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Abstract 39 

Summary statistics from genome-wide association studies enable many valuable downstream 40 

analyses that are more efficient than individual-level data analysis while also reducing privacy 41 

concerns. As growing sample sizes enable better-powered analysis of gene-environment 42 

interactions (GEIs), there is a need for GEI-specific methods that manipulate and use summary 43 

statistics. We introduce two tools to facilitate such analysis, with a focus on statistical models 44 

containing multiple gene-exposure and/or gene-covariate interaction terms. REGEM (RE-45 

analysis of GEM summary statistics) uses summary statistics from a single, multi-exposure 46 

genome-wide interaction study (GWIS) to derive analogous sets of summary statistics with 47 

arbitrary sets of exposures and interaction covariate adjustments. METAGEM (META-analysis 48 

of GEM summary statistics) extends current fixed-effects meta-analysis models to incorporate 49 

multiple exposures from multiple studies. We demonstrate the value and efficiency of these 50 

tools by exploring alternative methods of accounting for ancestry-related population stratification 51 

in GWIS in the UK Biobank as well as by conducting a multi-exposure GWIS meta-analysis in 52 

cohorts from the diabetes-focused ProDiGY consortium. These programs help to maximize the 53 

value of summary statistics from diverse and complex GEI studies. 54 
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Introduction  61 

Gene-environment interaction (GEI) analysis is a key tool for understanding genetic impacts on 62 

human traits, with the potential to account for additional heritability, explain differences in 63 

genetic effects across populations, and support personalized lifestyle and therapeutic decisions. 64 

Historically, GEI studies have taken a hypothesis-driven approach, but larger cohorts,1 and new 65 

software programs have provided the necessary statistical power and computational efficiency 66 

to study GEIs genome-wide.2,3,4,5,6,7 These genome-wide interaction studies (GWIS) generate 67 

summary statistics, or variant-level regression results, which have substantial value beyond 68 

locus mapping. For example, summary statistics allow for heritability analysis,8 enrichment 69 

testing,1 and genome-wide polygenic score generation.1,9 
70 

GEI analysis and interpretation are complicated by the densely correlated set of possible 71 

exposures that may interact with genotypes to influence human traits (the “exposome”, defined 72 

here as including demographic and physiologic traits). Two modeling implications are 73 

particularly pertinent. First, multi-exposure GEI analysis can increase statistical power by jointly 74 

testing genetic interactions with multiple exposures.5,10,11 This strategy can pool signals across 75 

distinct exposures (e.g., smoking status and pollution exposure for lung function) or incorporate 76 

multiple definitions of a single exposure category (e.g., current smoking status and pack-years 77 

of smoking). Second, proper control of confounding for GEI interaction terms requires 78 

adjustment for not just the main effects of covariates, but also their genetic interactions.12 79 

Inclusion of these “interaction covariates” is thus necessary to produce interpretable summary 80 

statistics. 81 

Rigorous GEI analysis carries complexities stemming from its place at the center of traditional 82 

and genetic epidemiology. Sensitivity analyses, while commonplace in traditional epidemiology, 83 

are computationally burdensome when conducted across millions of variants genome-wide. 84 
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Meanwhile, well-established meta-analysis procedures for genome-wide association study 85 

(GWAS) summary statistics become more difficult in the context of multi-exposure GEI models. 86 

Software programs do not yet exist to perform efficient meta-analysis in the context of these 87 

complex analytical designs. 88 

We introduce methods and associated software programs to advance the field of genome-wide 89 

GEI analysis based on summary statistics. While the statistical results are general, the 90 

associated software implementations build on the results from our previously described software 91 

program for efficient GWIS, GEM.2 Exploiting the redundancy of statistical estimates across 92 

related GEI models, we introduce the REGEM (RE-analysis of GEM summary statistics) 93 

program to derive genome-wide summary statistics corresponding to arbitrary multi-exposure 94 

and interaction covariate adjustments based on results from a single, multi-exposure GWIS. 95 

Expanding current fixed-effect meta-analysis models, we further introduce the METAGEM 96 

(META-analysis of GEM summary statistics) program to conduct efficient meta-analysis of GEI 97 

effects under complex GEI analysis models. We demonstrate the value and efficiency of these 98 

tools by exploring alternative methods of accounting for population stratification in GWIS in the 99 

UK Biobank as well as by conducting a multi-exposure GWIS meta-analysis in cohorts from the 100 

ProDiGY consortium. 101 

Material and methods 102 

GEM method 103 

We developed two C++ software programs that use summary statistics from GEI studies. 104 

REGEM requires output from a single GEI study, while METAGEM requires output from multiple 105 

GEI studies. Both programs are designed for easy integration with output from GEM. Here we 106 

summarize the GEM methodology. For a single-variant test of � unrelated individuals, GEM 107 

considers the generalized linear model: 108 
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����� � ���� 	 
��� 	 ���� 	 ����  #�1�   

for individual �, where �� � ����|�� , 
�� is the conditional mean of the phenotype �� given � 109 

covariates �� (including the intercept), and the genotype 
� for a single genetic variant. The 110 

interaction terms ��  and �� are the products of 
� and � covariates and � exposures (which are 111 

disjoint subsets of ��), respectively.2 Let � � ��� ��  � ���	 be a length � vector of phenotypes, 112 

� � ���
	  ��

	  � ��
	�	 be an � � � matrix of � covariates, 
 � �
�  
�  � 
��	 be a length � 113 

vector of genotypes for this single genetic variant, � � ���
	  ��

	  � ��
	�	 be an � � � matrix of � 114 

gene-covariate interaction terms, � � ���
	  ��

	  � ��
	�	 be an � � � matrix of � gene-115 

environment (exposure) interaction terms, we can fit a null model without any genetic effects 116 

����� � ���� and get a length � residual vector �. Let 
� � 
 � ���	���
��	�
, �� � � �117 

���	���
��	�� and �� � � � ���	���
��	�� be covariate � adjusted 
, � and �, 118 

respectively, where � is a diagonal weight matrix with elements �̂��1 � �̂�� for logistic 119 

regressions (�̂� are fitted probabilities of �� � 1 from the null model) and an identity matrix for 120 

linear regressions, GEM computes a length �1 	 � 	 �� score vector (�  0) " � �
� �� ���	�, and 121 

�1 	 � 	 �� � �1 	 � 	 �� matrices # � �
� �� ���	��
� �� ���, $ � �
� �� ���	%�
� �� ���, where % is a 122 

diagonal matrix of squared residuals.  123 

For & variants in a genome-wide scan, we retrieve the dispersion parameter estimate, '( (which 124 

is fixed at 1 for logistic regressions and the residual variance estimate from the null model for 125 

linear regressions), the genetic main effect, gene-covariate interaction effects and gene-126 

environment (exposure) interaction effects, as well as both model-based and robust standard 127 

errors and covariances for 
, � and �. The effect estimates are computed as �)�,�,� �  #
�". 128 

The full �1 	 � 	 �� � �1 	 � 	 �� model-based and robust variance-covariance matrices are 129 

computed as �*+��)�,�,�� � '(#
� and �*+���)�,�,�� � #
�$#
�, respectively. In the full output, 130 

GEM (version 1.3 and later) reports the model-based and robust standard errors of effect 131 
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estimates, which are the square root of the diagonal elements of �*+��)�,�,�� and �*+���)�,�,��, 132 

as well as the model-based and robust covariances for these effect estimates (the off-diagonal 133 

elements of �*+��)�,�,�� and �*+���)�,�,��). 134 

REGEM Method 135 

Given the full summary statistics output from GEM (version 1.3 and later), the score vector " 136 

and matrices # and $, can be reconstructed without access to individual-level data. Utilizing '( 137 

and the matrices �*+��)�,�,�� and �*+���)�,�,�� described above, it follows that 138 

# � '(�*+
���)�,�,�� and $ � #�*+���)�,�,��#. The score vector can then be recomputed as 139 

" � #�)�,�,�. 140 

REGEM supports two scenarios for re-analysis of a single GEI study. The first scenario involves 141 

the exclusion of one or more gene-covariate or gene-environment interaction terms from the 142 

original model. This is achieved by filtering " to exclude the specified gene-covariate or gene-143 

environment interaction terms, resulting in the modified score vector ", . Subsequently, the 144 

matrices # and $ are reduced to exclude the corresponding rows and columns of the specified 145 

gene-covariate or gene-environment interaction terms, denoted #,  and $, . The GEM method can 146 

then be applied to ", , #, , and $,  to obtain new summary statistics. In the second scenario, re-147 

analysis can be performed by conditioning on one or more gene-environment interaction terms 148 

in the original GEM analysis as gene-covariate interactions or testing one or more gene-149 

covariate interaction terms in the original GEM analysis as gene-environment interaction terms 150 

of interests. In either case, the ordering of " is rearranged, denoted as "- , to incorporate the 151 

original gene-environment interaction terms into � or the original gene-covariate interaction 152 

terms into �. The rows and columns of the matrices # and $ are also reordered and denoted as 153 
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#-  and $- . The GEM method follows for "- , #- , and $- . Both scenarios can be applied 154 

simultaneously. 155 

METAGEM method 156 

METAGEM combines summary statistics from . independent studies using the inverse-157 

variance weighted approach. For individual studies / � 1, 2, � , ., with effect estimates �) and 158 

the variance-covariance matrix �*+ from the GEM output (model-based or robust), the 159 

summary effect estimates are computed as �) � �∑ �*+

��

�� �
��∑ �*+

��)

�
�� �, with the 160 

model-based or robust variance-covariance matrix �*+ � �∑ �*+

��

�� �
�. 161 

REGEM Comparison and Benchmark 162 

To demonstrate the computational benefits of REGEM, we test and compare four variations of 163 

the waist-hip ratio (WHR) model originally described by Westerman et al. The original model is 164 

defined as follows (excluding the array covariate and PC6 - PC10): 165 

�23 ~ 
 	 567 	 8�6 	 8�6� 	 9&: 	 ;�1 	 … 	  ;�5 	 
 � 567 	 
 � 9&: #�2�   

where WHR is the phenotype, sex is the primary exposure of interest, BMI is the interaction 166 

covariate, and age, age2, and PC1-PC5 are the covariates. Here, we retrieved PCs calculated 167 

as part of the Pan-UKBB project.13 All terms in the model were centered. First, we performed a 168 

genome-wide analysis of the original model using GEM (version 1.5) using 362,449 unrelated 169 

European-ancestry participants, and filtered variants with minor allele frequency (MAF) < 0.001, 170 

leaving 16,539,280 variants for re-analysis. Next, we derived associated genome-wide summary 171 

statistics corresponding to variations of the original model using REGEM, comparing their 172 

results and runtimes to simply re-running that same model genome-wide using GEM. Table S1 173 

summarizes the variations of the original models, including the original model. These variations 174 
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involve the joint testing of G x sex and G x BMI (M1), testing for G x BMI while adjusting for G x 175 

sex (M2), testing for G x sex while removing the G x BMI term (M3), and testing for G x BMI 176 

while removing the G x sex term (M4). All analyses were performed on the DNAnexus platform 177 

using the mem1_ssd1_v2_x16 instance type, and we reported the runtime and memory usage 178 

of each run. The GEM and REGEM summary statistic comparisons were visualized using the 179 

scattermore and ggplot2 R packages. 180 

METAGEM Comparison and Benchmark 181 

To evaluate the computational efficiency of METAGEM, we conducted a simulation study using 182 

phenotype and genotype data from the Pan-UKBB.13  We randomly split the phenotype data, 183 

which comprised 362,449 samples, into 11 datasets: one with 100,000 samples, two with 184 

50,000 samples, seven with 10,000 samples, and one with 92,449 samples. For each dataset, 185 

we conducted a genome-wide gene-sex interaction test and filtered out variants with a MAF < 186 

0.001, resulting in 15.46 to 16.85 million variants per dataset, and a total of 17,993,341 unique 187 

variants across all datasets. We then performed a gene-sex interaction meta-analysis using 188 

METAGEM and the METAL software (version 2010-02-08),14 with the joint meta-analysis 189 

patch,15 and compared the results. Additionally, we conducted a genome-wide joint gene-sex 190 

and gene-BMI interaction test for each dataset and performed a meta-analysis using 191 

METAGEM to evaluate its performance in the presence of multiple interaction terms. All 192 

analyses were conducted on the DNAnexus platform using a single core and the 193 

mem1_ssd1_v2_x16 instance type. We reported the CPU time and memory usage for each 194 

analysis. We used the scattermore and ggplot2 R packages to visualize the comparison of 195 

summary statistics between METAGEM and METAL. 196 

Multi-exposure interactions influencing waist-hip ratio in the UK Biobank 197 
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Expanding the WHR analyses described above, we performed multiple GWIS, with downstream 198 

analysis using REGEM and METAGEM, to investigate genetic interactions with sex and BMI 199 

across multiple ancestries. The primary model, run using GEM, was conducted in unrelated 200 

individuals from multiple ancestries (N = 379,092) and followed model (2) above with the 201 

addition of gene-ancestry interaction covariates. Ancestry labels (AFR, AMR, CSA, EAS, EUR, 202 

and MID) were retrieved from the Pan-UKBB effort and were coded using five indicator 203 

variables, with EUR as the reference group. Using REGEM, we then derived summary statistics 204 

corresponding to equivalent single-exposure GWIS in the pooled-ancestry sample (testing only 205 

gene-sex or only gene-BMI interactions, while adjusting for only the main effect of the other). 206 

Additionally, we ran ancestry-stratified, multi-exposure analyses (using the same model but 207 

removing all covariate and interaction covariate terms containing ancestry labels). These 208 

ancestry-stratified analyses were then combined using METAGEM to generate meta-analyzed, 209 

multi-exposure interaction tests for comparison to the results from the ancestry-pooled analysis. 210 

To compare locus discoveries across analysis strategies (e.g., ancestry-pooled vs. cross-211 

ancestry meta-analysis), we first independently clumped summary statistics from each analysis 212 

using a distance-based method that grouped variants within 500kb of each lead variant. We 213 

then concatenated the clumped results from the two analyses and performed a secondary 214 

clumping using the same strategy, such that clumped loci in this second stage were considered 215 

to represent the same locus. 216 

Progress in Diabetes Genetics in Youth (ProDiGY) dataset 217 

ProDiGY is a multi-ethnic resource including three studies: Treatment Options for Type 2 218 

Diabetes in Adolescents and Youth (TODAY),16 SEARCH for Diabetes in Youth (SEARCH),17 219 

and T2D-GENES. In total, the dataset contains 2,820 youth and 4,858 adult cases with T2D, 220 

and 656 diabetes-free youth and 4,934 adult controls after removing individuals with maturity-221 
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onset diabetes of the young (MODY) and type I diabetes. Samples were genotyped on the 222 

Infinium GWAS array by the Genetic Analysis Platform at the Broad Institute of MIT and 223 

Harvard. Details on quality control procedures for the genotype data have been previously 224 

described.18 Genotype data were imputed on the TOPMed Imputation Server using the 225 

TOPMed v2 reference panel. Variants passing an imputation quality threshold (R2) of 0.5 were 226 

retained for analysis. Genetic ancestry groups were assigned to ProDiGY samples based on 227 

genetic principal components analysis after merging with the 1000 Genomes dataset. 228 

Application multi-interaction to T2D in ProDiGY 229 

To show the performance of METAGEM in the multi-gene-environment interactions with a real 230 

and genome-wide study, we first used GEM to conduct a multi-exposure gene-sex and gene-231 

age interaction analysis for incident T2D, separately within each genetic ancestry group in two 232 

different comparisons: youth cases vs. youth controls (youth group) and adult cases vs. adult 233 

controls (adult group). Sex and age were both used as exposures and tested jointly for 234 

interaction using robust standard errors. Covariates included age, sex and 10 genetic principal 235 

components. 236 

>2% ~ 
 	 567 	 8�6 	 ;�1 	  … 	  ;�10 	 
 � 567 	 
 � 8�6 #�3�  

Using the full output from GEM, we performed cross-ancestry meta-analysis using METAGEM 237 

in both youth group and adult group analyses. We also conducted equivalent single-exposure 238 

GWIS with sex and age separately for comparison with the multi-exposure scan. Meta-analysis 239 

for these single-exposure tests was conducted using METAL, for both the joint (genetic plus 240 

interaction effect) test (patched version 2010-02-08; the only version for which the patch is 241 

available) and marginal test (version 2011-03-25) to conduct the marginal meta-analysis test 242 

across genetic ancestry groups. A threshold of p<5 ×10-8 was used to define genome-wide 243 

significance. 244 
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RESULTS 245 

Figure 1 shows the suite of software tools described here in the context of an analysis workflow, 246 

along with an example set of associated statistical models. 247 

 248 

 249 
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Figure 1: Large-scale GxE methods software suite and connections in the context of an 250 

analysis workflow. GEM (previously published) conducts genome-wide interaction studies for 251 

single datasets. Given multi-exposure summary statistics from GEM (version 1.3 and later), 252 

REGEM can estimate genome-wide summary statistics from an associated model that re-253 

partitions any subset of exposures into interaction covariates and simple main effect 254 

adjustments without interaction. Given multiple sets of summary statistics from GEM and/or 255 

REGEM, METAGEM conducts meta-analysis for any number of jointly-tested exposures and 256 

interaction covariates. 257 

 258 

REGEM computational performance 259 

We compared results obtained from genome-wide interactions tests using the REGEM and 260 

GEM methods across four distinct GEI models. The benchmark results, presented in Table 1, 261 

indicate that REGEM significantly reduces CPU time by eliminating the need for computation on 262 

individual-level data. For each model, REGEM completed a genome-wide run in less than 6 263 

minutes, while GEM required several CPU days to achieve the same outcome. Additionally, re-264 

analyses for multiple interactions (M1 and M2) using REGEM took only about a minute of 265 

additional CPU time compared to single exposure re-analyses (M3 and M4). Overall, REGEM 266 

saved considerable time, ranging from hours to days of computation time. Moreover, the 267 

memory requirements for REGEM were minimal, primarily depending on the number of gene-268 

environment interaction terms, which are usually small. Finally, the effect and variance 269 

estimates from REGEM were consistent with those obtained from GEM for each of the four 270 

models (M1-M4) as shown in Figures S1-S4. 271 

 272 
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Benchmark 
GEM  REGEM 

M1 M2 M3 M4  M1 M2 M3 M4 

CPU time (Mins) 13,972.17 13,618.44 10,959.33 10,994.26  5.22 5.20 4.43 4.06 

Memory (MB) 2,325.37 2,342.48 2,188.14 2,188.14  13.66 13.64 11.43 11.63 

Table 1. Genome-wide re-analysis benchmark comparison between GEM and REGEM. 273 

 274 

METAGEM computational performance 275 

Genome-wide meta-analysis runs of ~17.99 million variants, derived from 11 simulated UKB 276 

datasets, were carried out using the METAGEM and METAL methods with a single core. Table 277 

2 summarizes the CPU time and memory usage of the runs. For a single exposure meta-278 

analysis, METAGEM showed a modest improvement in performance compared to METAL, 279 

completing the run approximately 2 minutes faster and using approximately 1 GB less memory. 280 

We note that METAGEM meta-analyzed all 17,993,341 variants, while METAL skipped 25,670 281 

multi-allelic variants that contained duplicate variant identifiers. However, the impact of the 282 

skipped variants on the benchmark results was negligible. Model-based and robust meta-283 

analysis results from METAGEM and METAL are compared in Figure S5. As expected, the 284 

summary statistics and joint P-values were consistent between the two methods. To test the 285 

performance of METAGEM in conducting meta-analysis with multiple interactions, we performed 286 

genome-wide joint meta-analysis with gene-sex and gene-BMI as the interactions using 287 

METAGEM. As shown in Table 2, METAGEM efficiently completed the run in an additional ~6 288 

minutes of CPU time and less than 1 GB of additional memory compared to the single exposure 289 

meta-analysis. 290 

 291 
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Benchmark 
METAL  METAGEM 

1 - Exposure  1 - Exposure 2 - Exposures 

CPU time (Mins) 16.38  14.38 19.55 

Memory (GB) 7.10  6.11 6.96 

Table 2. Genome-wide meta-analysis benchmark between METAL and METAGEM for 292 

17,993,341 variants using a single core. 293 

 294 

Accounting for ancestry in pooled analysis of waist-hip ratio 295 

In order to test the functionality of REGEM and METAGEM on real datasets, we further explored 296 

the expanded WHR GWIS model used for benchmarking. The primary analysis tested genetic 297 

interactions with two exposures (sex and BMI) in a pooled dataset containing six ancestry 298 

groups. Without additional adjustments, this pooled dataset produced highly inflated summary 299 

statistics (genomic inflation lambda = 5.35), but after inclusion of interaction covariates (gene-300 

ancestry and exposure-ancestry interaction terms), this inflation was reduced to a level identical 301 

to that of a European ancestry-only analysis (lambda = 1.18 for both; Figure 2a). This properly-302 

adjusted pooled analysis uncovered 55 independent loci using a standard genome-wide 303 

significance threshold of 5×10-8. Using REGEM to produce equivalent single-exposure 304 

interaction tests (sex or BMI), we saw that the sex-only GWIS revealed a highly overlapping set 305 

of loci (57 loci in total, 47 of which overlapped loci from the multi-exposure test), while the BMI-306 

only GWIS revealed many fewer (6 loci in total, 5 of which overlapped loci from the multi-307 

exposure test; Figure 2b).  308 

Using METAGEM, we then conducted a meta-analysis of six ancestry-specific GWIS, finding 54 309 

total loci, all of which overlapped loci from the primary ancestry-pooled analysis (Figure 2c). 310 
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This high concordance reinforces two conclusions. First, proper adjustment for interaction 311 

covariates can allow rigorous pooled-ancestry GWIS and avoid the need for stratification. 312 

Second, in situations where pooled analysis is not possible for logistical or analytical reasons, 313 

the ability to adjust for interaction covariates and possibly include multiple exposures in 314 

conducting GWIS meta-analysis can be critical for proper interpretation and control of inflation. 315 

 316 

 317 
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Figure 2: Results from multi-exposure, multi-ancestry GWIS for waist-hip ratio. a) Quantile-318 

Quantile plots display observed vs. expected p-values for selected analyses. b) Results from 319 

REGEM-derived, single-exposure GWIS results for sex (top panel) and BMI (bottom panel). 320 

Scatter plots compare p-values between single- and multi-exposure interaction tests and Venn 321 

diagrams display the overlap in independent loci discovered using single- and multi-exposure 322 

interaction tests. c) As in (b), but replacing REGEM-derived, single-exposure results with 323 

METAGEM-derived, multi-ancestry meta-analysis results. 324 

 325 

Sex and age interaction effects on T2D in the ProDiGY dataset 326 

We performed a genome-wide, multi-exposure test of sex and age interactions affecting T2D 327 

analysis in the ProDiGY dataset, separately in the youth (youth cases vs youth controls) and 328 

adult (adult cases vs. adult controls) subsets. After cross-ancestry meta-analysis, we did not 329 

detect any significant signals using the interaction test, but using the joint test found 8 330 

independent loci passed the genome-wide significance threshold in the youth group (Table S2) 331 

and 3 loci in the adult group (Table S3). Of the 8 loci in the youth group, two were known 332 

associations, at TCF7L2 (pjoint = 1.30×10-9) and MC4R (pjoint = 9.22×10-9). Only one, rs7903146 333 

at TCF7L2, showed a significant effect in the marginal genetic effect test (excluding interaction 334 

effects). Six of the 8 signals were not reported in previous T2D GWAS studies (as per the 335 

Common Metabolic Disease Knowledge Portal). One variant, rs114578532, upstream of FGF6, 336 

passed the genome-wide significance threshold in the marginal test (pmarginal = 2.18×10-8), but 337 

not joint test (pjoint = 7.25×10-7). These signals, with the exception of TCF7L2, did not show 338 

strong effects in the adult group analysis. In the adult cases vs. adult controls comparison, out 339 

of three signals, two were known to be associated with T2D and also showed statistical 340 

significance in the marginal test (rs35198068 at TCF7L2 and rs2237892 at KCNQ1). The third 341 
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locus, with lead variant rs62287662 within an intron of KCNAB1, has not been previously 342 

associated with T2D (pjoint = 1.79×10-8; pinteraction = 6.27×10-8). KCNAB1 encodes a protein 343 

involved in diverse functions including heart rate and insulin secretion. This locus did not show 344 

meaningful association in the youth group analysis. 345 

To evaluate the added value of multi-exposure analysis, we ran analogous single-exposure 346 

meta-analyses, separately for sex and age. Of 8 multi-exposure signals in the youth group joint 347 

test, we found that 5 reached significance in the sex-only analysis (plus 2 additional signals) and 348 

3 in the age-only analysis (plus 1 additional signal) (Figure 3). In the adult group, 2 of 3 loci 349 

were found in all three models, with the third found in both the multi-exposure and age-only 350 

tests but not the sex-only test (Figure S6). 351 

 352 

 353 

Figure 3: Results from multi-exposure GWIS for incident T2D in the ProDiGY youth cohort. 354 

Venn diagram displays overlap between loci discovered at genome-wide significance using the 355 

joint test of genetic and interaction effects (pjoint = 5×10-8), from each of: sex-only, age-only, and 356 

multi-exposure (sex and age) analyses. Variants are labeled according to the closest gene, and 357 
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colors correspond to the test(s) in which significance was achieved: marginal genetic effect 358 

(light blue), joint genetic effect (dark blue), or both joint and marginal genetic effects (red). 359 

 360 

DISCUSSION 361 

GEI studies are becoming increasingly challenging due to complex structured models involving 362 

multiple interaction terms. Here we introduce two software programs, REGEM and METAGEM, 363 

to enable further downstream analysis of such studies using only summary statistics. We show 364 

that both programs are much more computationally efficient than the corresponding individual-365 

level data analyses and validate their results in comparison to existing software options. 366 

Additionally, we demonstrate how REGEM and METAGEM can be applied to improve GEI 367 

studies related to anthropometric traits in the UK Biobank and diabetes in the ProDiGY 368 

resource. 369 

REGEM is a powerful tool that exploits the GEM methodology to enable rapid estimation of 370 

genome-wide summary statistics for any re-partition of a set of exposures and interaction 371 

covariates. One potential application of REGEM is in sensitivity analyses, a common 372 

epidemiological tool used to assess genetic confounding. In our analysis, we demonstrate that 373 

proper adjustment for interaction covariates can significantly reduce highly inflated summary 374 

statistics and increase the discovery of genetic loci. Such discoveries could have been missed 375 

due to the computational expense of repeated genome-wide calculations on individual-level 376 

data. While recent algorithms have enabled multi-threading capabilities,2,19 high-performance 377 

computing, and cloud environments enable parallel genome-wide analysis, the pre-processing 378 

time required to set up these environments may add additional computational time and financial 379 

cost to individual-level genome-wide analysis. In our REGEM benchmark study, we show that 380 

by avoiding repeated computation on individual-level data, a genome-wide re-analysis can be 381 
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completed within minutes, requiring minimal computation resources while still producing valid 382 

summary statistic results. REGEM is lightweight and can be run on local machines, greatly 383 

reducing runtime and cost compared to an equivalent individual-level data analysis. 384 

Additionally, REGEM can also serve as a valuable pre-processing tool to harmonize summary 385 

statistics results from multiple GEI studies for downstream meta-analysis. This is particularly 386 

valuable in situations where different studies may test different combinations of exposure and 387 

interaction covariates. For instance, one study may jointly test G x sex and G x BMI, while 388 

another may only test G x sex. By applying REGEM to the first study, summary statistics from a 389 

model testing only G x sex can be obtained without having to re-analyze individual-level 390 

genotypes in that study. The resulting summary statistics from both studies can then be 391 

combined for meta-analysis without sharing individual-level data. Traditionally, harmonizing data 392 

from multiple GEI studies has been challenging due to lack of data sharing, privacy protection 393 

issues and logistics in data transportation and storage of individual-level data.20 Summary 394 

statistics-based algorithms help bypass such restrictions to facilitate collaborative research, and 395 

REGEM helps extend this family of tools to the GEI space. 396 

Various GEI software programs can fit models with multiple interaction terms.2,19,21  However, 397 

limited statistical power remains a challenge, requiring larger study cohorts, especially in 398 

underrepresented populations.22 By enabling more flexible summary statistic-based meta-399 

analysis, METAGEM provides an alternative strategy towards increasing overall sample size 400 

and statistical power for such analyses. For a single exposure meta-analysis without gene-by-401 

covariate interactions, existing software options, such as the popular METAL program, are 402 

adequate. However, a nuanced set of considerations are required to determine whether it is 403 

appropriate to include additional terms in meta-analysis, whether related to additional exposure 404 

terms,10 gene-by-covariate interactions,12 or genetic main effects.22 For multiple interaction 405 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2023. ; https://doi.org/10.1101/2023.05.08.23289686doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289686
http://creativecommons.org/licenses/by-nd/4.0/


21 

 

meta-analysis, METAGEM demonstrated efficient CPU time, though large memory space is 406 

required for larger numbers of interaction terms and unique variants across studies. 407 

By facilitating more comprehensive, genome-wide analyses and meta-analyses involving 408 

interactions using only summary statistics, REGEM and METAGEM enable researchers to 409 

maximize the value of genome-wide interaction studies while minimizing computational time. A 410 

few limitations should be noted. Firstly, the GEM model corrects for standard covariates by 411 

removing them from the genotype and interaction matrices in a single projection step. While this 412 

approach improves computational performance of the primary GWIS considerably, it also takes 413 

away the possibility of modifying covariate main effect adjustments in subsequent re-analysis. 414 

Any such modification (e.g., seeking an interaction effect while completely removing a covariate 415 

main effect from the statistical model) would require a new analysis using individual-level data. 416 

Additionally, while REGEM has been shown to produce results that are consistent with those of 417 

GEM, improper GEI analysis using GEM, particularly in the case of rare variants, can lead to 418 

spurious summary statistics results, and may invalidate re-analysis results. Therefore, 419 

researchers must ensure valid summary statistics (for example, well-controlled genomic 420 

inflation) are generated from GEI methods before performing a re-analysis. In this vein, it is also 421 

important that study-specific interaction terms to be meta-analyzed have equivalent 422 

interpretations; for example, METAGEM cannot conduct valid meta-analysis when there are 423 

discrepant study-specific variable coding choices in terms of exposure (and covariate) 424 

centering. 425 

In summary, we have introduced REGEM and METAGEM for further complex downstream 426 

analysis of GEI studies. REGEM and METAGEM, along with our GEM tool for genome-wide 427 

interaction analysis and corresponding workflows for reproducible and scalable deployment in 428 

cloud computing environments, are publicly available at (https://github.com/large-scale-gxe-429 

methods). The suite of tools, including GEM, REGEM and METAGEM, provides key software 430 
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infrastructure for maximizing the utility of summary statistics from diverse and complex GEI 431 

studies. 432 

Declaration of interests 433 

The authors declare no competing interests. 434 

Acknowledgements 435 

This research was conducted using the UK Biobank Resource under Application Numbers 436 

27892 and 42646. This work was supported by NIH grant R01 HL145025. KEW was supported 437 

by NIH grant K01 DK133637. ProDiGY acknowledgements and funding sources are included in 438 

the Supplemental Material. 439 

Author contributions 440 

D.T.P. and H.C. developed the METAGEM and REGEM algorithms. D.T.P., H.C., and C.P. 441 

implemented the METAGEM and REGEM software programs. D.T.P. and K.E.W. implemented 442 

software programs as cloud workflows. D.T.P. and H.C. designed the benchmark simulation 443 

study and carried out the analyses. K.E.W., L.C., and A.K.M. carried out the real-data analyses. 444 

S.S., E.I., M.E.V., F.B., S.C., R.G.-K., J.D., C.P., and S.M.M. provided guidance and input 445 

related to analysis of the ProDiGY dataset.  K.E.W., D.T.P., H.C., and A.K.M. wrote the 446 

manuscript. All authors critically read the manuscript. 447 

Web resources 448 

GEM, https://github.com/large-scale-gxe-methods/GEM 449 

GEM Workflow, https://github.com/large-scale-gxe-methods/gem-workflow 450 

METAGEM, https://github.com/large-scale-gxe-methods/METAGEM 451 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2023. ; https://doi.org/10.1101/2023.05.08.23289686doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289686
http://creativecommons.org/licenses/by-nd/4.0/


23 

 

METAGEM Workflow, https://github.com/large-scale-gxe-methods/metagem-workflow 452 

REGEM, https://github.com/large-scale-gxe-methods/REGEM 453 

REGEM Workflow, https://github.com/large-scale-gxe-methods/regem-workflow 454 

Data and code availability 455 

METAGEM and REGEM are both open source projects freely available at 456 

https://github.com/large-scale-gxe-methods/METAGEM and https://github.com/large-scale-gxe-457 

methods/REGEM. Workflows for both programs are also available at https://github.com/large-458 

scale-gxe-methods/metagem-workflow and https://github.com/large-scale-gxe-methods/regem-459 

workflow. 460 

References 461 

1. Werme, J., van der Sluis, S., Posthuma, D., and de Leeuw, C.A. (2021). Genome-wide 462 

gene-environment interactions in neuroticism: an exploratory study across 25 463 

environments. Transl. Psychiatry 11, 180. 10.1038/s41398-021-01288-9. 464 

2. Westerman, K.E., Pham, D.T., Hong, L., Chen, Y., Sevilla-González, M., Sung, Y.J., Sun, 465 

Y.V., Morrison, A.C., Chen, H., and Manning, A.K. (2021). GEM: scalable and flexible 466 

gene-environment interaction analysis in millions of samples. Bioinformatics 37, 3514–467 

3520. 10.1093/bioinformatics/btab223. 468 

3. Bi, W., Zhao, Z., Dey, R., Fritsche, L.G., Mukherjee, B., and Lee, S. (2019). A Fast and 469 

Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its 470 

Application to UK Biobank. Am. J. Hum. Genet. 105, 1182–1192. 471 

10.1016/j.ajhg.2019.10.008. 472 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2023. ; https://doi.org/10.1101/2023.05.08.23289686doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289686
http://creativecommons.org/licenses/by-nd/4.0/


24 

 

4. Gauderman, W.J., Zhang, P., Morrison, J.L., and Lewinger, J.P. (2013). Finding novel 473 

genes by testing G × E interactions in a genome-wide association study. Genet. Epidemiol. 474 

37, 603–613. 10.1002/gepi.21748. 475 

5. Kerin, M., and Marchini, J. (2020). Inferring Gene-by-Environment Interactions with a 476 

Bayesian Whole-Genome Regression Model. Am. J. Hum. Genet. 107, 698–713. 477 

10.1016/j.ajhg.2020.08.009. 478 

6. Mbatchou, J., Barnard, L., Backman, J., Marcketta, A., Kosmicki, J.A., Ziyatdinov, A., 479 

Benner, C., O’Dushlaine, C., Barber, M., Boutkov, B., et al. (2021). Computationally 480 

efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–481 

1103. 10.1038/s41588-021-00870-7. 482 

7. Zhong, W., Chhibber, A., Luo, L., Mehrotra, D.V., and Shen, J. (2023). A fast and powerful 483 

linear mixed model approach for genotype-environment interaction tests in large-scale 484 

GWAS. Brief. Bioinform. 24. 10.1093/bib/bbac547. 485 

8. Shin, J., and Lee, S.H. (2021). GxEsum: a novel approach to estimate the phenotypic 486 

variance explained by genome-wide GxE interaction based on GWAS summary statistics 487 

for biobank-scale data. Genome Biol. 22, 183. 10.1186/s13059-021-02403-1. 488 

9. Westerman, K., Liu, Q., Liu, S., Parnell, L.D., Sebastiani, P., Jacques, P., DeMeo, D.L., and 489 

Ordovás, J.M. (2020). A gene-diet interaction-based score predicts response to dietary fat 490 

in the Women’s Health Initiative. Am. J. Clin. Nutr. 111, 893–902. 10.1093/ajcn/nqaa037. 491 

10. Kim, J., Ziyatdinov, A., Laville, V., Hu, F.B., Rimm, E., Kraft, P., and Aschard, H. (2019). 492 

Joint Analysis of Multiple Interaction Parameters in Genetic Association Studies. Genetics 493 

211, 483–494. 10.1534/genetics.118.301394. 494 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2023. ; https://doi.org/10.1101/2023.05.08.23289686doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289686
http://creativecommons.org/licenses/by-nd/4.0/


25 

 

11. Moore, R., Casale, F.P., Jan Bonder, M., Horta, D., BIOS Consortium, Franke, L., Barroso, 495 

I., and Stegle, O. (2019). A linear mixed-model approach to study multivariate gene-496 

environment interactions. Nat. Genet. 51, 180–186. 10.1038/s41588-018-0271-0. 497 

12. Keller, M.C. (2014). Gene × environment interaction studies have not properly controlled for 498 

potential confounders: the problem and the (simple) solution. Biol. Psychiatry 75, 18–24. 499 

10.1016/j.biopsych.2013.09.006. 500 

13. Pan-UKB team. https://pan.ukbb.broadinstitute.org. 2020. 501 

14. Willer, C.J., Li, Y., and Abecasis, G.R. (2010). METAL: fast and efficient meta-analysis of 502 

genomewide association scans. Bioinformatics 26, 2190–2191. 503 

10.1093/bioinformatics/btq340. 504 

15. Manning, A.K., Hivert, M.-F., Scott, R.A., Grimsby, J.L., Bouatia-Naji, N., Chen, H., Rybin, 505 

D., Liu, C.-T., Bielak, L.F., Prokopenko, I., et al. (2012). A genome-wide approach 506 

accounting for body mass index identifies genetic variants influencing fasting glycemic traits 507 

and insulin resistance. Nat. Genet. 44, 659–669. 10.1038/ng.2274. 508 

16. TODAY Study Group, Zeitler, P., Epstein, L., Grey, M., Hirst, K., Kaufman, F., Tamborlane, 509 

W., and Wilfley, D. (2007). Treatment options for type 2 diabetes in adolescents and youth: 510 

a study of the comparative efficacy of metformin alone or in combination with rosiglitazone 511 

or lifestyle intervention in adolescents with type 2 diabetes. Pediatr. Diabetes 8, 74–87. 512 

10.1111/j.1399-5448.2007.00237.x. 513 

17. SEARCH Study Group (2004). SEARCH for Diabetes in Youth: a multicenter study of the 514 

prevalence, incidence and classification of diabetes mellitus in youth. Control. Clin. Trials 515 

25, 458–471. 10.1016/j.cct.2004.08.002. 516 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2023. ; https://doi.org/10.1101/2023.05.08.23289686doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289686
http://creativecommons.org/licenses/by-nd/4.0/


26 

 

18. Srinivasan, S., Chen, L., Todd, J., Divers, J., Gidding, S., Chernausek, S., Gubitosi-Klug, 517 

R.A., Kelsey, M.M., Shah, R., Black, M.H., et al. (2021). The First Genome-Wide 518 

Association Study for Type 2 Diabetes in Youth: The Progress in Diabetes Genetics in 519 

Youth (ProDiGY) Consortium. Diabetes 70, 996–1005. 10.2337/db20-0443. 520 

19. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015). 521 

Second-generation PLINK: rising to the challenge of larger and richer datasets. 522 

Gigascience 4, 7. 10.1186/s13742-015-0047-8. 523 

20. Reales, G., and Wallace, C. (2023). Sharing GWAS summary statistics results in more 524 

citations. Commun Biol 6, 116. 10.1038/s42003-023-04497-8. 525 

21. Lin, D.-Y., Tao, R., Kalsbeek, W.D., Zeng, D., Gonzalez, F., 2nd, Fernández-Rhodes, L., 526 

Graff, M., Koch, G.G., North, K.E., and Heiss, G. (2014). Genetic association analysis 527 

under complex survey sampling: the Hispanic Community Health Study/Study of Latinos. 528 

Am. J. Hum. Genet. 95, 675–688. 10.1016/j.ajhg.2014.11.005. 529 

22. Laville, V., Majarian, T., Sung, Y.J., Schwander, K., Feitosa, M.F., Chasman, D.I., Bentley, 530 

A.R., Rotimi, C.N., Cupples, L.A., de Vries, P.S., et al. (2022). Gene-lifestyle interactions in 531 

the genomics of human complex traits. Eur. J. Hum. Genet. 30, 730–739. 10.1038/s41431-532 

022-01045-6. 533 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2023. ; https://doi.org/10.1101/2023.05.08.23289686doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289686
http://creativecommons.org/licenses/by-nd/4.0/

