Period2-mediated downregulation of ERK/MAPK 1

phosphorylation in nasopharyngeal carcinoma 2

- Zhijuan Zhang¹, Zheng Ma¹, Jing Kang¹, Jing Yang¹, Qianru Xu², Xinran 3
- Niu², Xiaoya Luo², Jingyuan Wang³, Hailiang Li^{4*}, Li Hou^{1*} 4
- ¹Department of Otolaryngology, General Hospital of Ningxia Medical 5
- University, Yinchuan, China; 6
- ²School of Clinical Medicine, Ningxia Medical University, Yinchuan, 7 n for det
- China; 8
- ³School of Clinical Medicine, Hainan Medical College, Hainan, China; 9
- ⁴Department of Radiotherapy, General Hospital of Ningxia Medical 10
- University, Yinchuan, China; 11
- * Corresponding author 12
- 13 Name: Hailiang Li; E-mail: hailiang1995@163.com
- 14 Name: Li Hou; E-mail: hlahl99@sina.com
- ¶ These authors contributed equally to this work 15

Abstract 16

- 17 Purpose: Period2 (PER2) is associated with the occurrence and
- development of nasopharyngeal carcinoma (NPC); however, its 18
- 19 Nomercibappism(s) softwastion under lying MiPCy carcinoge pesite remains gunclinate practice.

20	Method: In this study, differentially expressed proteins were identified via
21	proteomics. The cells were infected with Lentivirus and divided into two
22	groups: normal control group (Control) and PER2 overexpression
23	Lentivirus-infected group (PER2-OE). Western blot was used to detect
24	ERK and p-ERK expression in the two groups. Immunohistochemistry was
25	used to further detect PER2 and p-ERK expression in human NPC samples,
26	and the correlations between PER2, p-ERK and clinical NPC
27	characteristics were analysed. Result: Statistical analysis revealed that
28	MAPK3 (ERK) was among the top 20 differentially expressed proteins,
29	PER2 overexpression and control samples were significantly different
30	(P<0.05). The western blot results showed that <i>PER2</i> overexpression
31	downregulated p-ERK protein expression. Significant differences (P <
32	0.05) were observed in the proportions of cells which expressed PER2 and
33	p-ERK between NPC tissues and normal nasopharyngeal mucosa samples.
34	Conclusion: Overexpression of PER2 downregulated the expression of p-
35	ERK. In NPC tissues, PER2 protein was expressed at low levels, whereas
36	p-ERK protein was highly expressed, and these trends are closely related to
37	the occurrence and development of NPC.
38	Keywords: Nasopharyngeal carcinoma, Period 2, Circadian rhythm,

- 38 **Keywords:** *Nasopharyngeal carcinoma, Period 2, Circadian rhythm,*
- 39 ERK/MAPK signal path
- 40 Introduction

41 Nasopharyngeal carcinoma (NPC) is a malignant tumour of the head and neck that originates from the nasopharyngeal mucosa and is typically 42 found in the nasopharyngeal crypts. Non-keratinised squamous cell 43 carcinoma accounts for >95% of all pathologically typed carcinomas (1, 2). 44 As these malignancies typically do not manifest clinically in the early 45 stages, most patients are diagnosed at an advanced stage (3). Radiotherapy 46 and chemotherapy are the preferred treatments for NPC. Recently, it has 47 48 been shown that circadian clock genes are related to the occurrence and development of tumours and their sensitivity to anticancer drugs and 49 radiation (4-6). Period2 (PER2), a core circadian clock gene, plays a 50 significant tumour-suppressive role in most cancer cells and is related to 51 proliferation, invasion, metastasis, cell cycle distribution, apoptosis, DNA 52 53 damage and repair, transcriptional reprogramming, and anticancer drug and/or radiation sensitivity (7-11). PER2 downregulation increases the 54 radiation resistance of cells and E1A- and RAS-driven oncogenic 55 transformation (12). Circadian clock genes (PERs) are reportedly 56 associated with NPC prognosis (13); however, the role(s) of PER2 in NPC 57 58 has not been reported. In our previous study (14), we used qPCR to screen the expression of biological rhythm genes including *PER1*, *PER2*, *PER3*, 59 BMAL1, CLOCK, CK1, TIMLESS, and CRY2 in NPC tissues. The results 60 showed that *PER2* expression differed the most between groups. *PER2* 61 expression was lower in NPC cell lines than in normal nasopharyngeal 62

63	mucosa. By constructing a PER2-overexpressing NPC cell line, we further
64	found that PER2 overexpression could inhibit the proliferation, migration,
65	and invasion of NPC, as well as its tumorigenicity in nude mice. PER2
66	expression inhibits cell cycle progression in NPC cells and promotes
67	apoptosis. PER2 acts as a tumour suppressor in NPC. Therefore, the
68	purpose of this study was to further explore the molecular mechanisms
69	through which PER2 regulates the biological behaviour of NPC, thereby
70	providing novel insights into the clinical treatment of NPC to optimise
71	antitumor treatments and improve the quality of life for patients with NPC.
72	Materials and methods cript
73	Materials and methods cript DO. Materials See manuscript
74	Cell line
75	CNE2, a human NPC cell line, was purchased from Shanghai
76	Zhongqiao Xinzhou Biotechnology Co., Ltd.
77	PER2-overexpressing lentivirus
78	The PER2-overexpressing lentivirus used in this experiment was
79	purchased from Shanghai Jikai Biological Company.
80	Clinical samples
81	Paraffin-embedded specimens of 66 NPC tissues and 29
82	nasopharyngeal mucosa tissues collected and stored at the General Hospital
83	of Ningxia Medical University between January 2016 and November 2018

were used in this study (The data was accessed on May 15, 2022). None of
the patients had a history of malignant disease or an additional primary
tumour and had not received radiotherapy, chemotherapy, or surgical
treatments. Histopathological analyses confirmed that the tumour tissue
specimens were nasopharyngeal squamous cell carcinomas. Clinical NPC
staging was performed according to the UICC/AJCC staging system (8th
edition, 2016).

ol for details

91 Methods

92 Cell culture

The frozen cells were removed from a liquid nitrogen tank, quickly 93 thawed in a 37 °C water bath, and centrifuged at 1000 rpm for 3-5 minutes. 94 The supernatant was discarded, and fresh medium containing RPMI-1640 95 was added. Cells were resuspended and diluted based on cell density before 96 97 being inoculated into a 10 cm culture flask and cultured in a 37 ° C cell 98 incubator (5% CO₂). Cell growth was observed microscopically, and the medium was changed every 2–3 days or based on cell growth. 99 Transfection of NPC cells with PER2-overexpressing lentivirus 100 101 NPC cells in the logarithmic growth stage were selected, and cell 102 suspensions were prepared. The cells were counted, and the cell density was adjusted to 5×10^4 cells/mL in RPMI-1640 complete medium. Briefly, 103

- 104 1 mL of each cell suspension was inoculated into 6-well plates. Following
- 105 a 24 h incubation, the fresh medium was replaced with 90 μ L of the diluted

106	transfected lentivirus solution, which had an multiplicity of infection
107	(MOI) value of 20. Cell morphology was observed, and the fluorescence of
108	the transfected cells in each group was observed under an inverted
109	fluorescence microscope to evaluate the efficiency of viral transfection.
110	Cells were infected with Lentivirus and divided into two groups: normal
111	control group (Control) and PER2-overexpressing Lentivirus-infected
112	group (PER2-OE).
113	Proteomics
114	Cultured cells were subjected to protein extraction, enzymatic
115	hydrolysis, and peptide desalting. A chromatogram of the total ion flow
116	was obtained using the mass spectrometry signal. The screening parameters
117	were set, and MS data were fed into Proteome Discoverer (PD version 2.1,
118	Thermo Fisher Scientific) to screen the MS spectrum and conduct
119	quantitative analyses on the output according to the subsequent search
120	results and spectrum. The UniProt database (Homo sapiens, 201902, entry
121	20431; link: http://www.uniprot.org/uniprot/?query=taxonomy: 9606) was
122	used for analysis.
123	Western blot
124	ERK and p-ERK protein expression was detected in the two groups.
125	Western blotting was performed according to the manufacturer's
126	instructions. Total proteins from cells in each group were extracted, and
127	their concentrations were determined. The proteins were subjected to

128	polyacrylamide gel electrophoresis (SDS-PAGE), membrane transfer,
129	immune reactions, and exposure. The films were scanned, and the optical
130	density of the target band was analysed using a gel image processing
131	system (Gel-Pro-Analyzer software).
132	Immunohistochemistry
133	The standard SP method was used for immunohistochemical
134	detection. The stained tissue sections were independently reviewed and
135	scored by two experienced pathologists. Five high-power mirror fields
136	were randomly selected from each slice to obtain the results. The staining
137	intensity was categorised as brown (grade 3), yellow (grade 2), light yellow
138	(grade 1), and unstained (grade 0) and scored according to the percentage
139	of positively stained cells: $\leq 5\%$ (0 points), 6%–25% (1 point), 26%–50% (2
140	points), and \geq 51% (3 points). The score for each specimen was calculated
141	by multiplying the staining intensity grading score by the staining degree
142	score. A score of 0-2 was considered negative for protein expression,
143	whereas a score >2 was considered positive.
144	Statistical analyses
145	SPSS V22.0 (IBM, USA) statistical analysis software was used. Data

are presented as the mean \pm standard deviation, and Student's t-tests were used to compare results between groups. Chi-square tests were used for analysis of variance. One-way analysis of variance (ANOVA) was also used to compare data between groups. P \leq 0.05 was considered statistically

150 significant.

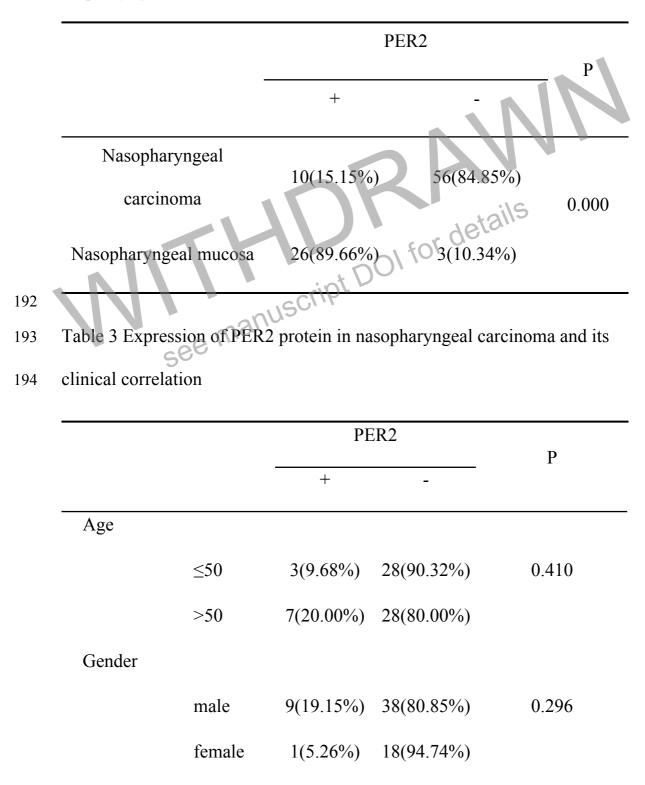
151 **Results**

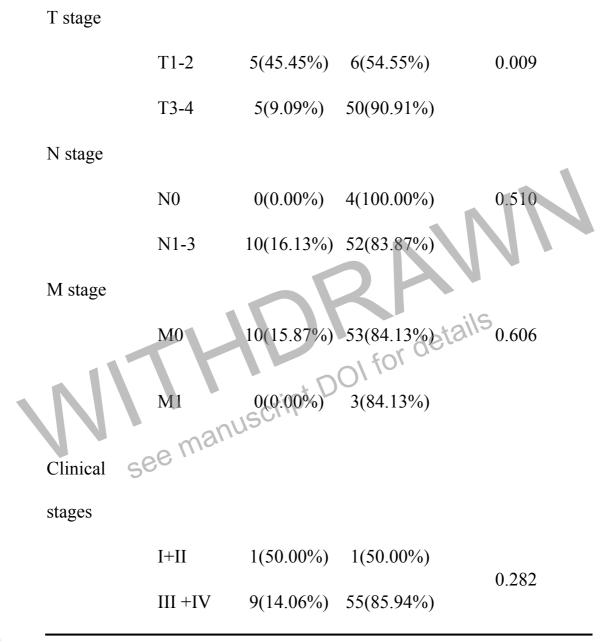
152 PER2 downregulates ERK/MAPK phosphorylation in NPC

- 153 cell lines.
- Based on our proteomic analysis, 174 genes were differentially
- 155 expressed between the *PER2*-overexpressing and control groups, of which
- 156 140 were upregulated and 34 were downregulated (Fig 1). The top 20
- 157 differentially expressed proteins included MAPK3 (ERK), an important
- 158 molecule in the MAPK signalling pathway, which had a 4-fold difference
- 159 in expression between the *PER2*-overexpressing and control groups (P <
- 160 0.05) (Table 1, Fig 2). Further validation experiments (via WB) of ERK
- and p-ERK expression between the two groups showed no significant
- 162 changes in ERK levels; however, p-ERK protein expression levels were
- 163 downregulated. The results showed that overexpression of *PER2*
- 164 downregulated the expression of p-ERK (Fig 3).
- 165 Table 1 MAPK3 expression in PER2 overexpression group and control
- 166 group

Protein name	log2	Р
МАРК3	2.06	0.03

167 PER2 and p-ERK expression in human NPC and its

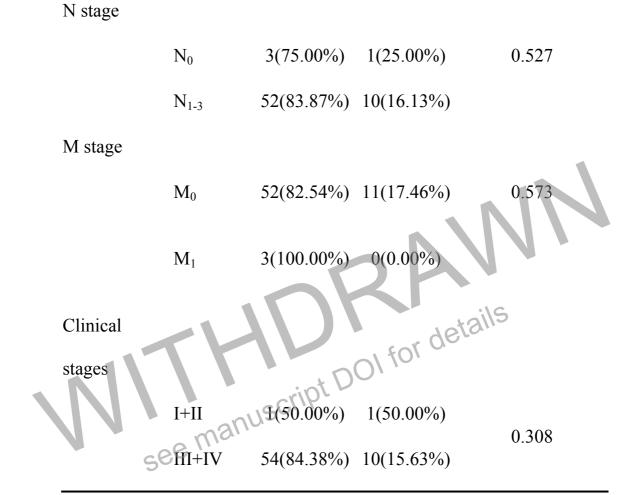

168 clinical correlations


169	To further understand the role of PER2 and p-ERK in NPC tissues, 66
170	NPC tissues and 29 normal nasopharyngeal mucosa paraffin specimens
171	were selected for immunohistochemical detection. A significant difference
172	was observed in the positive expression rates of PER2 in NPC tissues
173	(15.15%, 10/66) when compared to normal nasopharyngeal mucosa
174	(89.66%, 26/29) ($P < 0.05$) (Table 2). PER2 protein was mostly localised in
175	the nucleus (followed by the cytoplasm) in NPC tissues and normal
176	nasopharyngeal mucosa. Yellow or brownish granules were observed in
177	lymphocytes and mucosal epithelial cells of the nasopharyngeal mucosa
178	(Fig 4A). In NPC tissues with downregulated PER2 protein expression,
179	only some lymphocytes were positive for PER2 expression (Fig 4B). In
180	NPC tissues positive for PER2 expression, lymphocytes and cancer cells
181	were both positive for PER2 expression (Fig 4C). Further analyses were
182	conducted to determine the correlation between PER2 expression in the
183	pathological specimens and the clinical characteristics of patients with NPC
184	(Table 3). No differences were observed in the rate of PER2 protein
185	expression positivity in terms of age, sex, or clinical NPC stage ($P > 0.05$).
186	However, PER2 expression was correlated with tumour T stage. The
187	positivity rate of PER2 expression decreased with an increase in the tumour
188	T stage. The PER2 positivity rate was significantly higher ($P < 0.05$) in T ₁ .

189 _2 patients (45.45%) than in T_{3-4} patients (9.09%).

190 Table 2 Expression of PER2 protein in nasopharyngeal carcinoma and

191 asopharyngeal mucosa


195

The positive expression rate of p-ERK protein in nasopharyngeal carcinoma tissues was 83.33% (55/66) and that in the nasopharyngeal mucosa was 24.14% (7/29), the both have significant difference (P < 0.05). (Table 4). In nasopharyngeal carcinoma and nasopharyngeal mucosa, the p-ERK protein is mainly expressed in the cytoplasm. Yellow or tan granules were observed in mucosal epithelial cells of the nasopharynx (Fig 5A). P-

202 ERK was negatively expressed in nasopharyngeal carcinomas (Fig 5B); however, positive expression of p-ERK in cancer cells was observed in 203 nasopharyngeal carcinoma tissues with positive expression of the p-ERK 204 205 protein (Fig 5C). Further analysis of the correlation between the expression levels of p-ERK protein in the pathological specimens and the clinical 206 features of patients with nasopharyngeal carcinoma was performed (Table 207 5). There was no significant difference between the expression levels of p-208 209 ERK protein based on age, sex, and clinical stage of patients (P > 0.05); however, the positive expression of p-ERK protein increased with the 210 increase in the N and M stages of tumors. The positive rate of N1-3 patients 211 (83.87%) was higher than that of N0 patients (75.00%), whereas the 212 positive rate of M1 patients (100.00%) was higher than that of M0 patients 213 214 (82.54%). The relationship between the expression levels of PER2 and p-215 ERK in nasopharyngeal carcinoma tissues was also analyzed. Among the 216 p-ERK-positive cases, nine were positive for the PER2 protein, and one 217 case was negative for the p-ERK protein. Thus, the positive rate of PER2 protein expression in p-ERK-positive tumor tissues was low. The paired 218 219 chi-square test showed a statistically significant difference between the expression levels of PER2 and p-ERK proteins in nasopharyngeal 220 221 carcinoma tissues (P < 0.05) (Table 6). Table 4 Expression of p-ERK protein in nasopharyngeal carcinoma and 222

223 nasopharyngeal mucosa

			p-ERK	Р
		+	-	P
Nasopha		55(83.33%)) 11(16.6	
	geal mucosa	7(24.14%)	22(75.8	0.000
Fable 5 Expre	ession of p-EF	RK protein in n	asopharyngeal	arcinoma and its
clinical correl	ation	ript D	ol for det	
$\Lambda \Lambda$	see man	NSC p-E		Р
	SEE	+	-	1
Age				
	≤50	27(87.10%)	4(12.90%)	0.440
	>50	28(80.00%)	7(20.00%)	
Gender				
	male	39(82.98%)	8(17.02%)	0.608
	female	16(84.21%)	3(15.79%)	
T stage				
	T ₁₋₂	10(90.91%)	1(9.09%)	0.768
	T ₃₋₄	45(81.82%)	10(18 18%)	

227

- Table 6 Relationship between PER2 protein and p-ERK protein expression
- 229 in nasopharyngeal carcinoma

	p-El	RK	
PER2	+	-	P
+	9	1	
-	46	10	0.000

230

231 **Discussion**

232	The occurrence and progression of NPC are caused by complex
233	genomic interactions between the environment, Epstein-Barr virus,
234	nasopharyngeal epithelial cells, immune cells, stroma, and the host (15).
235	Recent studies have provide novel insights into the progression of NPC.
236	p16 inactivation and cyclin D1 overexpression cause genomic changes,
237	promote cell growth, survival, and immune escape, while activating
238	oncogenes such as MYC. In NPC cells, several signalling pathways,
239	including the p53, EFGR-PI3K-Akt-Mtor, NOTCH, Wnt/β-catenin, and
240	DNA damage repair pathways, are affected (16, 17). However,
241	interventions targeting a specific cellular signalling pathway cannot
242	provide sufficient information about the pathogenesis and treatment of
243	NPC. Presently, the treatment efficacy of NPC is poor, particularly in
244	advanced patients, and the side effects of treatment severely affect patient
245	quality of life. Therefore, further elucidation of the mechanisms underlying
246	NPC occurrence, progression, and recurrence and investigations of
247	biomarkers that can predict the prognosis and treatment response of
248	patients with NPC are of great significance to further improve the efficacy
249	of radiotherapy and chemotherapy, while reducing the adverse effects of
250	treatment.
251	Recent studies have confirmed that circadian clock genes are related

to the occurrence and development of various tumours, as well as thesensitivity of tumour cells to anticancer drugs or radiation. Several

254 physiological activities, such as sleep, hormone levels, immunity, and metabolism, are regulated by biological rhythms (18). Hence, biological 255 rhythm dysregulation may lead to abnormal cell proliferation, cell 256 257 resistance to apoptosis, and increased gene mutation rates, which may induce tumorigenesis (19). Further studies have shown that changes in 258 biological rhythms are closely related to the occurrence of thyroid, breast, 259 prostate, colorectal, liver, lung, and other cancers (20-23). At the 260 mammalian cell level, the circadian rhythm system is a transcriptional 261 translation feedback loop based on the oscillatory compilation of circadian 262 clock gene expression (24, 25) and involves 14 core circadian clock genes 263 as well as various circadian clock control genes. PER2 is a negative 264 regulator of the biological clock gene BAML1 (26) and is primarily 265 266 expressed in the brain and external nervous system (27). It is also an important negative feedback factor (28) that strictly regulates feedback 267 268 mechanisms, controls cell rhythms, and maintains normal physiological 269 function and metabolism in the human body. Studies have shown that *PER2* dysregulation is related to the occurrence, development, treatment, 270 271 and prognosis of various tumours (29). In vitro studies in lung, breast, pancreatic, and osteosarcoma cancers, as well as in LLC, EMT6, MG63, 272 Panc1, and Aspc1 cells, have demonstrated significant increases in tumour 273 cell apoptosis under *PER2* overexpression; however, cell proliferation and 274 metastasis were significantly reduced (30-32). A study on head and neck 275

276 squamous cell carcinomas confirmed that PER2 dysregulation was related to prognosis and chemotherapy sensitivity (33). In glioma cells, *PER2* 277 inhibits ID3 expression through the PTEN/AKT/Smad5 axis, thereby 278 279 further inhibiting the proliferation of glioma cells. *PER2* is dysregulated, resulting in increased ID3 expression, which is positively correlated with 280 WHO grade and poorer prognoses(34). PER2 can also act on various key 281 checkpoints in the cell cycle and regulate cell proliferation and apoptosis 282 283 (35). PER2 mutant mice show increased c-Myc and decreased p53 gene expression, which play vital roles in regulating the G1-S checkpoint of the 284 cell cycle (36). Furthermore, studies have shown that expression levels of 285 PER gene family members can be used as prognostic markers for head and 286 neck squamous cell carcinomas (37). However, the mechanisms that 287 288 govern the relationship between *PER2* and NPC development have not been reported previously. 289

Earlier in our research, we found that *PER2* overexpression could 290 inhibit the proliferation, migration, and invasion of NPC cells, as well as 291 their tumorigenicity in nude mice(14). PER2 overexpression also inhibited 292 293 cell cycle progression in NPC cells, while promoting apoptosis. Thus, it was suggested that *PER2* acts as a tumour suppressor in NPC. In this study, 294 we further studied the proteomics of NPC cell lines by overexpressing 295 *PER2. PER2* overexpression downregulated ERK phosphorylation. Studies 296 have shown that ERK and p38MAPK, members of the MAPK family, are 297

298	involved in cell proliferation, differentiation, migration, ageing, apoptosis,
299	and other processes in various tumours (38-40). The classical MAPK
300	activation pathway activates GTP proteins (RAS) via exogenous
301	stimulation. MAPK kinase is phosphorylated by a cascade that ultimately
302	activates ERK. The activated ERK protein then enters the nucleus and
303	activates nuclear transcription factors. Throughout the entire cascade
304	activation process, ERK is regulated by other factors such as TGF and
305	Smad5 (41). The ERK/MAPK pathway primarily regulates cell
306	differentiation, proliferation, and apoptosis by regulating activities
307	including cell cycle progression, cell survival, and apoptosis-related
308	proteins downstream of this pathway. Abnormal activation of this pathway
309	is closely related to the occurrence and development of various tumours,
310	such as NPC and liver cancer (42).
311	Studies have also shown that PER2 plays an important role in the
312	post-translational modification of various proteins. PER2 is involved in the
313	ubiquitination of p53 and hypoxia-inducible factor 1, thereby affecting
314	their degradation. PER2 can competitively bind to ubiquitinated enzyme
315	sites on p53 and other proteins, inhibiting the binding of ubiquitinated
316	enzymes such as MDM2 to p53 and maintaining the stability of p53 (43,
217	(4) East at disc have interational the offerster of DED2 where here lation on

- 317 44). Few studies have investigated the effects of *PER2* phosphorylation on
- 318 downstream proteins. p38 phosphorylation rates vary rhythmically in
- 319 gliomas. When the biological rhythm is disturbed, phosphorylation is

disrupted, and high expression is observed, which may correlate with theinvasiveness of tumour cells (45).

322	Further analysis of PER2 and p-ERK expression levels in NPC tissues
323	and normal nasopharyngeal mucosa samples revealed low PER2 expression
324	in NPC tissues and high p-ERK expression. The relationships between
325	PER2, p-ERK, and clinical characteristics of NPC patients were analysed.
326	The results showed that PER2 expression was related to the T stage of
327	tumours, suggesting that PER2 expression may be related to the local
328	invasiveness of NPCs. The positivity rate of p-ERK expression increased
329	with an increase in tumour N and M stages. Furthermore, PER2 expression
330	was associated with p-ERK expression in NPC, suggesting that the
331	regulation of p-ERK by <i>PER2</i> may be related to the invasion and
332	metastasis of NPC. However, this study does have limitations such as the
333	small clinical sample size and potential biases in the experimental results.
334	In future studies, we hope to expand the sample size and further clarify the
335	expression characteristics and role of PER2 in NPC.

336 Conclusions

In conclusion, overexpression of *PER2* inhibited tumor development by downregulating the phosphorylation of ERK/MAPK in NPC cells. The modulation of the ERK/MAPK signalling pathway by regulating *PER2* expression may be a promising strategy for chronotherapy of NPC.

341 Acknowledgments

342	Hailiang Li and Li Hou designed the work. Zhijuan Zhang and Zheng
343	Ma contributed to the acquisition and analysis of data and manuscript
344	writing. Jing Kang, Jing Yang, Qianru Xu, Xinran Niu, Xiaoya Luo and
345	Jingyuan Wang contributed to analysis and data interpretation. All authors
346	approved the submitted version.
347	Data availability statement
348	The data that support the findings of this study are available from the
349	corresponding author upon reasonable request.
350	Ethical Approval nuscript

351 This study was approved by the ethics committee of the General
352 Hospital of Ningxia Medical University(Ethics Number: KYLL-2021-

353 1023), and all patients signed written informed consent.

354 **References**

Tsang RK. Nasopharyngeal carcinoma - Improving cure with
technology and clinical trials. World journal of otorhinolaryngology - head
and neck surgery. 2020;6(1):1-3.

2. Li YQ, Chen Y, Xu YF, He QM, Yang XJ, Li YQ, et al. FNDC3B 3'-

359 UTR shortening escapes from microRNA-mediated gene repression and

360 promotes nasopharyngeal carcinoma progression. Cancer science.

361 2020;111(6):1991-2003.

362 3. Yeh CF, Chin YC, Huang WH, Lan MY. Prior cancer history predicts
363 the worse survival of patients with nasopharyngeal carcinoma. European
364 archives of oto-rhino-laryngology : official journal of the European
365 Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with
366 the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery.
367 2022;279(11):5381-7.

Vitale JA, Lombardi G, Weydahl A, Banfi G. Biological rhythms,
 chronodisruption and chrono-enhancement: The role of physical activity as
 synchronizer in correcting steroids circadian rhythm in metabolic
 dysfunctions and cancer. Chronobiol Int. 2018;35(9):1185-97.

5. Bishehsari F, Engen PA, Voigt RM, Swanson G, Shaikh M, Wilber S,
et al. Abnormal Eating Patterns Cause Circadian Disruption and Promote
Alcohol-Associated Colon Carcinogenesis. Cellular and molecular
gastroenterology and hepatology. 2020;9(2):219-37.

Ali YF, Hong Z, Liu NA, Zhou G. Clock in radiation oncology clinics:
 cost-free modality to alleviate treatment-related toxicity. Cancer biology &
 therapy. 2022;23(1):201-10.

Wang Z, Wang H, Guo H, Li F, Wu W, Zhang S, et al. The circadian
rhythm and core gene Period2 regulate the chemotherapy effect and
multidrug resistance of ovarian cancer through the PI3K signaling pathway.

382 Bioscience reports. 2020;40(11).

383 8. Morales-Santana S, Morell S, Leon J, Carazo-Gallego A, Jimenez-

Lopez JC, Morell M. An Overview of the Polymorphisms of Circadian
Genes Associated With Endocrine Cancer. Frontiers in endocrinology.
2019;10:104.

387 9. Chang AM, Duffy JF, Buxton OM, Lane JM, Aeschbach D, Anderson

C, et al. Chronotype Genetic Variant in PER2 is Associated with Intrinsic
Circadian Period in Humans. Scientific reports. 2019;9(1):5350.

Tang Q, Xie M, Yu S, Zhou X, Xie Y, Chen G, et al. Periodic
Oxaliplatin Administration in Synergy with PER2-Mediated PCNA
Transcription Repression Promotes Chronochemotherapeutic Efficacy of
OSCC. Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2019;6(21):1900667.

Wang Z, Li F, Wei M, Zhang S, Wang T. Circadian Clock Protein
PERIOD2 Suppresses the PI3K/Akt Pathway and Promotes Cisplatin
Sensitivity in Ovarian Cancer. Cancer management and research.
2020;12:11897-908.

Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di
Cesare Mannelli L, et al. Molecular regulations of circadian rhythm and
implications for physiology and diseases. Signal transduction and targeted
therapy. 2022;7(1):41.

I3. Zhang P, He Q, Wang Y, Zhou G, Chen Y, Tang L, et al. Protein C
receptor maintains cancer stem cell properties via activating lipid synthesis
in nasopharyngeal carcinoma. Signal transduction and targeted therapy.

406 2022;7(1):46.

407 14. Hou L, Li H, Wang H, Ma D, Liu J, Ma L, et al. The circadian clock
408 gene PER2 enhances chemotherapeutic efficacy in nasopharyngeal
409 carcinoma when combined with a targeted nanosystem. Journal of materials
410 chemistry B. 2020;8(24):5336-50.

- 411 15. Campion NJ, Ally M, Jank BJ, Ahmed J, Alusi G. The molecular
- 412 march of primary and recurrent nasopharyngeal carcinoma. Oncogene.
- 413 2021;40(10):1757-74.
- 414 16. Bruce JP, Yip K, Bratman SV, Ito E, Liu FF. Nasopharyngeal Cancer:

415 Molecular Landscape. Journal of clinical oncology : official journal of the
416 American Society of Clinical Oncology. 2015;33(29):3346-55.

417 17. Chow YP, Tan LP, Chai SJ, Abdul Aziz N, Choo SW, Lim PV, et al.

418 Exome Sequencing Identifies Potentially Druggable Mutations in
419 Nasopharyngeal Carcinoma. Scientific reports. 2017;7:42980.

420 18. Chicurel M. Circadian rhythms. Mutant gene speeds up the human
421 clock. Science (New York, NY). 2001;291(5502):226-7.

422 19. Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian
423 rhythms and cancers: the intrinsic links and therapeutic potentials. Journal
424 of hematology & oncology. 2022;15(1):21.

20. Zhang L, Chen Y, Chong CS, Ma X, Tong S, He X, et al. The genomic
and transcriptomic landscapes of clock genes reveal the significance of
circadian rhythm in the progression and immune microenvironment of

metastatic colorectal cancer. Clinical and translational medicine. 428 429 2022;12(3):e755.

- Feng D, Xiong Q, Zhang F, Shi X, Xu H, Wei W, et al. Identification 430 21.
- of a Novel Nomogram to Predict Progression Based on the Circadian Clock 431
- and Insights Into the Tumor Immune Microenvironment in Prostate Cancer. 432
- Frontiers in immunology. 2022;13:777724. 433
- Zhang H, Liu R, Zhang B, Huo H, Song Z. Advances in the Study of 22. 434
- Circadian Genes in Non-Small Cell Lung Cancer. Integrative cancer 435 for deta
- therapies. 2022;21:15347354221096080. 436
- Xu T, Jin T, Lu X, Pan Z, Tan Z, Zheng C, et al. A signature of 437 23. circadian rhythm genes in driving anaplastic thyroid carcinoma malignant 438 progression. Cellular signalling. 2022;95:110332. 439
- 440 24. Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic
- target. Nature reviews Drug discovery. 2021;20(4):287-307. 441
- 442 25. Lee SF, Luque-Fernandez MA. Is cancer-related death associated with 443 circadian rhythm? Cancer communications (London, England). 2019;39(1):27. 444
- 445 26. Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocrine reviews. 446 447 2020;41(5):707-32.
- Kim M, de la Peña JB, Cheong JH, Kim HJ. Neurobiological 448 27. Functions of the Period Circadian Clock 2 Gene, Per2. Biomolecules & 449

- 450 therapeutics. 2018;26(4):358-67.
- 451 28. Shostak A. Circadian Clock, Cell Division, and Cancer: From
 452 Molecules to Organism. International journal of molecular sciences.
 453 2017;18(4).
- 454 29. Fekry B, Eckel-Mahan K. The circadian clock and cancer: links
 455 between circadian disruption and disease Pathology. Journal of biochemistry.
 456 2022;171(5):477-86.
- 457 30. Hernández-Rosas F, López-Rosas CA, Saavedra-Vélez MV.
 458 Disruption of the Molecular Circadian Clock and Cancer: An Epigenetic
 459 Link. Biochemical genetics. 2020;58(1):189-209.
- 31. Cheng AY, Zhang Y, Mei HJ, Fang S, Ji P, Yang J, et al. Construction
 of a plasmid for overexpression of human circadian gene period2 and its
 biological activity in osteosarcoma cells. Tumour biology : the journal of the
 International Society for Oncodevelopmental Biology and Medicine.
 2015;36(5):3735-43.
- Cadenas C, van de Sandt L, Edlund K, Lohr M, Hellwig B, Marchan 465 32. R, et al. Loss of circadian clock gene expression is associated with tumor 466 progression in breast cancer. Cell cycle (Georgetown, 467 Tex). 2014;13(20):3282-91. 468
- 33. Rahman S, Kraljević Pavelić S, Markova-Car E. Circadian
 (De)regulation in Head and Neck Squamous Cell Carcinoma. International
 journal of molecular sciences. 2019;20(11).

- 472 34. Zhang X, Liu T, Huang J, He J. PICALM exerts a role in promoting
- CRC progression through ERK/MAPK signaling pathway. Cancer cell 473
- international. 2022;22(1):178. 474
- 475 Lévi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian 35.
- timing in cancer treatments. Annual review of pharmacology and toxicology. 476
- 477 2010;50:377-421.
- Fu L, Pelicano H, Liu J, Huang P, Lee C. The circadian gene Period2 36. 478
- plays an important role in tumor suppression and DNA damage response in 479 ol for deta
- vivo. Cell. 2002;111(1):41-50. 480
- Li YY, Jin F, Zhou JJ, Yu F, Duan XF, He XY, et al. Downregulation 481 37. of the circadian Period family genes is positively correlated with poor head 482 483 neck squamous cell carcinoma prognosis. Chronobiol Int. and 484 2019;36(12):1723-32.
- Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway 485 38. 486 of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of receptor and signal transduction research. 487 2015;35(6):600-4. 488
- 489 39. Sun QY, Ding LW, Johnson K, Zhou S, Tyner JW, Yang H, et al.
- SOX7 regulates MAPK/ERK-BIM mediated apoptosis in cancer cells. 490
- Oncogene. 2019;38(34):6196-210. 491

- Li A, Shi D, Xu B, Wang J, Tang YL, Xiao W, et al. S100A6 promotes 492 40. cell proliferation in human nasopharyngeal carcinoma via the p38/MAPK
 - 26

494 signaling pathway. Molecular carcinogenesis. 2017;56(3):972-84.

Du M, Chen W, Zhang W, Tian XK, Wang T, Wu J, et al. TGF-? 495 41. regulates the ERK/MAPK pathway independent of the SMAD pathway by 496 repressing miRNA-124 to increase MALAT1 expression in nasopharyngeal 497 Biomedecine & carcinoma. Biomedicine & pharmacotherapy 498 = pharmacotherapie. 2018;99:688-96. 499

500 42. Wang LH, Li Y, Yang SN, Wang FY, Hou Y, Cui W, et al. Gambogic

acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell

- 502 lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. British
 503 journal of cancer. 2014;110(2):341-52.
- Gotoh T, Kim JK, Liu J, Vila-Caballer M, Stauffer PE, Tyson JJ, et
 al. Model-driven experimental approach reveals the complex regulatory
 distribution of p53 by the circadian factor Period 2. Proceedings of the
 National Academy of Sciences of the United States of America.
 2016;113(47):13516-21.
- 509 44. Farshadi E, van der Horst GTJ, Chaves I. Molecular Links between
 510 the Circadian Clock and the Cell Cycle. Journal of molecular biology.
 511 2020;432(12):3515-24.

512 45. Goldsmith CS, Kim SM, Karunarathna N, Neuendorff N, Toussaint
513 LG, Earnest DJ, et al. Inhibition of p38 MAPK activity leads to cell type514 specific effects on the molecular circadian clock and time-dependent
515 reduction of glioma cell invasiveness. BMC cancer. 2018;18(1):43.

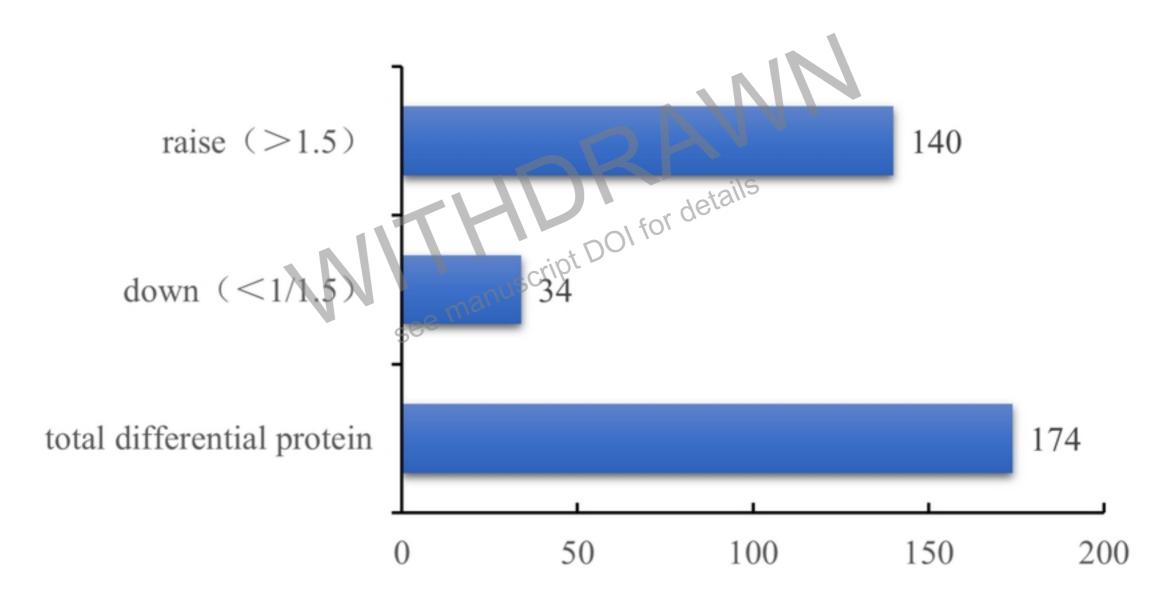


Fig 1. Differential protein expression information

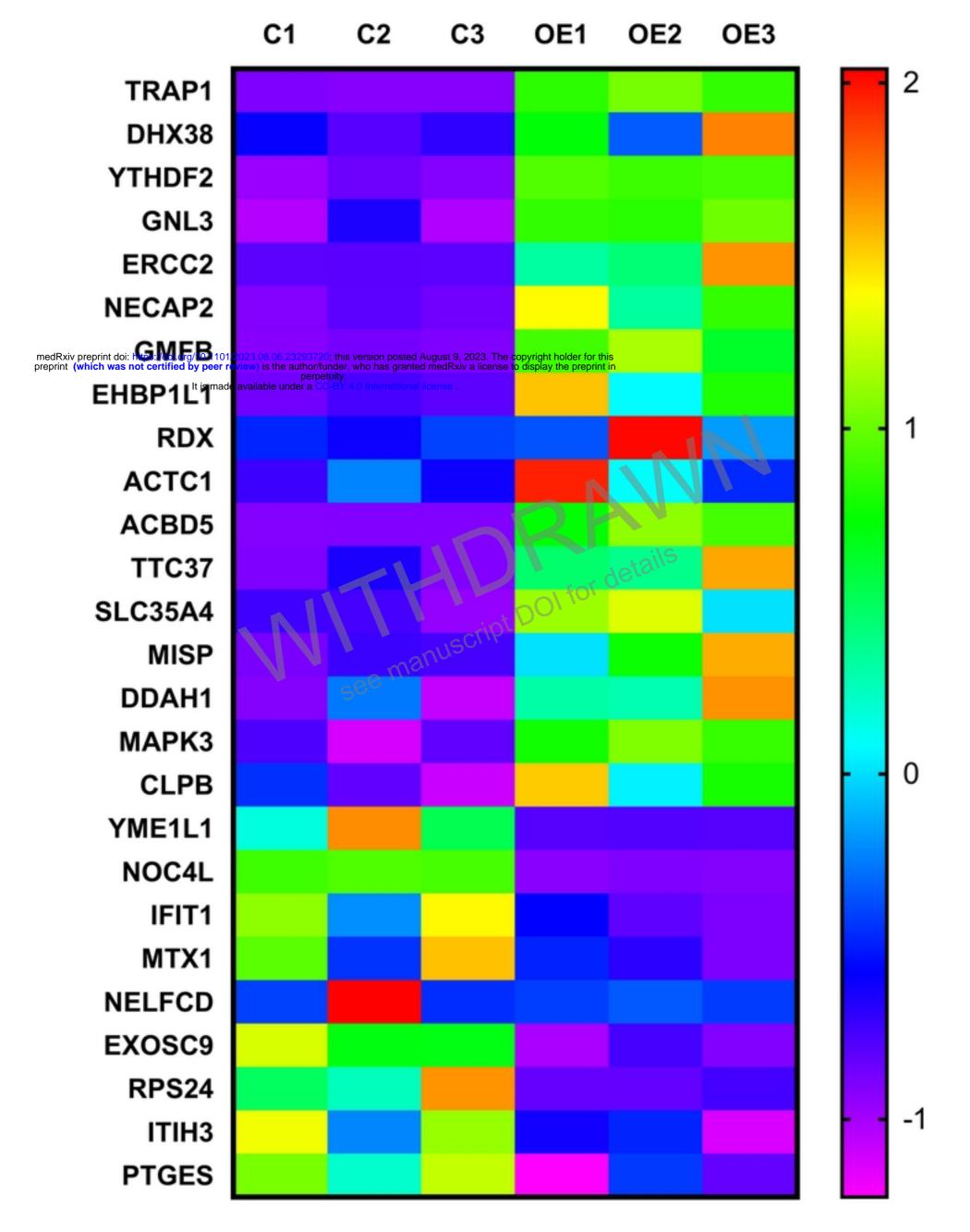
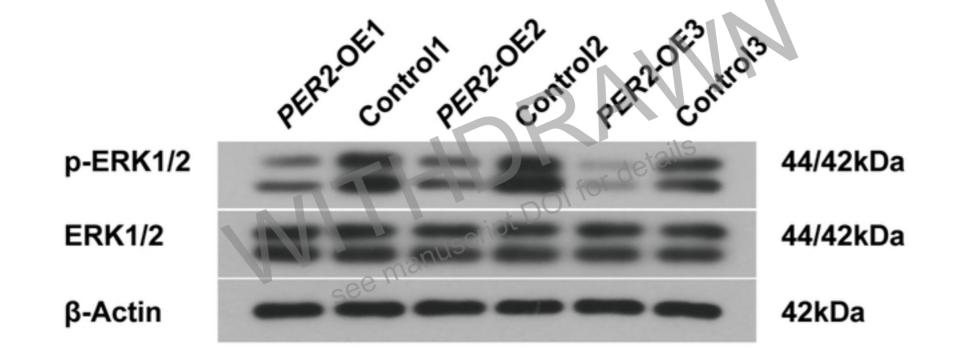
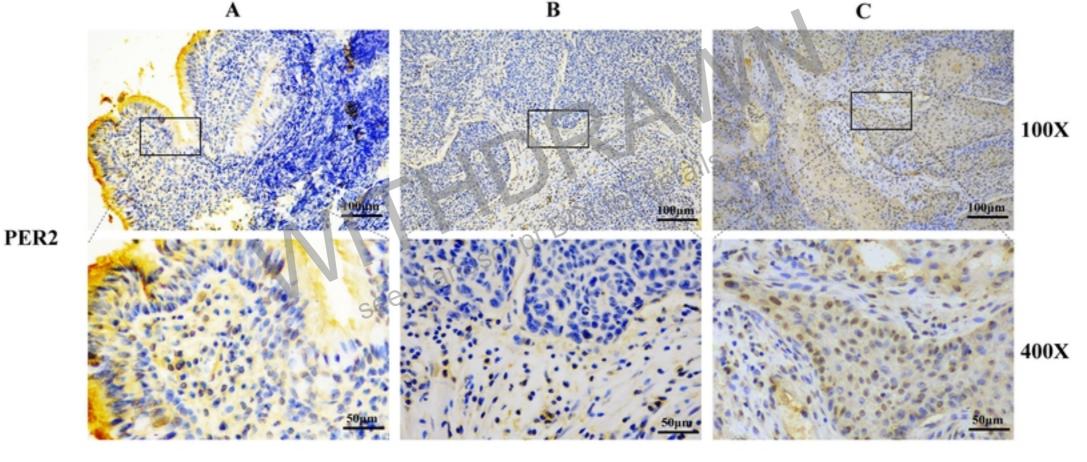




Fig 2. Heat map of top20 differential protein between PER2 overexpression group and control

Fig 3. The protein expression of ERK > **p-ERK in PER2-OE and Control group cells.** Three samples were extracted from each PER2-OE and Control groups for sample loading testing.

Fig 4. Expression of PER2 protein in nasopharyngeal carcinoma and nasopharyngeal mucosa. A. The positive expression of PER2 protein in nasopharyngeal mucosa. B. The expression of PER2 protein was negative in nasopharyngeal carcinoma. C. The positive expression of PER2 protein in nasopharyngeal carcinoma.

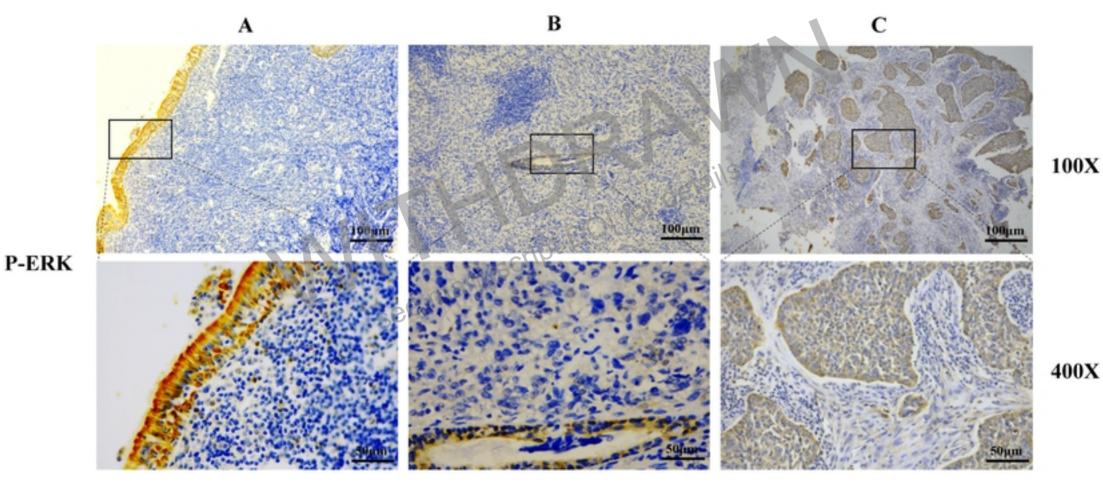


Fig 5. Expression of p-ERK protein in nasopharyngeal carcinoma and nasopharyngeal mucosa.

A. The positive expression of p-ERK protein in nasopharyngeal mucosa. B. The expression of p-ERK protein was negative in nasopharyngeal carcinoma. C. The positive expression of p-ERK protein in nasopharyngeal carcinoma.