
Multivariate patterns between brain network properties, 1 

polygenic scores, phenotypes, and environment in 2 

preadolescents 3 

 4 

Jungwoo Seo1, Eunji Lee2, Bo-gyeom Kim2, Gakyung Kim1, Yoonjung Yoonie Joo3, 5 

Jiook Cha1, 2, 4, 5 6 

1. Department of Brain and Cognitive Sciences, College of Natural Sciences, 7 

Seoul National University, Seoul, South Korea 8 

2. Department of Psychology, College of Social Sciences, Seoul National 9 

University, Seoul, South Korea 10 

3. Institute of Data Science, Korea University, Seoul, South Korea 11 

4. Institute of Psychological Science, Seoul National University, Seoul, South 12 

Korea 13 

5. Graduate School of Artificial Intelligence, Seoul National University, Seoul, 14 

South Korea 15 

 16 

Correspondence to: 17 

Jiook Cha, PhD 18 

Gwanak-ro 1, Building 16, Suite M512, Gwanakgu, Seoul, 08826, South 19 

Korea, connectome@snu.ac.kr 20 

 21 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2023. ; https://doi.org/10.1101/2023.07.24.23293075doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:connectome@snu.ac.kr
https://doi.org/10.1101/2023.07.24.23293075
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 22 

The brain network is an infrastructure for cognitive and behavioral processes. 23 

Genetic and environmental factors influence the development of the brain network. 24 

However, little is known about how specific genetic traits and children's brain network 25 

properties are related. Furthermore, insight into the holistic relationship of brain 26 

network properties with genes, environment, and phenotypic outcomes in children is 27 

still limited. To fill these knowledge gaps, we investigated the multivariate 28 

associations between the brain network properties and three domains using a large 29 

youth sample (the ABCD study, N=9,393, 9-10 years old): (i) genetic predisposition 30 

of various traits, (ii) phenotypic outcomes, and (iii) environmental factors. We 31 

constructed structural brain networks using probabilistic tractography and estimated 32 

nodal and global network measures such as degree and network efficiency. We then 33 

conducted sparse canonical correlation analysis with brain network measures and 34 

polygenic scores of 30 complex traits (e.g., IQ), phenotypic traits (e.g., cognitive 35 

ability), and environmental variables. We found multivariate associations of brain 36 

network properties with (i) genetic risk for psychiatric disorders, (ii) genetic influence 37 

on cognitive ability, and (iii) the phenotype of cognitive ability-psychopathology in 38 

preadolescents. Our subsequent mediation analysis using the latent variables from 39 

the canonical correlation analysis showed that the influence of genetic factors for 40 

cognitive ability on the cognitive outcomes was partially mediated by the brain 41 

network properties. Taken together, this study shows the key role of the development 42 

of the brain structural network in children in cognitive development with its tight, likely 43 

causal, relationship with genetic factors. These findings may shed light on future 44 
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studies of the longitudinal deviations of those gene-environment-brain network 45 

relationships in normal and disease conditions.  46 
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Introduction 47 

Childhood and adolescence are critical periods for brain development 48 

(Bethlehem et al., 2022). Proper brain development during this time is vital for 49 

cognitive and behavioral maturation (Bunge & Wright, 2007; Luna et al., 2010) and 50 

mental health (Fornito et al., 2015; Paus et al., 2008). Such development is influenced 51 

by genetic and environmental factors. Therefore, understanding the connections 52 

between the brain, cognitive-behavioral traits in children, and the impact of genetics 53 

and the environment on brain development is crucial in developmental and clinical 54 

neuroscience. The Adolescent Brain and Cognitive Development (ABCD) study 55 

(Jernigan et al., 2018) provides a rich dataset, encompassing genetic, neuroimaging, 56 

environmental, and phenotypic data for over 10,000 children aged 9-10 years old at 57 

baseline. This dataset opens an unprecedented opportunity to explore the connections 58 

between genes, environment, brain, and phenotypic outcomes more robustly with less 59 

concern about sampling bias (Marek et al., 2022) and age-confounding effects. 60 

The brain is a complex network of tissues that communicate through white 61 

matter bundles. Diffusion MRI and tractography enable the reconstruction of the 62 

structural brain network (Jeurissen et al., 2019; Sotiropoulos & Zalesky, 2019). Graph 63 

theory (Rubinov & Sporns, 2010) allows us to estimate the brain network properties 64 

embedded in the whole brain's complex connectivity. The heritability of the brain 65 

network properties in youth ranges from 25% to 70% (Koenis et al., 2015; van den 66 

Heuvel, van Soelen, et al., 2013), indicating a strong genetic influence on shaping 67 

brain networks. However, little is known about which specific genetic traits and 68 

children's brain network properties are related. The recent development of the 69 

polygenic score approach (Torkamani et al., 2018) has paved the way to quantify the 70 
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genetic propensity of specific traits, such as bipolar disorder, and explore which 71 

genetic predispositions are related to the brain network properties. 72 

Brain network properties are associated with cognitive abilities (Bathelt et al., 73 

2018; Kim et al., 2016; Koenis et al., 2015; Ma et al., 2017; Suprano et al., 2020), 74 

psychiatric disorders (Alexander-Bloch et al., 2010; Collin et al., 2017; Rudie et al., 75 

2012), and environmental factors such as socioeconomic status (D. J. Kim et al., 2019; 76 

Tooley et al., 2020) throughout the developmental period. Despite valuable insights 77 

from previous studies, a comprehensive understanding of the holistic relationship of 78 

brain network properties with genes, environment, and phenotypic outcomes in 79 

children is still limited due to the predominant use of univariate approaches. No single 80 

measurement is enough to characterize complex genes, brain networks, environment, 81 

and phenotypes information. Rather, combining a range of variables can capture 82 

complex traits more appropriately. Multivariate analysis, such as canonical correlation 83 

analysis (CCA), is useful for investigating holistic relationships underlying a set of 84 

variables simultaneously. CCA reveals multivariate associations linking sets of 85 

variables from two domains by maximizing the canonical correlation between them 86 

(Hotelling, 1936; Wang et al., 2020). For this reason, CCA has been extensively 87 

employed in studying links between the brain, cognition, genes, and environment 88 

(Alnaes et al., 2020; Fernandez-Cabello et al., 2022; Modabbernia et al., 2021; Smith 89 

et al., 2015; Wang et al., 2020). 90 

This study aims to investigate the multivariate associations between structural 91 

brain network properties and three different domains in preadolescents: (i) genetic 92 

predisposition of various traits, (ii) phenotypic outcomes, and (iii) environmental factors. 93 

To achieve this, we leveraged the largest available childhood dataset (i.e., ABCD study) 94 
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and analysis techniques such as the polygenic score approach and sparse canonical 95 

correlation analysis (Witten et al., 2009). 96 

  97 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2023. ; https://doi.org/10.1101/2023.07.24.23293075doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.24.23293075
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods 98 

ABCD participants  99 

We used genetic, neuroimaging, environmental, and phenotypic data from 100 

the Adolescent Brain Cognitive Development (ABCD) study release 2.0 and 3.0 101 

(http://abcdstudy.org). The ABCD study, which is the largest longitudinal investigation 102 

of brain development and child health in the United States, recruited multiethnic 103 

children (N=11,875) aged 9-10 years from 21 research sites with self-reported 104 

ethnicities that comprised of 52.3% Caucasians, 20.3% Mexican Americans, 14.7% 105 

African Americans, and 12.5% Asian-Americans and others. All participants and their 106 

parents or legal guardians provided informed consent and assent forms before 107 

participating in the study. 108 

 109 

Genotype Data 110 

The saliva DNA samples of study participants were collected, and 733,293 111 

single nucleotide polymorphisms (SNPs) were genotyped at Rutgers University Cell 112 

and DNA Repository (RUCDR) with Affymetrix NIDA Smoke Screen Array. We 113 

excluded SNPs with genotype call rate <95%, sample call rate <95%, and minor 114 

allele frequency (MAF) <1%. The genotypes were imputed using the Michigan 115 

Imputation Server (Das et al., 2016) using the 1000 Genome phase3 version5 panel 116 

(Genomes Project et al., 2015) with Eagle v2.4 phasing (Loh et al., 2016). Then, the 117 

imputed variants with INFO score > .3 that did not meet our quality control criteria 118 

(i.e., call rate <95%, MAF <1%, and Hardy–Weinberg equilibrium p-value <1e-6) 119 
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were additionally filtered out. To address potential bias derived from genetically 120 

diverse and related family members in the ABCD study, we employed PC-Air 121 

(Conomos et al., 2015) and PC-Relate (Conomos et al., 2016) to obtain genetically 122 

unrelated individuals beyond 4th-degree relatives (i.e., kinship coefficient >0.022) 123 

and to remove outliers beyond 6 SD limits from the center of ancestrally informative 124 

principal component (PC) space. After quality control procedures, we included a total 125 

of 11,301,999 variants in 10,199 unrelated multiethnic participants, among whom 126 

7,893 participants were of European ancestry. 127 

 128 

Polygenic Scores (PGSs) 129 

We used publicly available European-based GWAS summary statistics to 130 

calculate PGSs for 30 distinct traits: Attention-deficit/hyperactivity disorder (ADHD) 131 

(Demontis et al., 2019), cognitive performance (CP) (Lee et al., 2018), educational 132 

attainment (EA) (Lee et al., 2018), major depressive disorder (MDD) (Wray et al., 133 

2018), insomnia (Jansen et al., 2019), snoring (Jansen et al., 2019), intelligence 134 

quotient (IQ) (Savage et al., 2018), post-traumatic stress disorder (PTSD) (Nievergelt 135 

et al., 2019), depression (DEP) (Howard et al., 2019; Shen et al., 2020), body mass 136 

index (BMI) (Akiyama et al., 2017; Locke et al., 2015), alcohol dependence 137 

(ALCDEP) (Walters et al., 2018), autism spectrum disorder (ASD) (Grove et al., 138 

2019), automobile speeding propensity (ASP) (Akiyama et al., 2017), bipolar 139 

disorder (BIP) (Stahl et al., 2019), cannabis during lifetimes (Cannabis) (Pasman et 140 

al., 2019), ever smoker (Karlsson Linner et al., 2019), shared effects on five major 141 

psychiatric disorder (CROSS) (Cross-Disorder Group of the Psychiatric Genomics, 142 
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2013), alcoholic drinks consumption per week (Drinking) (Karlsson Linner et al., 143 

2019), eating disorder (ED) (Watson et al., 2019), neuroticism (Nagel et al., 2018), 144 

obsessive-compulsive disorder (OCD) (International Obsessive Compulsive Disorder 145 

Foundation Genetics & Studies, 2018), first principal components of four risky 146 

behaviors (Risky Behav) (Karlsson Linner et al., 2019), general risk tolerance 147 

(RiskTol) (Karlsson Linner et al., 2019), schizophrenia (SCZ) (Bipolar et al., 2018; 148 

Lam et al., 2019), worrying (Nagel et al., 2018), anxiety (Otowa et al., 2016), 149 

subjective well-being (SWB) (Okbay et al., 2016), general happiness (UK Biobank 150 

GWAS. Neale Lab. http://www.nealelab.is/ukbiobank/), and general happiness for 151 

health (happiness-health) (UK Biobank GWAS. Neale Lab. 152 

http://www.nealelab.is/ukbiobank/) and meaningful life (happiness-meaning) (UK 153 

Biobank GWAS. Neale Lab. http://www.nealelab.is/ukbiobank/).  154 

The GWAS summary statistics were used as input for PRS-CS (Ge et al., 155 

2019), a Bayesian regression method, to estimate the posterior effect sizes of SNPs. 156 

The final scores were calculated using PLINK v1.9. To optimize the scores, we 157 

followed the suggestion of the original PRS-CS paper and chose the optimal global 158 

shrinkage hyperparameter (phi, ) from among four possible values: 1, 1e-2, 1e-4, 159 

and 1e-6. The validation procedure was carried out within 14 PGSs (i.e., DEP, MDD, 160 

ADHD, general happiness, happiness-health, happiness-meaning, SWB, insomnia, 161 

snoring, BMI, PTSD, CP, EA, IQ) that had related measures in the ABCD study. For 162 

each PGS, we performed linear regression of the phenotype variable with each of 163 

the four scores and covariates (sex, age, and the first ten genetic PCs), and then, 164 

based on R2 and beta coefficient of PGS, selected one of the four PGSs. The 165 

remaining 16 PGSs was automatically validated by PRS-CS-auto (Ge et al., 2019), 166 
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which select the optimal value of global shrinkage parameter employing a Bayesian 167 

approach. Finally, to minimize the bias from population stratification, we residualized 168 

the final PGSs with the first ten genetic PCs. 169 

 170 

Environmental Factors 171 

To investigate the relationship between children's brain network properties 172 

and their environment, we examined 121 environmental and culture-related variables 173 

for analysis. The variables consist of 80 variables representing the family history of 174 

various problems (e.g., alcohol problem, drug use problem, depression, suicide-175 

related problem, etc.), 19 variables related to the residential history derived area 176 

deprivation index (ADI), 11 parent characteristics and family culture related variables, 177 

and others (e.g., perinatal condition, school environment, neighborhood safety, etc.). 178 

To retain the sample as much as possible, we imputed missing values. For 179 

categorical variables, we replaced the missing values with the most frequent value 180 

(mode imputation); for continuous variables, with medians. Next, variables with near 181 

zero variance were eliminated. We finally used 75 environmental variables for the 182 

statistical analysis. 183 

 184 

Phenotype Data 185 

To investigate the relationship between children's brain network properties 186 

and their mental health, physical health, and neurocognitive capacity, we examined 187 

174 phenotypic variables. These included 89 mental health and abnormal behaviors 188 
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related variables (e.g., KSAD diagnosis, Child Behavior Checklist), 74 physical 189 

health-related variables (e.g., physical disorders, medical history), and 10 NIH 190 

Toolbox cognitive assessment variables and a delay discounting related variable 191 

(i.e., cash choice task score). We also preprocessed the missing values with mode 192 

imputation for categorical variables and median imputation for continuous variables. 193 

Among phenotype data, variables having near zero variance were removed. We 194 

finally used 117 phenotype variables for the statistical analysis after variable 195 

selection based on the variance. 196 

 197 

Structural Brain Network Construction 198 

Detailed procedures for acquiring and preprocessing MRI data are described 199 

in (Kim et al., 2022). To estimate brain structural networks from neuroimaging, 200 

individual connectome data was generated. This was achieved by applying MRtrix3 201 

(Tournier et al., 2019) to the preprocessed dMRI data to estimate whole-brain white 202 

matter tracts and generate individualized connectomes. Probabilistic tractography 203 

was performed using constrained-spherical deconvolution (CSD) (Calamante et al., 204 

2010; Tournier et al., 2007) with random seeding across the brain and target 205 

streamline counts of 20 million. Initial tractograms were filtered using spherical-206 

deconvolution informed filtering (2:1 ratio)(Smith et al., 2013), resulting in a final 207 

streamline count of 10 million. An 84x84 whole-brain connectome matrix was 208 

generated for each participant using the T1-based parcellation and segmentation 209 

from FreeSurfer with Desikan-Killiany atlas (Desikan et al., 2006)(68 nodes for the 210 

cortical region and 16 nodes for the subcortical region). This approach ensured that 211 
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individual participants' connectomes were based on their neuroanatomy. The 212 

computation was conducted on supercomputers at Argonne Leadership Computing 213 

Facility Theta and Texas Advanced Computing Center Stampede2. 214 

 215 

Brain Network Measures (BNMs) 216 

We used the connectome matrix to construct an undirect weighted graph 217 

representing the structural brain network. Nodes and edges in the graph represent 218 

parcellated gray matter regions and connections between them, respectively. 219 

Connection strength was quantified by the streamline count. To account for the 220 

potential false positive connections generated by probabilistic tractography and their 221 

impact on network topology, we eliminated extremely weak connections (streamline 222 

counts less than 3). After thresholding, we excluded individuals with at least one 223 

isolated node, assuming all brain regions are communicable via at least one path. 224 

We calculated 18 different types of brain network measurements (BNMs) 225 

representing different aspects of brain network's property (Rubinov & Sporns, 2010; 226 

van den Heuvel & Sporns, 2011). We calculated eight global graph metrics (including 227 

network density, modularity, normalized modularity, normalized average clustering 228 

coefficient, normalized characteristic path length, global efficiency, normalized global 229 

efficiency, small worldness) and five nodal graph metrics (including degree, strength, 230 

clustering coefficient, betweenness centrality, nodal efficiency) to represent brain 231 

network's global and regional properties. In addition, to examine rich club 232 

organization, we also calculated raw and normalized rich club coefficient (van den 233 

Heuvel & Sporns, 2011) of the network and the strength of rich club connection, 234 
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feeder connection, and local connection. Brain regions with top 12% degree were 235 

defined as rich club nodes following previous work (van den Heuvel, Sporns, et al., 236 

2013). All graph measures were calculated using the package Brain Connectivity 237 

Toolbox (https://sites.google.com/site/bctnet/).  238 

 239 

Sparse Canonical Correlation Analysis 240 

To examine a latent mode of covariation between structural brain network 241 

properties and various polygenic scores, environmental factors, and phenotypic 242 

outcomes, we used sparse canonical correlation analysis (Witten et al., 2009) 243 

between brain network measures and three types of non-imaging data (i.e., PGSs, 244 

environmental variables, phenotype variables) separately. Canonical correlation 245 

analysis (CCA) is a multivariate procedure that maximizes the correlation between 246 

the linear combinations of two sets of variables. Sparse canonical correlation 247 

analysis is one of the popular variants of CCA with L1 regularization for sparse 248 

solutions. We used sparse canonical correlation analysis to avoid over-fitting and 249 

improve interpretability from sparse solutions. 250 

The most popular algorithm for sparse canonical correlation analysis is 251 

penalized matrix decomposition (PMD)(Witten et al., 2009), which solves 252 

optimization problem of below equation for given two sets of data matrix 𝑋𝑛×𝑝, 𝑌𝑛×𝑞. 253 

(n: sample size; p, q: the number of variables of domain X and Y respectively; u, v: 254 

canonical weights of domain X and Y respectively; c1, c2: regularization parameter) 255 

max 𝑐𝑜𝑣(𝑋𝑢,   𝑌𝑣) 256 
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𝑠. 𝑡.   ∥ 𝑢 ∥2=∥ 𝑣 ∥2= 1,   ∥ 𝑢 ∥1≤ 𝑐1,   ∥ 𝑣 ∥1≤ 𝑐2 257 

To interpret Witten's sparse canonical correlation analysis as correlation 258 

maximization, we need to assume covariance matrices 𝑋𝑇𝑋, 𝑌𝑇𝑌 are identity 259 

matrices (Witten et al., 2009). But in our study with the high dimensional brain 260 

datasets, the assumption is hardly satisfied (Fig. S1). For this reason, we interpreted 261 

Witten's sparse canonical correlation analysis as a maximizing covariance algorithm 262 

between two sets of variables rather than maximizing correlation. 263 

To test generalizability of the sparse canonical correlation analysis results, 264 

we split the dataset into a training and test set. For sparse canonical correlation 265 

analysis with PGS and brain network measures, we split train set (n=5,411) and test 266 

set (n=1,145) based on genetic relatedness to avoid including biological family in the 267 

same dataset. In addition, we only used participants classified as genetically 268 

European ancestry to control genetic confounding effects for sparse canonical 269 

correlation analysis with PGSs. For sparse canonical correlation analysis with 270 

environmental factors and phenotype data, we used stratified train (80%) - test 271 

(20%) split by family history of various problems and KSAD diagnosis respectively. 272 

Table 2 summarizes the demographic information of the samples included in this 273 

study. 274 

We attempted to control the potential confounding effects by regressing out 275 

the variance explained by age, sex, parental education, household income, marital 276 

status, race ethnicity, BMI, and ABCD-site out of brain network measures, 277 

environmental factors, and phenotype data. For binary variables such as family 278 

history and KSADS-COMP, we regressed out with logistic regression. Residualized 279 

data was used for the input of sparse canonical correlation analysis. On the other 280 
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hand, for polygenic scores, we did not regress out from PGSs because listed 281 

covariates may not contaminate genetic information.  282 

We selected optimal L1 regularization parameters from 5-fold cross validation 283 

searching from 0.1 to 1 with a step size of 0.05 for both X and Y variables 284 

respectively. The optimal L1 parameter combination was selected to maximize the 285 

covariance of validation set between canonical variates of the first component (Fig. 286 

S2).  287 

For each sparse canonical correlation analysis, we extracted five modes of 288 

covariance. To examine the statistical significance of each mode, we used a 289 

permutation test. By randomly shuffling the rows of one dataset and remaining the 290 

other, we generated 5,000 permutation sets. The p-value of each component was 291 

calculated based on the number of permutation sets having greater covariance than 292 

that obtained from the original dataset, and FDR-correction was done within each 293 

CCA.  294 

𝑝𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑁𝑛𝑢𝑙𝑙 𝑐𝑜𝑣 > 𝑐𝑜𝑣

𝑁𝑛𝑢𝑙𝑙
 295 

 296 

Selected variables and their loading depend on the input sample. To find variables 297 

reliably related to each mode, we used bootstrap resampling. We randomly 298 

resampled 5,000 times with replacement and assessed the 95% confidence interval 299 

of each variable's loading and how consistently it was selected. We interpreted the 300 

significant modes based on loading patterns of variables whose 95% confidence 301 

interval of loading does not cross zero (Xia et al., 2018) and selected more 302 
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frequently than expected by chance (i.e., more frequently selected than expected by 303 

binomial distribution). Because sparse canonical correlation analysis with bootstrap 304 

sample may change the order of components (axis rotation) and signs (reflection) 305 

(Misic et al., 2016; Xia et al., 2018), the re-alignment procedure is needed to 306 

estimate confidence interval of loading properly. We matched the components and 307 

signs based on cosine similarity of weight vectors obtained from original dataset and 308 

bootstrap sample. To assess the reproducibility of the findings, we applied the model 309 

to the held-out test set and estimated significance of each mode through the 310 

permutation test. 311 

 312 

Mediation Analysis 313 

After sparse canonical correlation analysis, we raised a hypothesis that the 314 

genetic factors of cognitive ability may influence the phenotype of cognitive ability-315 

psychopathology through brain network properties (Results – Mediation Analysis). To 316 

test the hypothesis, we examined whether brain network property scores related to 317 

the genetic predisposition of cognitive ability (i.e., BNM score of PGS-BNM mode 2) 318 

mediated the relationship between polygenic scores for cognitive ability (i.e., PGS 319 

score of PGS-BNM mode 2) and the phenotype of cognitive ability-psychopathology 320 

(i.e., phenotype score of Phenotype-BNM mode 2). Age, sex, race ethnicity, parental 321 

education, household income, marital status, ABCD site, and BMI were used as 322 

covariates in the mediation analysis. The two-sided p-values for each path were 323 

estimated from 500 bootstrap samples.   324 
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Results 325 

Modes of covariation between polygenic scores and structural brain network 326 

properties 327 

Using sparse canonical correlation analysis, we investigated the relationship 328 

between 30 genome-wide polygenic scores (PGSs) and measures of brain network 329 

properties (BNMs). Our analysis revealed a significant mode (mode 1) and a mode 330 

that showed marginal significance (mode 2) (mode 1: 𝑝  = 0.006  , 𝑐𝑜𝑣  =  0.846 , 𝑟 =331 

0.107  ; mode 2: 𝑝 = 0.0545 (𝑝𝑢𝑛𝑐 = 0.021) , 𝑐𝑜𝑣  =  0.585  , 𝑟 = 0.118  , all p-values 332 

were FDR corrected). Detailed results of the permutation test and the loading patterns 333 

for all five modes can be found in the supplementary material (Fig. S3, S4). 334 

The first mode of PGSs showed significant positive loadings for PGSs related 335 

to psychiatric disorders, such as bipolar disorder and cross disorder (Fig. 1a). On the 336 

brain side, normalized clustering and rich club coefficients showed positive loadings, 337 

while network density, degree, and raw rich club coefficients, and the connection 338 

strengths (among the bilateral rostral anterior cingulate, rostral middle frontal, 339 

paracentral, lingual regions, and cerebellums) showed negative loadings (Fig. 1b, 340 

S4). 341 

In the second mode of the PGSs, we observed strong positive loadings for 342 

PGSs related to cognitive abilities, such as cognitive performance (CP) and IQ. 343 

Meanwhile, there were weak negative loadings for material use-related PGSs (Fig. 344 

1c). In terms of corresponding brain network properties, positive loadings were found 345 

for connection strength, betweenness centrality, normalized nodal efficiency of 346 

middle temporal gyrus, and betweenness centrality of the left inferior parietal area. 347 
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On the other hand, the strength of posterior cingulate cortex, thalamus, and caudate, 348 

as well as feeder and rich club connection strength had negative loadings (Fig. 1d, 349 

S4). To sum up, the polygenic scores for higher cognitive ability were positively 350 

linked to network integrity of the middle temporal gyrus and negatively associated 351 

with connection strength of the posterior cingulate cortex, thalamus, and caudate. 352 

 353 

Modes of covariation between phenotypes and structural brain network 354 

properties 355 

Among the five modes of covariation, only the second and the third mode were 356 

significant and generalized to the hold-out test sets (mode 2: p < 0.001, cov = 1.069, 357 

r = 0.119; mode 3: p = 0.016, cov = 0.640, r = 0.089, all p-values were FDR corrected). 358 

We thus interpreted the second and third modes only. Detailed results of the 359 

permutation test and the loading patterns for all five modes can be found in the 360 

supplementary material (Fig. S5, S6). 361 

The second mode of phenotypes depicted the covariation between brain 362 

network properties and the shared characteristics of cognitive ability and 363 

psychopathology (cognitive ability-psychopathology) (Fig. 1e, 1f, S6). Cognitive test 364 

scores (i.e., NIH Toolbox scores) showed positive loadings, whereas 365 

psychopathologic traits, such as CBCL and PGBI mania scores, showed negative 366 

loadings. Several brain network properties showed loading patterns similar to that of 367 

polygenic scores for cognitive ability (i.e., PGS mode 2). Consistent with the loadings 368 

observed in PGS mode 2, the connection strength and nodal efficiency of the middle 369 

temporal gyrus and betweenness centrality of the left inferior parietal region showed 370 
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positive loadings, while the strength of the posterior cingulate cortex, thalamus, and 371 

caudate, along with the feeder and rich club connections, showed negative loadings. 372 

Conversely, certain network properties were found to be statistically significant only 373 

in relation to phenotypes. The nodal efficiency of the superior temporal region and 374 

the betweenness centrality of the postcentral and supramarginal regions showed 375 

positive loadings. Additionally, the strength of the anterior cingulate, paracentral, and 376 

overall subcortical regions, as well as the nodal efficiency of the insula and 377 

hippocampus, showed negative loadings. To summarize, phenotypes of cognitive 378 

ability-psychopathology were positively associated with the network integrity of the 379 

temporal and inferior parietal cortex, while being negatively associated with the 380 

connection strength of the cingulate and subcortical regions.  381 

Despite strong negative loadings in the NIH Toolbox scores, the third mode 382 

did not show any significant features (Fig. S6). 383 

 384 

Modes of covariation between environmental factors and structural brain 385 

network properties 386 

Among the five modes analyzed, the second mode showed a marginal level 387 

of statistical significance, while the third mode showed a significant relationship 388 

(mode 2: 𝑝 = 0.092 (𝑝𝑢𝑛𝑐 = 0.0402), 𝑐𝑜𝑣 = 0.896, 𝑟 = 0.074 ; mode 3: 𝑝 = 0.016,389 

𝑐𝑜𝑣 = 0.802, 𝑟 = 0.124, all p-values were FDR corrected). Further information 390 

regarding the results of the permutation test and the loading patterns for all five 391 

modes can be found in the supplementary material (Fig. S7, S8). 392 
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The second mode showed the relationship between environmental factors 393 

related to socioeconomic status and brain network properties. Variables representing 394 

socioeconomic advantages showed positive loadings, whereas variables 395 

representing socioeconomic disadvantages showed negative loadings (Fig. 2). 396 

Regarding its relationship with brain network properties, only the nodal efficiency of 397 

the right hippocampus showed a significant association with the second mode (Table 398 

4). 399 

The third mode depicted the relationship between perinatal conditions, such 400 

as caesarian section and age of parents, and brain network properties (Fig. 2). 401 

Perinatal conditions showed positive associations with certain brain network 402 

properties (Table. 4). Specifically, the connection strength, betweenness centrality, 403 

and clustering coefficient of the entorhinal cortex showed positive loadings. In 404 

contrast, the strength of the precentral gyrus, cerebellum, and thalamus, as well as 405 

the nodal efficiency of the cerebellum and the degree of the caudate, showed 406 

negative loadings. 407 

 408 

Mediation Analysis 409 

We discovered that both polygenic scores and phenotypes related to 410 

cognitive ability shared covarying brain network properties. Specifically, we observed 411 

shared brain network properties, including the connection strength and nodal 412 

efficiency of the middle temporal gyrus, betweenness centrality of inferior parietal 413 

regions, and the connection strength of the posterior cingulate cortex and thalamus 414 

(Fig. 1d, 1f). These findings led us to the hypothesis that the genetic factors 415 
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influencing cognitive ability may exert their influence through brain network 416 

properties.   417 

To test this hypothesis, we examined whether the BNM score of PGS-BNM 418 

mode 2 serves as a mediator between the PGS score of PGS-BNM mode 2 and the 419 

phenotype score of phenotype-BNM mode 2 (Fig. 3). The result demonstrated that 420 

brain network properties significantly mediated the relationship between polygenic 421 

scores for cognitive ability and the phenotype of cognitive ability-psychopathology 422 

(indirect effect = 0.013, p < 0.001).  423 
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Discussion 424 

This study investigated the multivariate relationship of brain network 425 

properties with genes, environment, and phenotypic outcomes in children. We 426 

discovered multiple modes of covariation among the structural brain network 427 

properties and the following factors: (i) the genetic propensity for psychiatric 428 

disorders and cognitive capacity, (ii) the phenotypic outcomes related to the cognitive 429 

ability and psychopathology, and (iii) the environmental factors, such as 430 

socioeconomic status and perinatal conditions. Additionally, our study showed that 431 

the brain network mediates the effects of the polygenic scores for cognitive capacity 432 

on phenotypic outcomes of cognitive ability and psychopathology. This study offers 433 

insight into which genetic factors are related to the brain network properties and the 434 

multivariate relationships among variables of brain network properties, genes, 435 

environmental factors, and phenotypic outcomes in children. It gives rise to 436 

discussions about the underlying biology of brain network and cognitive development 437 

and further hypotheses in this field.  438 

In the sparse canonical correlation analysis with phenotypes, we observed 439 

that the cognitive intelligence (NIH Toolbox) and psychopathology phenotypes 440 

(CBCL) exhibited a single mode of covariation rather than distinct modes. This single 441 

mode suggests that children's cognitive ability and abnormal behavior share 442 

underlying brain network properties but with opposite signs of correlations. This 443 

finding resembles previous findings, for instance, a single mode of positive-negative 444 

behavioral and genetic traits covarying with brain connectivity (Smith et al., 2015; 445 

Taquet et al., 2021).  446 
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Our mediation analysis showed that the brain network mediated genetic 447 

predisposition and phenotypic outcomes of cognition and psychopathology during 448 

childhood. This mediation may be facilitated by specific brain network properties 449 

associated with both the polygenic scores for cognitive abilities and phenotypes 450 

related to cognitive ability-psychopathology. Further investigation is necessary to 451 

determine the extent of the involvement of these common network properties in the 452 

gene-brain network-phenotypic outcome pathway. Mediation through the brain 453 

network properties accounts for approximately 5% of the gene-phenotype pathway of 454 

intelligence, implying other pathways, such as through cortical surface area or 455 

thickness (Lett et al., 2020). 456 

Children with higher polygenic scores for cognitive abilities or phenotype 457 

scores of cognitive ability-psychopathology showed greater nodal efficiency in the 458 

middle temporal gyrus and inferior parietal region. These regions are constituents of 459 

the system proposed by the parieto-frontal integration theory (P-FIT) of intelligence 460 

(Jung & Haier, 2007) and play a crucial role in semantic, language, and number 461 

processing (Binder et al., 2009; Seghier, 2013; Visser et al., 2012). In contrast, 462 

children with lower scores on cognitive ability-psychopathology exhibited greater 463 

nodal efficiency in the hippocampus and insula. These regions have been implicated 464 

in various cognitive functions, including learning, memory, emotional regulation, and 465 

interoception (Jarrard, 1993; Namkung et al., 2017; Phelps, 2004; Rubin et al., 2014; 466 

Sweatt, 2004). While previous studies have reported a positive correlation between 467 

global efficiency and children's intelligence (Bathelt et al., 2018; Kim et al., 2016; Ma 468 

et al., 2017), our results did not. Our study suggests that the relationship between 469 

intelligence and network efficiency is more closely linked to the network efficiency of 470 
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some brain regions, such as the temporal and parietal regions, rather than the 471 

overall global efficiency. 472 

Our results indicate a negative association between the connection strength 473 

of the posterior cingulate cortex and subcortical regions and polygenic scores and 474 

phenotypes related to cognitive ability. During childhood and adolescence, FA of 475 

white matter is known to increase (Tamnes et al., 2018). Unlike studies based on FA, 476 

research has reported decreased streamline counts and density during this period, 477 

particularly in connections with higher streamline counts and those linked to 478 

subcortical regions (Baker et al., 2015; Lim et al., 2015). Considering these 479 

documented changes in white matter connectivity, the observed negative association 480 

may indicate a progression in white matter development among children with higher 481 

cognitive abilities. 482 

Our study suggests that children with higher polygenic scores for psychiatric 483 

disorders have lower network density and degree across various brain regions. 484 

Individuals with psychiatric disorders are known to have less white matter connection 485 

(Chen et al., 2021; Perry et al., 2019; van den Heuvel & Fornito, 2014). These 486 

findings suggest that the tendency of less white matter connections in individuals 487 

with a higher genetic risk for psychiatric disorders is already observable in 9-10 488 

years old. It is aligned with the findings that youth with higher genetic risks for 489 

psychiatric disorders have smaller white matter volume and average connection 490 

strength (Fernandez-Cabello et al., 2022; Taquet et al., 2021).  491 

The wiring and maintenance of white matter tracts require significant 492 

metabolic support. For this reason, the metabolic budget of the brain is a critical 493 
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factor in shaping the brain network (Bullmore & Sporns, 2012). Taking into account 494 

network density is often used as a proxy for the wiring cost (Achard & Bullmore, 495 

2007; Bassett et al., 2009), lower density observed in children with higher genetic 496 

risks for psychiatric disorders may imply a link between genetic susceptibility to 497 

psychiatric disorders and abnormal brain metabolism, subsequently affecting the 498 

development of structural brain networks. Indeed, mitochondrial dysfunction has 499 

consistently been proposed as a pathological foundation of psychiatric disorders 500 

(Clay et al., 2011; Y. Kim et al., 2019; Rezin et al., 2009; Shao et al., 2008; Zuccoli et 501 

al., 2017), and recent studies identified genetic overlaps between psychiatric 502 

disorders and metabolic syndromes (Amare et al., 2017; Rodevand et al., 2021).  503 

The brain network favors short-range connections over long-distance ones to 504 

minimize wiring costs, promoting local segregation within the network (Bullmore & 505 

Sporns, 2012). We observed a higher clustering coefficient in children with a higher 506 

genetic risk for psychiatric disorders, which may be related to lower brain metabolic 507 

support. Our results showed that genetic risks for psychiatric disorders were 508 

negatively associated with raw rich club coefficients at k=20-50, but positively 509 

associated with normalized rich club coefficients. Network density may partially 510 

influence these correlations (van Wijk et al., 2010).  511 

Our study indicates that environmental factors, such as socioeconomic status 512 

and perinatal conditions, can affect brain network properties in children beyond mere 513 

brain morphology (Alnaes et al., 2020). Specifically, we observed a positive 514 

correlation between socioeconomic advantage and the nodal efficiency of the right 515 

hippocampus. This finding aligns with previous studies showing the impact of 516 

socioeconomic disadvantage on various aspects of the hippocampus, including gray 517 
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matter volume (Hanson et al., 2011; Jednorog et al., 2012), connectivity (Barch et 518 

al., 2016), and network efficiency (D. J. Kim et al., 2019). However, the significant 519 

associations between network properties and environmental factors were fewer in 520 

number compared to genetic factors. This suggests that the influence of 521 

environmental factors on brain network properties may be either less pronounced or 522 

more heterogeneous than genetic factors. 523 

This study has several limitations. Firstly, we used cross-sectional data, 524 

which limits our ability to investigate the relationships between brain network 525 

properties, genes, phenotypes, and the environment over time. Although our findings 526 

provide insights into normative brain network development, a longitudinal study 527 

design is necessary to fully understand developmental trajectories. Second, 528 

polygenic scores only consider common genetic variants that reach a certain level of 529 

statistical significance in a genome-wide association study (GWAS). Thus, polygenic 530 

scores in this study do not capture the impact of rare variants or complex interactions 531 

like gene-gene and gene-environment interactions. Lastly, our statistical models only 532 

capture homogeneous linear relationships, which may not be adequate for 533 

comprehending the complex interactions (Greene et al., 2022) that occur among 534 

genetic profiles, environmental factors, phenotypic traits, and data-collection artifacts 535 

within a large population study. The small effect sizes observed in the relationship 536 

between brain network properties and genetic, phenotypic, and environmental 537 

factors (r = 0.074-0.124) may indicate heterogeneous associations depending on 538 

covariate profiles. To gain more informative insights into the relationships among 539 

genes, environment, brain, and phenotypes, a more sophisticated model that can 540 

capture heterogeneous associations based on covariates may be necessary. For 541 
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instance, employing conditional (or local) average treatment effect analysis with 542 

causal machine learning (Athey et al., 2019) would be beneficial, as it would aid in 543 

personal, clinical, and political decision-making. 544 

 545 

Data Availability 546 

All original data are publicly available from the NDA 547 

(https://nda.nih.gov/abcd/). Mook data, which corresponds to the processed data 548 

used in this study, was generated from conditional GAN for tabular data (Xu et al., 549 

2019) and are available from this site (https://github.com/Transconnectome/ABCD-550 

brain-network-SCCA). 551 

Code Availability 552 

Code is available from here: https://github.com/Transconnectome/ABCD-553 

brain-network-SCCA. 554 
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Tables 585 

Table 1. Abbreviation of PGSs and their meaning. 586 

Abbreviation Meaning 

CROSS Cross disorder between ASD, ADHD, bipolar disorder, MDD, and 

schizophrenia 

Neuroticism Neuroticism 

Risky Behav The first principal component of the four risky behaviors 

RiskTol General risk tolerance 

Worry Worrying subtype 

ASP Automobile speeding propensity: the tendency to drive faster than the 

speed limit 

ALCDEP Alcohol dependence 

ED Eating Disorder (Anorexia nervosa) 

Drinking Drinks per week – the average number of alcoholic drinks consumed 

per week 

ASD Autism Spectrum Disorder 

BIP Bipolar disorder 

Cannabis Cannabis during their lifetime (self-reported) 

Smoke Ever smoker – whether one has ever been a smoker 

SCZ Schizophrenia 

OCD Obsessive-Compulsive Disorder 
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Anxiety Anxiety 

DEP Depression 

MDD Major Depression Disorder 

GHappi General Happiness 

GHappiHealth General Happiness - health 

GHapiMean General Happiness - meaningful life 

SWB Subjective Well Being 

INSOMNIA Insomnia 

SNORING Snoring 

BMI Body Mass Index 

PTSD Post-Traumatic Stress Disorder 

CP Cognitive Performance 

EA Education Attainment 

IQ Intelligence Quotient 

ADHD Attention-Deficit/Hyperactivity Disorder 

 587 
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Table 2. Demographic information of the study participants. 589 

   PGS – BNM 

(n=6,549)  

ENV – BNM 

(n=9,393)  

Pheno – BNM 

(n=8,895)  

   train  test  train  test  train  test  

N total 5,406 1,143 7,514  1,879  7,116  1,779  

Sex Male  2,869 600 3,931  965 3,741 905 

Female  2,537 543  3,583 914  3,375  874  

Race White  3,831  865  4,167 1,041 4,086 1015 

Black  34  7  995 234 866 221 

Hispanic  993  154  1,406  401  1,269  323  

Asian  6  1  147 32 143 29 

Other  542  116  799  171  752  191  

 590 
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Table 3. p-value, correlation coefficient, covariance of sparse 591 

canonical correlation analysis results. p-value of each mode is estimated by 592 

permutation test. * p_FDR < 0.05, ** p_FDR < 0.01, *** p_FDR < 0.001, † p_uncorrected < 0.05. 593 

Sparse Canonical Correlation 

Analysis   

with Brain Network Metrics 

Mode1 Mode2 Mode3 Mode4 Mode5 

Polygenic 

Scores 

p_training 0.0060** 
0.0545 

(0.0218)† 
0.6633 0.9640 0.3033 

p_test 0.0060** 0.0210* 0.4582 0.1587 0.4582 

corr 0.1071 0.1176 0.1231 0.0831 0.1404 

cov 0.8458 0.5845 0.4425 0.3517 0.3830 

Phenotypes 

p_training 0.0020* <0.001*** 0.0160* 0.2128 0.0678 

p_test 0.1020 0.0060** 0.0110* 0.1990 0.5814 

corr 0.1124 0.1194 0.0885 0.0924 0.1233 

cov 1.2243 1.0692 0.6401 0.4819 0.4593 

Environmental 

Factors 

p_training 0.0920 
0.0920 

(0.0402)† 
0.0160* 0.5582 0.0920 

p_test 0.1227 0.0145* 0.0030** 0.4682 0.3663 

corr 0.0745 0.0741 0.1239 0.0843 0.1060 

cov 1.1196 0.8956 0.8023 0.5263 0.5226 
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Table 4. Sparse canonical correlation analysis results of 595 

environmental factors-brain network measures. Only significant brain network 596 

measures are presented. The loadings of corresponding environmental factors are visualized in 597 

Figure 2.  598 

 Region Network measure Loading Loading 95% CI 

Mode 2 Hippocampus Nodal efficiency R-HI 0.2098 [0.0031, 0.4603] 

Mode 3 

Caudate 

Deg L-CA -0.3778 [-0.4016, -0.0038] 

Deg R-CA -0.3753 [-0.3930, -0.0156] 

Entorhinal cortex 

Stren L-EC 0.3417 [0.0336, 0.4331] 

Stren R-EC 0.3483 [0.0378, 0.4348] 

BC_L-EC 0.1091 [0.0174, 0.1560] 

Norm_clust_coef L-EC 0.3691 [0.0208, 0.4188] 

Norm_clust_coef R-EC 0.3879 [0.0357, 0.4383] 

Precentral gyrus 

Stren L-PrCG -0.4642 [-0.4978, -0.0116] 

Stren R-PrCG -0.4356 [-0.4866, -0.0100] 

Cerebellum 

Stren L-CER -0.2761 [-0.3509, -0.0222] 

Stren R-CER -0.2768 [-0.3465, -0.0171] 

Nodal efficiency L-CER -0.3695 [-0.4661, -0.0615] 

Nodal efficiency R-CER -0.3699 [-0.4646, -0.0603] 

Thalamus 

Stren L-TH -0.4175 [-0.5760, -0.0779] 

Stren R-TH -0.4141 [-0.5797, -0.0651] 
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Temporal pole 

Stren R-TP 0.1590 [0.0255, 0.2223] 

Norm_clust_coef L-TP 0.3942 [0.0216, 0.4324] 
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 600 

Figure 1 Sparse canonical correlation analysis results of polygenic scores-brain network 601 

measures and phenotypes-brain network measures. The results of the first and second modes of 602 

polygenic scores (PGSs) - brain network measures (BNMs) and the second mode of phenotypes - 603 

brain network measures. (a) The loadings of significant PGS variables in the PGSs-BNMs mode 1. 604 

The error bars represent the 95% confidence interval of the loading, estimated from the 5,000 605 

bootstrap samples. Among the 30 PGSs, only significant PGS variables are presented, while the 606 

others can be found in supplementary figure 4. The color of each bar represents the category to which 607 
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the variable belongs. (Abbreviations - BIP: bipolar disorder; CROSS: cross-disorder; ED: eating 608 

disorder; Drink: drink per week) (b) The loadings of significant nodal brain network measures in the 609 

PGSs-BNMs mode 1. The loading patterns were visualized with R-package 'ggseg' (Mowinckel & 610 

Vidal-Pineiro, 2020) (c) The loadings of significant PGS variables in the PGSs-BNMs mode 2. 611 

(Abbreviations - CP: cognitive performance; EA: educational attainment; DEP: depression; ALCDEP: 612 

alcohol dependence; Smoker: ever smoking) (d) The loadings of significant nodal brain network 613 

measures in the PGSs-BNMs mode 2. (e) The loadings of significant PGS variables in the 614 

phenotypes-BNMs mode 2. The loading patterns of other modes are shown in supplementary figure 6 615 

(abbreviations- NIH: NIH Toolbox score; KSAD: K-SADS (Kiddie Schedule for Affective Disorders and 616 

Schizophrenia; SDS: sleep disturbance scale; CBCL: child behavior checklist; PGBI: parent version of 617 

general behavior inventory) (f) The loadings of significant nodal brain network measures in the 618 

phenotypes-BNMs mode 2. 619 

  620 
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 621 

Figure 2 Sparse canonical correlation analysis results of environmental factors-brain network 622 

measures. (a) The loadings of environmental variables in mode 2. (b) The loadings of environmental 623 

variables in mode 3. Only significant variables are presented. The loadings of corresponding brain 624 

network measures are presented in Table 4, and the loading patterns of other modes are shown in 625 

supplementary figure 8 (abbreviation – ADI: residential history derived area deprivation index) 626 

 627 

 628 

  629 
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 630 

Figure 3 Result of mediation analysis. We used cognitive ability PGS CCA score (i.e., PGS CCA 631 

score of PGS-BNM mode 2) as an independent variable, brain network property CCA score related to 632 

the cognitive ability PGS (i.e., BNM CCA score of PGS-BNM mode 2) as a mediator, and phenotype 633 

of intelligence-psychopathology CCA score (i.e., phenotype CCA score of Phenotype-BNM mode 2) 634 

as a dependent variable. The p-value and effect size of all paths were presented.  635 

 636 

  637 
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Supplementary Materials 638 

639 
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640 

Supplementary Figure 1. Check Witten's assumption. 
𝟏

𝐧
𝐗𝑻𝑿 − 𝑰 of the analyzed data is 641 

presented. Here, X represents the data from which the variance explained by covariates has 642 

been regressed out, as mentioned in the main text.  643 
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 644 

Supplementary Figure 2. Optimal regularization parameters. We conducted a grid search to 645 

optimize the L1 regularization parameters for Sparse Canonical Correlation Analysis (SCCA). The grid 646 

search ranged from 0.1 to 1 in sparsity parameters, with increments of 0.05. The objective was to 647 

identify the sparsity parameter pair that yielded the highest mean covariance of the first component in 648 

the validation set, using 5-fold cross-validation. 649 

 650 
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 651 

Supplementary Figure 3. Scatter plots of SCCA scores of brain network measures versus 652 

SCCA scores of polygenic scores and their permutation test results of training and test set. 653 
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Each permutation test result shows the null distribution of SCCA estimated by permutation test. 654 

Dashed red line refers to the actual covariance of each mode.   655 
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 657 

 658 

Supplementary Figure 4. Sparse CCA loading patterns of brain network measures – polygenic 659 

scores. The left column presents the loading of each polygenic score variable, while the right column 660 

displays the loadings of global brain network measures and rich club coefficients. Each data point 661 
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represents the loading value of a specific variable and is color-coded based on its category. The error 662 

bars indicate the 95% confidence interval of the loading, which was estimated using bootstrapping. 663 

Gray-colored error bars indicate a 95% confidence interval that crosses 0. Yellow-colored error bars 664 

indicate a 95% confidence interval that does not cross 0 but corresponds to a variable that is not 665 

frequently selected by Sparse CCA. Red-colored error bars represent a 95% confidence interval that 666 

does not cross 0 and indicates a variable that is frequently selected. Only the variables represented 667 

by red error bars are presented in the main text.668 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 7, 2023. ; https://doi.org/10.1101/2023.07.24.23293075doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.24.23293075
http://creativecommons.org/licenses/by-nc-nd/4.0/


 669 

Supplementary Figure 5. Scatter plots of SCCA scores of brain network measures versus 670 

SCCA scores of phenotypic measures and their permutation test results of training and test 671 
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set. Each permutation test result shows the null distribution of SCCA estimated by permutation test. 672 

Dashed red line refers to the actual covariance of each mode.   673 
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 675 

Supplementary Figure 6. Sparse CCA loading patterns of brain network measures – phenotype 676 

variables. The left column presents the loading of each phenotype variable, while the right column 677 

displays the loadings of global brain network measures and rich club coefficients. Each data point 678 

represents the loading value of a specific variable and is color-coded based on its category. The error 679 
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bars indicate the 95% confidence interval of the loading, which was estimated using bootstrapping. 680 

Gray-colored error bars indicate a 95% confidence interval that crosses 0. Yellow-colored error bars 681 

indicate a 95% confidence interval that does not cross 0 but corresponds to a variable that is not 682 

frequently selected by Sparse CCA. Red-colored error bars represent a 95% confidence interval that 683 

does not cross 0 and indicates a variable that is frequently selected. Only the variables represented 684 

by red error bars are presented in the main text. 685 
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 687 

Supplementary Figure 7. Scatter plots of SCCA scores of brain network measures versus 688 

SCCA scores of environmental factors and their permutation test results of training and test 689 
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set. Each permutation test result shows the null distribution of SCCA estimated by permutation test. 690 

Dashed red line refers to the actual covariance of each mode.   691 
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 693 

Supplementary Figure 8. Sparse CCA loading patterns of brain network measures – 694 

environmental factors. The left column presents the loading of each environmental variable, while 695 

the right column displays the loadings of global brain network measures and rich club coefficients. 696 

Each data point represents the loading value of a specific variable and is color-coded based on its 697 
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category. The error bars indicate the 95% confidence interval of the loading, which was estimated 698 

using bootstrapping. Gray-colored error bars indicate a 95% confidence interval that crosses 0. 699 

Yellow-colored error bars indicate a 95% confidence interval that does not cross 0 but corresponds to 700 

a variable that is not frequently selected by Sparse CCA. Red-colored error bars represent a 95% 701 

confidence interval that does not cross 0 and indicates a variable that is frequently selected. Only the 702 

variables represented by red error bars are presented in the main text.  703 
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