. In addition, long-read sequencing and epicPCR 

demonstrated a consistent host range profile that sul1 was mainly associated with Proteobacteria, 

tetO was mainly associated with Firmicutes, and ermB was mainly associated with Bacteroidetes 

and Firmicutes (Table 6). 
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2.4 The profiles of ARG hosts across the WWTP influent and effluent revealed by long-

read sequencing and epicPCR 

 WWTP influent and effluent hosts were the most consistent at the phylum level as shown 

by epicPCR and long-read sequencing as discussed in the manuscript. In the WWTP effluent, as 

demonstrated by long-read sequencing, there were 12 ARG host species that were not detected in 

WWTP influent (hereafter referred to as “new hosts”) as well as eight ARG host species which 

persisted across the whole treatment process (hereafter referred to as “persistent hosts”). In 

addition, none of the new hosts were found in the secondary effluent samples (data not shown). 

The persistent hosts included E. coli carrying mdt genes (i.e., mdtE, mdtN, and mdtO; subtype: 

efflux pumps) and Aeromonas caviae carrying OXA-504 (subtype: multidrug/carbapenem). The 

new hosts included Pseudomonas sp. BJP69 carrying MexD (subtype: efflux pump), 

Pseudomonas oleovorans carrying mexF (subtype: efflux pump), Salmonella enterica carrying 

OXA-256 (subtype: multidrug/carbapenem), Pandoraea thiooxydans carrying ceoB (subtype: 

efflux pump), Enterobacter kobei carrying ramA (subtype: efflux pump), and Burkholderia 

pseudomallei carrying MuxB (subtype: efflux pump). Those ARG hosts (E. coli, A. caviae, S. 

enterica, E. kobei, and B. pseudomallei) are putative pathogenic species. This finding 

emphasizes a critical need to include them as the risk indicators, because they were harboring 

resistance genes of clinical relevance while at the same time poorly responsive to wastewater 

treatment.  

Our results also showed that all ARG-carrying plasmids found in secondary effluent 

(containing 33 ARG-carrying plasmid reads) and final effluent (containing 56 ARG-carrying 

plasmid reads), as well as most (966 out of 970) ARG-carrying plasmids in influent, were 

classified as nonmobilizable plasmids due to the lack of a MOB. Only four out of 970 ARG-
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carrying plasmid reads in influent were found to carry MOB genes. However, although long-read 

sequencing generated greater length reads as compared to short-read assembled contigs, the 

average length of ARG-carrying, plasmid-associated reads was 4,885 bps. This suggests 

incomplete plasmids were assembled and thus may not have contained information needed to 

call mobility for a plasmid. For example, the length range of 14 representative ARG-bearing 

conjugative plasmids isolated from WWTPs was reported to be 35,925-290,014 kbps24, much 

longer than the plasmid-associated read length. Therefore, we cannot draw a solid conclusion 

regarding the mobility of plasmids given that the relatively short plasmid-associated reads 

captured incomplete plasmid sequences.  
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Table 1. EpicPCR primers used for fusion PCR and nested PCR. 

Fusion PCR 

ARG Primer Sequence (5' - 3') Reference 

sul1 

F-sul1 AAATGCTGCGAGTYGGMKCA 25 

RL-sul1-519F′ 
GWATTACCGCGGCKGCTGAA

CMACCAKCCTRCAGTCCG 
19 

ermB 

F-ermB 
GAACACTAGGGTTGTTCTTGC

A 
26 

RL-ermB-519F′ 
GWATTACCGCGGCKGCTGCT

GGAACATCTGTGGTATGGC 

The reverse primer portion of 

ermB26 

tetO 

F-tetO ACGGARAGTTTATTGTATACC 27 

RL-tetO-519F′ 
GWATTACCGCGGCKGCTGTG

GCGTATCTATAATGTTGAC 

The reverse primer portion of 

tetO27 

 16S rRNA -1492R GGTTACCTTGTTACGACTT 1 

Nested PCR 

ARG Primer Sequence (5' - 3') Reference 
Final product size 

(bp) 

sul1 F’-sul1 GACGCCCTGTCCSRTCWGAT 19 1037 

ermB F-ermB 
GAACACTAGGGTTGTTCTTGC

A 
26 1007 

tetO F-tetO ACGGARAGTTTATTGTATACC 27 1043 

 U519F-block10 
TTTTTTTTTTCAGCMGCCGCG

GT AATWC/3SpC3/ 
1 

 
 U519R-block10 

TTTTTTTTTTGWATTACCGCG

GC KGCTG/3SpC3/ 

 16S rRNA -1391R GACGGGCGGTGTGTRCA 28 
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Table 2. Long- and short-read sequencing read statistics. 

Method Sample Total bases 
Number of 

reads/contigs 

Length N50 

(bp) 

Long-read 

sequencing 
Influent (n=3) 

4,318,719,998 1,178,106 4,748 

Short-read 

sequencing 
42,663,854,700 1,796,758 1,210 

Long-read 

sequencing 

Secondary effluent 

(n=3) 
2,885,452,624 464,436 7,159 

short-read 

sequencing 
Final effluent (n=3) 1,944,820,196 1,513,866 1,493 
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Table 3. Accession numbers and brief descriptions of the three publicly available wastewater 

datasets used for comparing long- and short-read metagenomic sequencing 

ID 
Sequencing 

platform 
Instrument 

Total 

bases 
Sample Sampling region SRR Accession Reference 

ST _IN 

Illumina 
Illumina HiSeq 

4000 (PE 150) 
18G 

Municipal 

wastewater 

Hong Kong 

SRR8208343 
6 

ONT ONT MinION 2.4G SRR7497167 

B_WW_1 

Illumina 
Illumina HiSeq 

2500 (PE150) 
5.9G 

The greater 

Boston area, in 

Massachusetts, 

USA 

SRR12917052 

7 

ONT ONT MinION 1.3G SRR12917048 

B_WW_2 

Illumina 
Illumina HiSeq 

2500 (PE150) 
5.6G SRR12917051 

ONT ONT MinION 0.82G SRR12917047 

 

Table 4. Microbial community composition of the WWTP influent sample generated by long- 

and short-read sequencing 

Family 
Relative abundance via 

long-read sequencing 

Relative abundance via 

short-read sequencing 

Enterobacteriaceae 4.66 6.24 

Bacillaceae 0.58 3.1 

Pseudomonadaceae 3.22 3.08 

Streptomycetaceae 1.03 2.22 

Flavobacteriaceae 0.67 2.16 

Burkholderiaceae 1.67 1.9 

Lactobacillaceae 0.26 1.88 

Streptococcaceae 1.22 1.73 

Mycobacteriaceae 0.73 1.56 

Microbacteriaceae 0.5 1.45 

Xanthomonadaceae 1.05 1.35 

Rhizobiaceae 0.63 1.23 

Corynebacteriaceae 0.16 1.23 

Mycoplasmataceae 0.11 1.22 

Sphingomonadaceae 0.49 1.07 

Campylobacteraceae 0.49 1.04 

Vibrionaceae 0.39 1.03 

Paenibacillaceae 0.35 0.98 
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Comamonadaceae 5.06 0.97 

Pasteurellaceae 0.45 0.97 

Staphylococcaceae 0.16 0.95 

Moraxellaceae 1.82 0.89 

Yersiniaceae 0.32 0.89 

Clostridiaceae 0.48 0.87 

Roseobacteraceae 0.24 0.83 

Species 
Relative abundance via 

long-read sequencing 

Relative abundance via 

short-read sequencing 

Salmonella enterica 0.05 2.09 

Escherichia coli 0.26 1.16 

Bacillus cereus group 0.1 0.57 

Helicobacter pylori 0.02 0.47 

Bacillus subtilis group 0.04 0.44 

pseudomallei group 0.11 0.42 

Listeria monocytogenes 0.01 0.38 

Pseudomonas syringae group 0.08 0.35 

spotted fever group 0.01 0.29 

Enterobacter cloacae complex 0.42 0.28 

Pseudomonas aeruginosa group 1.08 0.27 

Burkholderia cepacia complex 0.26 0.26 

Buchnera aphidicola 0.03 0.26 

Staphylococcus aureus 0.01 0.26 

Burkholderia pseudomallei 0.04 0.25 

Yersinia pseudotuberculosis 

complex 
0.01 0.22 

Pseudomonas fluorescens group 0.14 0.2 

Acinetobacter 

calcoaceticus/baumannii complex 
0.12 0.2 

Pseudomonas putida group 0.17 0.19 

Klebsiella pneumoniae 0.13 0.19 

Pseudomonas aeruginosa 0.25 0.18 

Bacillus amyloliquefaciens group 0.01 0.18 

Mycobacterium avium complex 

(MAC) 
0.03 0.17 

Bacillus thuringiensis 0.01 0.17 

Vibrio harveyi group 0.06 0.16 
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Fig. 1. Overview of the computational pipeline for analyzing long- and short-read sequencing data. A. The 

detailed pipeline. B. The output of each step, in terms of the number of reads (long-read sequencing) and contigs 

(short-read sequencing), and the number of host species classified based on chromosomal ARGs and all ARGs. 

  

Long reads Short reads

ARG-carrying reads/contigs

1471 224

Chromosomal ARG-carrying reads/contigs via Plasflow

Final chromosomal ARG-carrying reads/contigs after BLAST retrieval

409 62

503 77

27.8% 27.7%

34.2% 34.4%

Chromosomal reads/contigs classified to species level (number of species) via Centrifuge

62 (39)418 (168)

ARG-carrying reads/contigs classified to species level (number of species) via Centrifuge

1625 (322) 210 (99)

A 

B 

Long reads

BLASTx

Len cov  &

Identity Filter

Len cov  &

Identity Filter

Short reads

CARD DB 

(V3.2.2)
BLASTn

MGE DB curated by

NanoARG

ARG-associated reads

(LR) and contigs (SR)

ARG-associated MGEs
Distance between the

ARG and the MGE

enzyme

PlasFlow

Plasmid Chromosome Unclassified
BLASTn

NCBI nt DB

Plasmid-associated

ARGs
ARG hosts

Plasmid

annortations

Mob-suite (V3.0.0)

RGI (V5.2.1)

Centrifuge (V1.0.4)

MOBscan

Identification of

ARG-carrying

reads/contigs

Identification of

chromosomal ARGs

Classification of

chromosomal ARGs



 S20 

 

  

Fig. 2. Resistome profiles revealed by long- and short-read sequencing on paired wastewater samples (n 

= 3). A. Total ARG relative abundance revealed by long- and short-read sequencing (left) and ARG 

composition broken down by drug class subtype (right) according to the relative abundance of ARGs of 

each subtype. B. Distribution of total ARGs across genetic locations (plasmid or chromosome) and the 

associations between ARGs and MGEs as determined by long- and short-read sequencing. ARGs 

associated with more than one MGE were counted separately for each MGE involved. C. Distribution of 

ARGs (grouped by drug class subtype on the x-axis) across genetic locations and ARG-MGE 

associations revealed by long- and short-read sequencing. 
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Fig. 3. Comparison of long- and short-read sequencing in identifying ARG subtypes-host family linkages 

for other publicly available datasets. Left: sample ID: B_WW_27, right: ST_IN6. 
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Fig. 4. Composition of chromosomal ARGs and plasmid-associated ARGs in terms of resistance 

mechanisms across samples. 

 

  
Fig. 5. WWTP influent and effluent hosts revealed by epicPCR and long read sequencing. a. The count of 

WWTP influent (blue) and effluent (violet) hosts revealed by epicPCR. The numbers of hosts for the three 

ARGs (sul1, ermB and tetO) are shown at species, family, and phylum level, respectively. b. The count of 

influent (blue) and effluent (violet) hosts revealed by long-read sequencing. Unique combinations of each 

ARG and its host counted at the species, family, and phylum level, respectively. 
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