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Abstract 
 
Background and Aims: Ensemble machine learning (ML) methods can combine many 
individual models into a single ‘super’ model using an optimal weighted combination. Here we 
demonstrate how an underutilized ensemble model, the superlearner, can be used as a benchmark 
for model performance in clinical risk prediction. We illustrate this by implementing a 
superlearner to predict liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). 
 
Methods: We trained a superlearner based on 23 demographic and clinical variables, with the 
goal of predicting stage 2 or higher liver fibrosis. The superlearner was trained on data from the 
Non-alcoholic steatohepatitis – clinical research network observational study (NASH-CRN, 
n=648), and validated using data from participants in a randomized trial for NASH (‘FLINT’ 
trial, n=270) and data from examinees with NAFLD who participated in the National Health and 
Nutrition Examination Survey (NHANES, n=1244). We compared the performance of the 
superlearner with existing models, including FIB-4, NFS, Forns, APRI, BARD and SAFE. 
 
Results: In the FLINT and NHANES validation sets, the superlearner (derived from 12 base 
models) discriminates patients with significant fibrosis from those without well, with AUCs of 
0.79 (95% CI: 0.73-0.84) and 0.74 (95% CI: 0.68-0.79). Among the existing scores considered, 
the SAFE score performed similarly to the superlearner, and the superlearner and SAFE scores 
outperformed FIB-4, APRI, Forns, and BARD scores in the validation datasets. A superlearner 
model derived from 12 base models performed as well as one derived from 90 base models.    
 
Conclusions:  The superlearner, thought of as the “best-in-class” ML prediction, performed 
better than most existing models commonly used in practice in detecting fibrotic NASH. The 
superlearner can be used to benchmark the performance of conventional clinical risk prediction 
models.  
 
Keywords: Clinical risk prediction; non-invasive testing; liver fibrosis; machine learning 
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Introduction 
 
Regression models remain the workhorse of clinical risk prediction. For example, all recently-
developed non-invasive tools developed to predict significant liver fibrosis in the past decade, 
rely on logistic regression models1–4. Advantages of regression models include their ease of 
development and implementation, transparency and interpretability, and widespread 
understanding by clinicians. Once a regression model for risk prediction is developed, it must be 
tested across independent and diverse cohorts to ensure appropriate performance. Even in the 
best-case scenario, when a regression model developed in one cohort performs well in others, 
lingering questions remain: is this the best model that can be developed for its specific purpose, 
balancing prediction performance with the aforementioned merits of regression models? More 
specifically, one may ask: (1) how would the regression model compare to more complex 
machine learning approaches? and (2) would the inclusion of additional features/covariates 
improve the model performance?   
 
In this paper, we illustrate the use of an ensemble machine learning algorithm, the 
“superlearner”, to benchmark the performance of clinical risk prediction algorithms, especially 
those based on simple regression techniques. Ensemble machine learning algorithms combine 
predictions from multiple models into a single prediction, and are particularly useful because it is 
oftentimes difficult for researchers to select a single model with optimal performance a priori. 
Even after systematically assessing the performance of various models (or “learners”), it can still 
be challenging to select the best performing one with confidence. The superlearner algorithm 
integrates information across numerous base learners by using cross-validation to identify an 
optimal combination of their predictions5–7. By borrowing strength across many learners, the 
superlearner may better describe complexities in the underlying data, and may produce a more 
accurate prediction. As such, the superlearner can be thought of as a “prediction ceiling”, 
capturing the best-possible or close-to-the-best-possible prediction given the available 
information used to develop the model. The superlearner can then be used to benchmark the 
performance of simpler risk prediction algorithms, such as those based on regression techniques.  
 
We illustrate the superlearner in the context of developing a non-invasive risk scoring system to 
predict liver fibrosis in nonalcoholic fatty liver disease (NAFLD). NAFLD is the most common 
cause of chronic liver disease in the world, affecting over one-quarter of the population8. While 
the severity of liver disease in patients with NAFLD varies greatly, the single most important 
determinant of long-term outcomes in patients with NAFLD is the extent of liver fibrosis9. Non-
invasive methods are essential as the initial screening test to identify at risk individuals for 
interventions. We rigorously compare the superlearner with numerous existing non-invasive 
fibrosis scoring systems in two independent validation datasets, including a US-representative 
cohort, and demonstrate how the superlearner can be used to assess the performance of simpler 
models.         
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Methods  
 
Study Design 

The overarching goal of this work is to develop a superlearner to predict significant fibrosis 
(stage 2 or higher) in patients with NAFLD and rigorously compare the resulting risk prediction 
with existing non-invasive fibrosis scoring systems in two independent validation datasets, 
including a US-representative cohort.    

The training data set is comprised of patients enrolled in the observational cohort of the non-
alcoholic steatohepatitis clinical research network (NASH CRN)10.  The first testing data set for 
model evaluation included subjects who participated in the Farnesoid X nuclear receptor ligand 
obeticholic acid for non-cirrhotic NASH (FLINT) clinical trial11.  The second testing data set 
consisted of examinees who participated in the National Health and Nutrition Examination 
Survey from 2017 to March 2020 Pre-Pandemic period and were found to have NAFLD12,13.   

In selecting these data sets, our strategy was to develop and validate our model in subjects in a 
wide spectrum of NAFLD, including those undergoing evaluation for NAFLD in a specialty 
setting (NASH CRN cohort), rigorously-selected participants in a randomized controlled trial for 
NASH (FLINT), and subjects in a cross-sectional study sample designed to be representative of 
the adult US population. 

The training dataset consisted of biopsy-proven NAFLD patients of NASH-CRN, the details of 
which are published10. Briefly, the study included the entire spectrum of NAFLD patients, 
ranging from simple steatosis to cirrhosis, and excluded patients with other forms of chronic 
liver disease, such as viral hepatitis or alcohol-associated liver disease. From the study data, we 
selected patients with available liver biopsy data from within six months of baseline data 
collection. 

The details of the FLINT trial have also been described in detail11. Briefly, the trial enrolled both 
diabetic and nondiabetic patients with histologically-confirmed NASH regardless of fibrosis 
stage, and randomized them between obeticholic acid and placebo. From these study 
participants, individuals without complete data necessary for the analysis (e.g., liver fibrosis 
stage) were excluded from our analysis. Although this trial was conducted by NASH CRN, there 
was no overlap between subjects of the observational cohort included in the model training and 
the FLINT trial participants. 

NHANES is a federal program conducted by National Center for Health Statistics (NCHS) to 
determine the health and nutritional status of the US population, employing multistage, stratified 
probability samples designed to be representative of non-institutionalized civilians13. Since 1999, 
NHANES has collected and released data in 2-year cycles. NHANES data collection for 2019-
2020 was suspended in March of 2020 due to COVID-19 pandemic rendering this sample not 
nationally representative; therefore this partial sample was combined with the 2017-2018 cycle. 
Sample weights and variance units were constructed and provided for this unique NHANES 
cycle by NCHS to produce nationally representative estimates from this 3.2-year period sample.  
In addition to a wide array of existing variables from questionnaires, physical examinations and 
laboratory data, transient elastography was added to NHANES beginning in 2017.  Thus, from 
the 2017 to March 2020 Pre-Pandemic data set, we selected adult (>=18 years) examinees with 
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evidence of hepatic steatosis, as defined by a controlled attenuation parameter (CAP) score of 
274 or higher14.  
 
From the NHANES set, subjects were excluded if there was positive viral hepatitis B or C 
markers and significant alcohol use, as defined by an average of more than 2 drinks per day for 
men or more than 1 drink per day for women; those who had 4-5 drinks on an occasion at least 5 
times in the past 30 days; and those who 4 or more drinks per day at least 3-4 times a week in the 
past year. Individuals with incomplete elastography exam status, missing labs, or missing alcohol 
information were also excluded.  
 
In the NHANES set, subjects were determined to be diabetic if they were told they had diabetes; 
take insulin or oral hypoglycemic agents; or had glycohemoglobin greater than 6.5%. 
Hypertension was present if they were told they had hypertension or high blood pressure; had a 
non-missing age at which they were told they had hypertension; take prescribed medication for 
hypertension or high blood pressure; had systolic blood pressure recorded above 140 mmHg; or 
had diastolic blood pressure recorded above 90 mmHg. 
 
Predictor and Outcome Variables 
Outcomes: In the NASH-CRN and FLINT datasets, stage 2 or higher biopsy-proven fibrosis was 
the binary outcome of interest. In the NHANES-NAFLD cohort, biopsy-based fibrosis data was 
not available, and thus we used liver stiffness measurements (LSM) of greater than 8 KPa as the 
closest surrogate for the outcome interest14.    
 
Covariates: To train the superlearner, we used data on 23 clinical, demographic and laboratory 
measurements common to all three datasets: age, sex, race (white v. other), Hispanic ethnicity, 
presence/absence of type II diabetes status, presence/absence of hypertension, albumin, alanine 
aminotransferase (ALT), alkaline phosphatase, aspartate aminotransferase (AST), body mass 
index (BMI), gamma-glutamyl transferase (GGT), globulin, fasting glucose, HDL cholesterol, 
hematocrit, hemoglobin A1C, LDL cholesterol, platelets, total bilirubin, total cholesterol, 
triglycerides, and white blood cell count.      
 
Statistical Analysis  
The superlearner is an ensemble method that combines many “base” models into a single “super” 
model by using cross-validation (CV) to identify an optimal weighted combination of the base 
models. These base models may range from the familiar (generalized) linear regression to more 
sophisticated approaches like regularized regression (e.g. lasso), tree-based methods (e.g. 
random forest), and other sophisticated machine learning algorithms such as neural networks and 
support vector machines7,15.   
 
The superlearner algorithm is depicted graphically in Figure 1, with V=10 folds used for cross-
validation and M=12 base models, as used in this study. First, we randomly split the training 
dataset into V non-overlapping and approximately equally-sized folds. For a given fold, we train 
all M base models on the other V-1 folds. Then, we use each of the base models to predict the 
outcome value for each observation in the selected fold. In the example depicted in Figure 116, 
we fit each base model to the data in Folds 2-10 (holding out Fold 1); Folds 1, 3-10 (holding out 
Fold 2); and so on until there are 10 fits for each base model. We predict the outcomes in Fold 1 
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using the base models fit to Folds 2-10; predict the outcomes in Fold 2 using the base models fit 
to Folds 1, 3-10; and so on until we have a vector of predicted outcome values for each of the 12 
base models. Note that these predictions are always on data folds not used to train the models.    
 
Now we want to find the weighted combination of the CV predicted values for each base model 
that minimizes a pre-specified loss function, such as the mean squared error (MSE). For the 
MSE, the optimal weights are equivalent to the coefficient estimates from regressing the M sets 
of predicted values against the true outcome (linear regression for continuous outcomes, logistic 
regression for binary outcomes). Other loss functions may be used, and for ease of interpretation, 
the weights are generally restricted to be positive values that sum to 1. Base models that give 
good predictions will be assigned larger weights, while the weights associated with models that 
perform poorly will approach zero. Finally, we re-fit each base model to the entire training 
dataset. To predict new values using the superlearner, predictions from these base model fits are 
combined according to the weights estimated from cross-validation.  
 
The superlearner has been shown to perform asymptotically as well as the “true” best weighted 
combination of the specified base learners, assuming that none of the individual prediction 
models correctly match the real data-generating process5,15. Therefore, adding more base learners 
should always improve the performance of the superlearner in theory, but can be impractical 
beyond a certain extent, due to excessive burden in computation an collecting relevant prediction 
features. 
 
Cross-validation techniques can be and oftentimes are used to tune hyperparameters of the 
individual base learners. Here, we are not concerned with trying to choose the best base model or 
model parameter(s), so it is not necessary to optimize base model hyperparameters, using CV or 
otherwise. Within the same superlearner, it is possible to include multiple instances of the same 
model with different parameter values, as we have done in this analysis. 
 
We fit a total of six superlearner models using the SuperLearner R package11. First, we 
constructed a superlearner using all available predictor variables and the following 12 base 
models: Bayesian generalized linear model (bayesglm17), multivariate adaptive regression splines 
(earth19), generalized additive model (gam18), generalized boosted model (gbm19), generalized 
linear model (glm), regularized generalized linear model (glmnet20), bagging trees (ipredbagg23), 
neural network (nnet21), multivariate adaptive polynomial spline regression (polymars22), random 
forest (randomForest23), recursive partitioning tree (rpart24), and support vector machine (svm25). 
Default tuning parameters were used for all 12 base models. We then re-fit this superlearner to 
training data where all continuous predictors have been log transformed, and again to both the 
untransformed and log-transformed data. The other three superlearners were constructed from 90 
base models, fit to the untransformed, log-transformed, and untransformed + log-transformed 
training data. These 90 base models are instances of the 12 model types used in the superlearners 
with 12 base models, but with varying model parameters (Table S2). For all superlearners, we 
used 10-fold CV and maximized the area under the receiver operating characteristic (ROC) curve 
to obtain the model weights. 
 
For each validation cohort, we applied the six superlearner models and six additional risk scores 
including the AST to Platelet Ratio Index (APRI)26,27, the BARD score4, the Fibrosis-4 (FIB-4) 
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score1, the Forns index28, the NAFLD fibrosis score (NFS)2, and the Steatosis-Associated 
Fibrosis Estimator (SAFE) score3 for identifying significant liver fibrosis. In evaluating the 
performance of the six scores, and the superlearners in each validation cohort, we used ROC 
curves and area under the ROC curve (AUC) as summary measures of discriminative ability. For 
the NHANES-NAFLD dataset, we used sampling weights to obtain weighted AUCs and ROC 
curves29. 95% percentile bootstrap confidence intervals were computed for the AUCs using 1000 
bootstrap replicates. In addition, descriptive statistics reported for the NHANES-NAFLD data 
account for the sample weights, clusters, and strata in its complex survey design30,31. 
 
The superlearner is a “black box” approach, which makes interpretation of its results difficult. To 
allow for interpretation and visualization, we plotted standardized mean differences within 
quartiles of the predicted superlearner and SAFE scores, as the latter turned out to perform the 
best among all 12 models tested. That is, for all continuous covariates considered in the 
validation cohorts, we standardized the variables by subtracting the mean and dividing by the 
standard deviation.  Binary covariates were not standardized. Then, we grouped the data by 
quartiles defined using the predicted superlearner and SAFE scores. Finally, we calculated the 
mean of each predictor variable within quartiles, which can be interpreted as a standardized 
mean for continuous covariates and an estimated proportion for binary covariates. Confidence 
intervals were computed using a normal approximation (Wald confidence interval for binary 
variables). For the NHANES-NAFLD cohort, we used weighted means and quartiles, as well as 
standard deviations and standard errors that appropriately account for the complex survey design. 
This process allows us to characterize those who are predicted to be at high risk of significant 
fibrosis, compared to those with low or moderate predicted risk.  
 
Supplementary analyses: Liver fibrosis stages range from 0 (no fibrosis) to 4 (cirrhosis).  We 
selected our primary analysis calibrated for stage 2 fibrosis, which is the inflection point beyond 
which the risk of future morbidity and mortality rises significantly.  We performed a sensitivity 
analysis fitting a superlearner model to predict stage 3 fibrosis (advanced fibrosis), which many 
of the existing models were developed to diagnose.  We compared the performance of the 
superlearner-F3 model with existing non-invasive fibrosis scores. In the NHANES-NAFLD 
cohort, LSM greater than 12 KPa was used as the surrogate outcome of interest.       
 
Reproducibility: All statistical analyses were performed in the R programming language32. R 
code to reproduce the figures, tables, and analysis presented in this manuscript is available at 
https://github.com/janewliang/NAFLD_superlearner. The official guide to the R SuperLearner 
package can be found at https://cran.r-project.org/web/packages/SuperLearner/vignettes/Guide-
to-SuperLearner.html.  
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Results 
Our goal was to develop ensemble models to accurately predict significant liver fibrosis (stage II 
and higher) using routinely collected clinical and laboratory data using the superlearner 
algorithm (Figure 1). We trained superlearner models using data from NASH-CRN and tested 
these models using data from the FLINT and NHANES-NAFLD cohorts (Figure 2). We 
compared the performance of the superlearner models to six existing non-invasive fibrosis 
scores: APRI, BARD, FIB-4, Forns index, NFS and SAFE (Table S1).  
 
In total, 23 clinical/demographic and laboratory parameters were common to the three datasets 
studied and were used to train the superlearner; in contrast, existing non-invasive fibrosis scores 
use between two and seven variables for fibrosis prediction (Table S1). Summary statistics for 
the 23 variables for in each cohort are provided in Table 1. Briefly, the NHANES-NAFLD 
cohort had lower median AST and ALT levels compared to the NASH-CRN and FLINT cohorts, 
and fewer patients had type II diabetes than in the FLINT cohort. Importantly, the prevalence of 
significant fibrosis (defined as stage II on biopsy in NASH-CRN and FLINT cohorts and 
LSM>8KPa in the NHANES-NAFLD cohort) was lower in the NHANES-NAFLD cohort than 
in the NASH-CRN and FLINT cohorts (15% v. 45-59%).     
 
We present results from a superlearner combining 12 base models in which we allowed 
continuous predictors to be on their natural scale or log-transformed, with results from other 
more complex superlearner models presented in the supplement. The estimated optimal 
associated weights underlying this superlearner model are provided in Table 2; ~23% of the 
model weights are assigned to multivariate adaptive polynomial spline regression (polymars), 
and the remaining ~77% of the model weights are spread among other base learners. As such, 
this superlearner represents the optimal combination of the 12 base models to predict stage II or 
higher fibrosis.      
 
Figures 3 and 4 demonstrate the ROC curves and AUCs for the superlearner compared to the 
other six existing fibrosis scores for comparison, in the two testing datasets: FLINT and 
NHANES-NAFLD. In both data sets, the superlearner was able to discriminate patients with 
significant fibrosis from those without well, with AUCs of 0.79 (95% CI: 0.73-0.84) and 0.74 
(95% CI: 0.68-0.79), respectively. In the FLINT cohort, besides the superlearner, SAFE had the 
highest AUC, (though confidence intervals overlap with APRI, FIB-4, and NFS). A similar 
pattern was replicated in the NHANES-NAFLD cohort, in which the NFS score had marginally 
lower AUC than the superlearner and SAFE scores.  The BARD, FIB-4 and Forns index scores 
performed noticeably worse than the superlearner, NFS and SAFE scores in the NHANES-
NAFLD cohort. As the SAFE score produced a comparable AUC to that of the superlearner 
(Figure 4), in Figure S1, we examine their correlation and illustrate that the superlearner and 
SAFE scores are in close alignment (Spearman’s correlation coefficient of 0.91-0.93 in both 
cohorts).  
 
In sensitivity analyses, we considered other variations of the superlearner using more models 
(ensembles of up to 90 models total, Table S2), but the predictive performance of all the 
superlearner models considered were similar (Table S3). While including additional base models 
is generally believed to improve predictive performance, we found that in this context, the 
superlearners with 90 base models did not consistently outperform the considerably less complex 
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and computationally intensive superlearners with only 12 base models. The superlearners also 
gave similar results despite notable differences in base model weights (Table S3). 
 
To better visualize the covariate profiles of patients predicted to have significant fibrosis by the 
superlearner with 12 base models, we plotted the standardized means and estimated proportions 
within predicted superlearner score quartiles for continuous and binary predictors, respectively 
(Figure 5). In both the FLINT and NHANES-NAFLD cohorts, those in the fourth quartile 
(predicted to be at highest risk of significant fibrosis) tended toward being older; having higher 
BMIs; having type 2 diabetes or hypertension; exhibiting higher levels of AST, GGT, fasting 
glucose, and hemoglobin A1C; and exhibiting lower levels of albumin and platelets. On average, 
the high-risk group in the FLINT cohort had higher ALT, ALP, and globulin levels, as well as a 
lower standardized mean for hematocrit. In the NHANES-NAFLD cohort, the high-risk group 
was associated with lower average total and LDL cholesterol levels.  
 
In supplementary analyses, we explored how each of the non-invasive fibrosis scores, including 
the superlearner, correlate with liver stiffness measures (LSM) in the NHANES-NAFLD dataset 
(Figure S2). The Spearman's correlation (adjusted for survey sampling) between each of the 
predicted scores and LSM is slightly positive for superlearner, NFS, and SAFE, and lower for the 
other scores. The correlation is essentially zero for FIB-4 and BARD, which also have the lowest 
AUCs. We also compared the performance of each of the non-invasive fibrosis scores to the 
FibroScan-AST (FAST) score and the Agile3+ and Agile4 scores in the NHANES-NAFLD 
cohort. Overall, the superlearner had significant correlation with these scores (Figure S3-S5)  
 
Finally, we fit a superlearner model to predict stage III fibrosis (F3) and higher (Figure S6). We 
found that the superlearner-F3 had excellent performance in both the FLINT and the NHANES 
cohorts (AUCs: 0.78-0.79), comparable to the SAFE score. In contrast, other non-invasive 
fibrosis predictors had worse performance (AUCs: 0.6-0.7; Figure S6).    
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Discussion  
In this paper, we implement an ensemble machine learning algorithm to benchmark the 
performance of simpler risk prediction models, using the prediction of significant liver fibrosis in 
patients with NAFLD as an example. The superlearner model was trained to optimally combine 
the results of 12 (and up to 90) individual statistical and machine learning algorithms, using 23 
laboratory and demographic variables. The superlearner competently recognized significant 
fibrosis (stage II and higher) in two independent testing datasets, and performed better than 
existing models commonly used in practice, namely FIB-4 and NFS scores.    
 
The appeal of an ensemble superlearner model is that it allows researchers to combine 
predictions from many conventional and novel machine learning algorithms and avoid 
committing to a single, possibly poor-performing, algorithm a priori7. The superlearner has been 
shown to perform asymptotically as well as the best weighted combination of the specified base 
learners15. As more prediction features and more complex machine learning techniques become 
available, there is a need to explore whether modern machine learning methods can tangibly 
improve on conventional statistical approaches to prediction by leveraging high dimensional data 
and modeling potentially complex relationships between predictors and liver fibrosis. Each 
existing non-invasive risk score represents a single algorithm trained on a single dataset. In 
general, researchers and clinicians cannot identify one algorithm as “the best” a priori.  
Ensemble machine learning approaches offer the opportunity to achieve better predictive 
performance across diverse datasets by combining potentially diverse models into a single 
prediction, whose performance tends to be more robust to individual learners and close to the 
“performance ceiling”.  Therefore, the developed superlearner may play two important roles in 
practice: (1) it can be used to replace an individual risk prediction algorithm for its superior 
performance; and (2) it can serve as a benchmark to determine if the existing risk prediction 
algorithm is already sufficiently accurate. We note that depending on the context, even if the 
superlearner outperforms individual learners, one may still prefer an individual learner due to the 
computational burden of the superlearner and its lack of interpretability. However, by comparing 
the performance of an individual learner to the superlearner, we can understand whether the 
individual learner has large room for improvement.  
 
We focused on liver fibrosis in NAFLD as an example, since developing clinically useful non-
invasive risk scores for liver fibrosis has been an important yet challenging task in clinical 
medicine for the past decade. Many models have been created, analyzing and synthesizing 
information derived from different clinical, laboratory and demographic variables to estimate 
liver fibrosis. Our work demonstrates that superlearner models that consider many more 
variables than the other existing non-invasive predictors (23 v. 2-7 variables), and are of 
enormous complexity (combining information from up to 90 models, for example), outperform 
some but not all existing non-invasive predictors. In particular, the SAFE score, based on a 
multivariable logistic regression model using seven variables, achieves similar performance to 
the superlearner for predicting both F2 and F3 or higher fibrosis in the two testing data sets 
studied. This finding illustrates that even when the superlearner fails to outperform a simpler 
model, it can be used as a benchmark to assess whether the simpler model achieves the 
prediction ceiling given a particular training dataset. As such, the superlearner approach, which 
requires minimal human input besides a priori selection of the base models, can be used as a 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.02.23293569doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.02.23293569


 

 

robustness-check for other models to be compared against. In this specific context, our results 
lend credibility to the SAFE score, despite its substantially simpler form.          
 
Several limitations must be mentioned. First, the superlearner algorithm, including choice of all 
base learners and tuning parameters, should be specified a priori, as rerunning the algorithm 
after adjusting parameters can lead to overfitting. Second, in the context presented in this paper, 
the superlearner is focused on prediction, where the goal is to predict the probability of 
significant liver fibrosis conditional on 23 observed covariates. The superlearner does not 
produce an interpretable equation that communicates the effects of each covariate on the 
probability of the outcome, though an equation/calculator to allow for implementation can be 
produced. To address this limitation, we present an approach to visualize the covariate profiles of 
the patients predicted by the superlearner to have significant fibrosis (Figure 5); this 
visualization tool gives us insight about the characteristics of the patients identified by the 
algorithm. The third limitation is the computational cost of fitting the superlearner. When nested 
cross-validation is unnecessary (e.g. in the setting where there are multiple independent 
training/testing datasets), the computational burden of fitting a superlearner, even one with as 
many as 90 models, is modest. To encourage use of the superlearner algorithm in clinical risk 
prediction, we have made our code publicly available.  
 
In conclusion, using the superlearner approach, we were able to train a model to predict 
clinically significant liver fibrosis in patients with NAFLD.  Based on the robust number of 
practicable variables to be included in non-invasive assessment of NAFLD, the superlearner was 
able to outperform existing tools that have been widely used for NAFLD and other conditions.  
In our view, the superlearner represents the “best possible” prediction given a training dataset, 
and even in settings where it does not outperform existing simpler models, it can be used as a 
benchmark to assess the performance of existing clinical risk prediction models.   
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Table 1. Summary of laboratory and clinical characteristics in each cohort. The median 
(interquartile range) is reported for continuous variables and the mean (standard deviation) for 
binary variables. The descriptive statistics for NHANES-NAFLD adjust for survey sampling.  

 NASH-CRN 
(Training) 

FLINT 
(Testing #1) 

NHANES- 
NAFLD 

(Testing #2) 

Albumin (g/dL) 4.2 (0.5) 4.3 (0.6) 4 (0.4) 

Alanine aminotransferase (U/L) 64.5 (54) 68 (61.5) 21 (15) 

Alkaline phosphatase (U/L) 80 (36) 76.5 (34.75) 74 (26) 

Aspartate aminotransferase (U/L) 46 (34) 51 (39.5) 19 (8) 

Body mass index (kg/m2) 33.66 (8.6) 33.58 (7.29) 32.1 (8.7) 

Gamma-glutamyl transferase (U/L) 49 (54) 48.5 (58) 24 (16) 

Globulin (g/dL) 3 (0.7) 3 (0.6) 3 (0.5) 

Glucose (mg/dL) 95 (24) 103.5 (31) 109 (21) 

HDL cholesterol (mg/dL) 42 (14) 42 (14) 45 (16) 

Hematocrit (%) 42.4 (4.8) 41.05 (4.88) 43 (5.3) 

Hemoglobin A1C (%) 5.7 (0.9) 6.2 (1.2) 5.7 (0.7) 

Hypertension (yes/no) 0.44 (0.5) 0.61 (0.49) 0.54 (0.5) 

LDL cholesterol (mg/dL) 119 (48) 108.5 (52.75) 112 (48) 

Platelets (1000/mm3) 245 (80.5) 232.5 (74.5) 237 (77) 

Total bilirubin (mg/dL) 0.7 (0.4) 0.6 (0.4) 0.4 (0.3) 

Total cholesterol (mg/dL) 193 (51.25) 185 (63.25) 183 (52) 

Triglycercides (mg/dL) 149 (99) 154 (92.5) 116 (79) 

Type 2 diabetes (yes/no) 0.22 (0.42) 0.49 (0.5) 0.25 (0.43) 

White blood cell (1000/mm3) 6.7 (2.4) 6.85 (2.7) 7 (2.4) 

Age (years) 49 (17) 53 (16.75) 54 (26) 

Hispanic ethnicity (yes/no) 0.14 (0.35) 0.16 (0.36) 0.19 (0.4) 

Male gender (yes/no) 0.38 (0.49) 0.34 (0.48) 0.55 (0.5) 

White race (yes/no) 0.8 (0.4) 0.82 (0.38) 0.62 (0.49) 

Significant fibrosis (yes/no) 0.45 (0.5) 0.59 (0.49) 0.15 (0.36) 
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Table 2.  Estimated optimal model weights for the superlearner, constructed from 12 base 
models, considering data on 23 clinical/demographic variables. Both untransformed and log-
transformed continuous variables were considered.   

 
Superlearner-12 

(all) 

Bayesian generalized linear model 0.07 

Multivariate adaptive regression splines 0.029 

Generalized additive model 0 

Generalized boosted model 0.146 

Generalized linear model 0.001 

Regularized generalized linear model 0.122 

Bagging trees 0.062 

Neural network 0.102 

Multivariate adaptive polynomial spline regression 0.227 

Random forest 0.165 

Recursive partitioning tree 0 

Support vector machine 0.074 
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Figure 1: Superlearner algorithm construction illustrated with 10-fold cross-validation and 12 base models (a different number of 
folds or models may be used). Loosely adapted from (16). 
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Figure 2: Subject selection for the training and validation cohorts used for analysis. *NHANES 
participants were deemed ineligible and excluded from our study if they were less than 18 years 
of age; had viral hepatitis; had incomplete elastography exam status, missing labs, or missing 
alcohol information; were alcoholic; or had controlled attenuation parameter (CAP) below 274. 
Alcoholic status was defined as those who had an average of more than 2 drinks per day for men 
or more than 1 drink per day for women; those who had 4-5 drinks on an occasion at least 5 
times in the past 30 days; and those who 4 or more drinks per day at least 3-4 times a week in the 
past year.  
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Figure 3: Receiver operating characteristic (ROC) curves for superlearner (based on 12 base 
models), APRI, BARD, FIB-4, Forns, NFS, and SAFE applied to each validation dataset. The 
NHANES-NAFLD ROC curves are weighted to account for survey sampling.  
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Figure 4: Area under the ROC curve (AUC) for superlearner (based on 12 base models), APRI, 
BARD, FIB-4, Forns, NFS, and SAFE applied to each validation dataset. 95% bootstrap 
confidence intervals are also shown. The NHANES-NAFLD AUCs are weighted to account for 
survey sampling.  
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Figure 5: Standardized mean within quartile (with 95% normal approximation confidence 
intervals) for each continuous predictor and the estimated proportion within quartile (with 95% 
Wald confidence intervals) for each binary predictor in the FLINT and NHANES-NAFLD 
cohorts. Quartiles were defined based on the superlearner (12 base models) or SAFE scores. For 
the NHANES-NAFLD dataset, the calculation of means, standard deviations, quartiles, and 
confidence intervals incorporates its complex survey design.  
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