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Supplemental Information 

 

Methodology of participating teams 

 

Team 1 Methods 

Anonymous, no methods provided. 

 

Team 2 (AIBI) Methods 

Contact: Yang Shen, Texas A&M University, yshen@tamu.edu 

We trained machine learning models to predict the probability that an input variant 

is causal for the paired, input phenotype, using the training data provided. Variant filtering. 

Following CHESS (1), we only retained rare variants with Minor Allele Frequency (MAF) 

below 0.05 and with VEP-predicted coding consequences (2). Variant featurization. Input 

features for variants were predictions from REVEL (3), gene prioritization scores from 

Phenolyzer (4), and lineage information (4D from either parent); where missing values 

were simply replaced by zeros. Phenotype embedding. Input features for phenotypes 

were embeddings using pre-trained BioBERT(5) to embed the descriptive texts of each 

phenotype node followed by possible graph embedding of the Human Phenotype 

Ontology. Model training. We built a multi-layer perceptron and trained it with five-fold 

cross validation where the loss function is binary cross entropy.  The primary model was 

an ensemble over the combination of five folds and three phenotype embedding 

strategies. 
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Team 3 (Bologna Biocomputing Group) Methods 

Contact: Giulia Babbi, University of Bologna, giulia.babbi3@unibo.it 

The method of the Bologna Biocomputing Group consists of 4 steps that take into 

consideration: i) the prediction of the variant effect, ii) the variant allele frequency, iii) the 

inheritance pattern, iv) the relevance to proband phenotype. Variants are mapped on the 

genome with the Ensembl Variant Effect Predictor (VEP) (2). We retain only variants 

affecting the protein-coding regions (i.e., stop gain, frameshift, and missense) and 

exclude variants with allele frequency > 1%, as derived from gnomAD 

(https://gnomad.broadinstitute.org/). 

We analyze the variants considering the genotypes of the proband’s 

parents/sibling, when provided.  To prioritize the most probable causative variants (CVs), 

we mainly focus on de novo mutations, and homozygous alleles in proband with 

heterozygous parents.  

We collect the genes associated with the clinical phenotypes of each proband from 

two databases eDGAR (6) and PhenPath (7) that collect and organize data on gene-

disease and gene-disease-phenotype relationships, respectively. We then provide the 

functional characterization of diseases and phenotypes by means of functional 

enrichments computed with NetGE-PLUS (8). 

Model 1 considers only variants on genes directly associated to clinical 

phenotypes.   

For Model 2, we enlarge the set of candidate genes, by including i) genes 

associated with diseases endowed with the proband phenotypes, and ii) genes that 

participate to the GO-biological processes associated with the phenotypes. 
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Team 4 (DITTO) Methods 

Contact: Manavalan Gajapathy, The University of Alabama at Birmingham, 

magajapathy@uabmc.edu 

Our machine learning model (DITTO) was trained using pathogenic and benign 

non-synonymous single nucleotide variants (nsSNVs) retrieved from ClinVar and HGMD, 

to predict variant pathogenicity classifications. We utilized VEP (Variant Effect Predictor) 

to annotate variants with allele frequencies from gnomAD, conservation scores and 

damage predictions from dbNSFP. To improve the performance of our model, we 

selected a subset of classifiers from the scikit-learn package and stacked them into a 

single classifier. This approach allowed us to incorporate multiple methods and improve 

the learning performance of our model. We also used hiPHIVE (Exomiser) to prioritize 

genes based on phenotype terms extracted from each sample. The tool outputs a score 

for each gene based on the match to the phenotype terms provided. We normalized these 

scores to a (0,1) scale to bring both the Exomiser score and deleterious probability to the 

same scale. We then calculated the mean value between the normalized Exomiser score 

and deleterious probability for each variant to prioritize variants for each proband. We did 

not take familial segregation into account for our predictions. 

 

Team 5 (Exomiser) Methods. 

Contact: Damian Smedley, Queen Mary University of London, d.smedley@qmul.ac.uk 

 See main text for Exomiser methods. 
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Team 6 Methods 

Anonymous, no methods provided. 

 

Team 7 (Uniss) Methods 

Contact: Matteo Floris, University of Sassari, matteo.floris@gmail.com  

The algorithm developed by the Uniss Team uses a similarity metric between the 

HPO terms of the proband's symptoms and the HPO terms of each of the diseases 

(calculated with the R library 'ontologySimilarity' (9)) associated by Orphanet (Orphadata 

(10,11)) with the genes with the most deleterious mutations found in the proband. The 

mutated genes in each proband are then sorted according to the similarity between the 

HPO terms of the associated diseases and the HPOs of the proband's symptoms. 

 

Team 8 (BORG) Methods 

Contact: Azza Althagafi, King Abdullah University of Science and Technology (KAUST), 

azza.althagafi@kaust.edu.sa 

Data preprocessing and annotations. We performed quality control on the variants 

with a variant quality threshold of 20. Additionally, we preprocessed the data by 

normalizing indels, verifying if the reference alleles matched the reference, and splitting 

multiallelic sites into multiple rows. We also used BCFtools (12) and VCFtools (13) to 

recover multiallelic variants from multiple rows. To identify and prioritize candidate 

variants before clinical interpretation, we subjected the final list of variant calls to variant 

filtering. For this purpose, we developed a custom pipeline based on ANNOVAR (14). We 

filtered out common variants with a Minor Allele Frequency (MAF) value higher than 1% 
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in any of the known databases, including the 1000 Genomes frequencies, ExAC (15) for 

all populations, and gnomAD (16). We then filtered the remaining variants using the family 

pedigree based on the suspected mode of inheritance. After applying the genotype filters, 

we annotated the variants using VEP  (17) and precalculated CADD score (18).  We 

chose to use CADD for variant pathogenicity prediction in this challenge due to its better 

performance compared to most other prediction methods, as demonstrated in previous 

studies (18). 

Family-based Filtering. To choose the most suitable mode of inheritance for each 

case, we studied both the training set and the actual testing set for all possibilities while 

considering the ethnicity. Consequently, in some cases, we prioritized some mode of 

inheritance filters over others. We use ethnicity to prioritize a family filter based on the 

recessive mode of inheritance when we suspect likely consanguinity (i.e., we use the 

amount of consanguinity within an ethnic group as a prior when selecting the mode of 

inheritance filter to apply). For the family-based filtering, we utilized the recently published 

method Slivar (19). The method explores practical guidelines for variant (SNP and INDEL) 

filtering and reports the expected number of candidates for de novo dominant, recessive, 

and autosomal dominant modes of inheritance. We evaluated different settings and 

configurations based on the family pedigrees. Using Slivar, for the trios or quads, and 

duos: we us segregating_denovo, segregating_recessive, and compound heterozygous 

compound-hets filtering. For the proband only cases: we used segregating_dominant, 

segregating_recessive filtering for the variants. 

Causal variants prediction. After filtering variants, our approach for predicting the 

causative variant(s) is by combining two main sources of information; the first utilizes the 
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genomic features and pathogenicity prediction using CADD, and the second is based on 

the phenotype annotations for the affected families combined with the ontology-based 

machine learning method DL2vec (20). We made four submissions based on the different 

gene-phenotype representations using DL2vec. We mainly utilize three types of gene 

annotation features for supervised learning as they perform best in our previous 

experiments (20): Gene Ontology (GO) (21), Mammalian Phenotype Ontology (MP) (22), 

and the Human Phenotype Ontology (HPO) (23). Specifically, we obtain the annotations 

of human genes with functions and cellular locations encoded by the GO, and the 

phenotypes of their mouse orthologs from the Mouse Genome Informatics (MGI) 

database and characterized using the MP, and the phenotypes of the human genes using 

HPO.  Furthermore, we obtain phenotype annotations of human diseases with the HPO, 

in addition to the phenotypes obtained from the training set. To combine the annotations 

using the different ontologies, we use the integrated PhenomeNET ontology (24).  We 

jointly embed the gene and disease, their ontology-based annotations, and the ontologies 

used in the annotations in a vector space. We generate embeddings individually using 

GO, MP, and HP annotations, and their union.  We then use a pointwise learning-to-rank 

model to prioritize gene--disease pairs based on gene--disease associations in the Online 

Mendelian Inheritance in Men (OMIM) database (25), and the phenotypes in our training 

set.  Our model is based on neural networks; given a pair of embedding vectors G and D 

as input, the model independently transforms the embeddings into a lower-dimensional 

representations using two fully-connected hidden layers, and then computes the inner 

product followed by a sigmoid function that outputs a value between 0 and 1, and which 

we use as the prediction score for an association between G and D.  We combine DL2Vec 
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predictions with CADD predictions, and include the top 100 predicted variants with the 

highest weighted prediction scores using DL2vec phenotype and CADD pathogenicity 

score for all the submissions. 

 

Team 9 (Invitae Moon) Methods 

Contact: Keith Nykamp, Invitae, keith.nykamp@invitae.com 

The automated analysis of CAGI6 test cases was performed using Moon 3.4.0 

(Invitae). Annotation sources and versions used were ClinVar (2021-06-09), dbNSFP 

(4.0), dbscSNV (1.1), Apollo (2021-09-27), gnomAD (3.1) and HPO (2021-02-08). VCF 

files of both proband and family members (if any), sex and age of onset provided for the 

proband, the proband’s phenotype as HPO terms, and family information were used as 

input for each analysis. Given Moon’s focus on diagnosing known rare genetic disorders, 

the output only contains variants in genes that have already been associated with 

Mendelian disorders in scientific literature. 

Moon generated a list of potential provisional diagnoses by sequentially annotating 

filtering and ranking variants. In the first step, low quality variants (as determined based 

on requirements for AD, DP, QUAL, GQ and allelic imbalance) were excluded. 

Subsequently, common variants in the population (>2% in gnomAD) were filtered out, 

except for a subset of more common variants with known pathogenic classification. 

Variants with either Benign or Likely Benign classifications in ClinVar were also excluded 

from the analysis. With regard to variant effect, only variants in protein or RNA coding 

regions, splice site regions and known pathogenic variants in non-coding regions were 

retained. In family analyses, co-segregation of the variant with the phenotype (i.e., healthy 



 
 

8 

or affected status of included family members), according to autosomal dominant, 

autosomal recessive, X-linked dominant or X-linked recessive inheritance patterns, was 

taken into account. Segregation was not only applied as a strict filter criterion, thereby 

also ensuring that causal mutations following non-Mendelian inheritance (e.g., with 

incomplete penetrance) would be identified in family analyses. 

For each variant, a disorder was annotated based on overlap of the proband’s 

phenotype with known gene-disease associations, and phenotype overlap was scored. 

Only variants with sufficient phenotype overlap between the proband’s phenotype and the 

annotated disorder were retained. This automated phenotype assessment in Moon is 

driven by a proprietary gene-disease database called Apollo. Natural language 

processing of the genetics literature guides selection of relevant gene-disease 

information, which is added to the Apollo database after manual curation. 

Based on the inheritance pattern of the annotated disorder by Moon, additional variable 

frequency thresholds were applied. In addition, only variants for which the zygosity of the 

called variant fit the inheritance pattern of the annotated disease were retained in the 

‘SNV’ shortlist. Heterozygous variants in genes annotated with recessive conditions were 

outputted in a separate ‘Carrier’ list. In both output lists, variants are ranked based on an 

analysis-specific p-value that is calculated based on a combination of clinical (e.g., 

phenotype overlap, age of onset) and genetic annotations (e.g., variant specific 

properties). This p-value is not an absolute probability of causality, but rather a relative 

probability which only has relevance within a specific case. However, the Moon p-value 

was converted into an absolute p-value for submission of the results. A standard 

deviation, however, could not be provided. 
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Team 10 Methods 

Anonymous, no methods provided. 

 

Team 11 (enGenome) Methods 

Contact: Susanna Zucca, enGenome Srl, szucca@engenome.com 

The models submitted by the enGenome team are machine learning classifiers 

that were selected during training phase through a “Leave-one-Proband-Out” (LOPO) 

cross-validation. The LOPO cross-validation is carried out on the 35 training probands 

(with known causatives) according to the following procedure: for each training proband, 

that proband was considered as the “LOPO test proband”, and different machine learning 

models with different hyper-parameters configurations are trained to predict the causative 

variants on the remaining 34 training probands. The models are evaluated on the current 

“LOPO test proband” and the ranking positions of the causative variant are recorded. This 

procedure is repeated for each training proband. Different machine learning models were 

evaluated, such as Naïve Bayes, Ensemble methods and Neural Network. The models 

with better ranking performance were selected, and they were trained on the entire CAGI 

training set of 35 training probands. For each test proband, the trained models were 

exploited to prioritize variants according to the machine learning predicted probabilities. 

Following the challenge, the approach has been further improved to account for refined 

gene-phenotype and gene-condition relations. A new model trained on a larger training 

dataset has been integrated in the eVai platform (https://evai.engenome.com/) as a new 

functionality called “Suggested Diagnosis”. 
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Team 12 (Lichtarge) Methods 

Contact: Panagiotis Katsonis, Baylor College of Medicine, katsonis@bcm.edu 

Model 1. We followed three causal variant segregation patterns in the families that 

led to two different scoring systems. For de novo causality, the variant should be found in 

the proband and not found in any of the parents. When parent sequencing data were not 

available, we asked that the causal variant should not be listed in gnomAD or UK biobank 

databases. The de novo score was calculated as 𝑠𝑐 = 𝑄𝐶 ∙ 𝑆𝑅 ∙ 𝐹𝑅 ∙ 𝐸𝐴 ∙ 𝐿𝐴𝐹 ∙ 𝐺𝑇 ∙ 𝐴𝑆	, 

where QC is the filter status (=1 if filter was PASS and =0 otherwise), SR is the number 

of supporting reads, FR is the fraction of the supporting reads, EA is the variant impact 

(Evolutionary Action score for missense variants, 100 for nonsense and frame-shift 

insertion/deletion variants), LAF is the negative logarithm of the maximum allele 

frequency value in gnomAD (26) or UK biobank (27) databases, GT is the ability of the 

gene to tolerate mutations (custom calculation using Evolutionary Action and the gnomAD 

database), and AS is the number of HPO terms associated with the gene according to 

HPO (28), DisGeNet (29), ClinVar (30), HumSavar 

(https://www.uniprot.org/docs/humsavar), and VarElect NGS Phenotyper (31). The 

recessive score was calculated for each gene as 𝑠𝑐 = 𝑉𝑚 ∙ 𝑉𝑓 ∙ 𝐺𝑇 ∙ 𝐴𝑆, where Vm and 

Vf are the largest variant scores, 𝑉 = 𝑄𝐶 ∙ 𝐸𝐴 ∙ 𝐿𝐴𝐹, inherited by mother and father, 

respectively. For male patients, we used 𝑉𝑓 = 𝑉𝑚 for all variants of the X chromosome, 

in order to account for X-linked dominant patterns. The two scoring systems of de novo 

and recessive analysis had different scales, so they were manually merged for the needs 

of this challenge according to the predictor’s judgement. 
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Models 2 and 3. Unlike model 1 that filtered out genes without known associations 

to the phenotype of interest and then prioritized variants according to their functional 

impact, these models filtered out variants with low functional impact and prioritized 

according to the phenotypic associations, using the VarElect NGS Phenotyper (model 2) 

and also HPO and ClinVar (model 3). We only considered variants with Evolutionary 

Action scores above 30 and fraction of supporting reads above 0.05. These variants were 

prioritized for their gene-phenotype associations. 

 

Team 13 Methods 

Contact: Daniel Zeiberg, Khoury College of Computer Sciences, Northeastern University, 

Boston, MA, USA, zeiberg.d@northeastern.edu  

Our approach combines variant-pathogenicity prediction with gene-phenotype 

association inference using a simple probabilistic framework (32) to score variants found 

in each patient’s genome. We then aggregate these combined scores over the different 

phenotypes observed in each individual to obtain a single score that is used to rank 

variants in decreasing order of their putative causal roles. Our end-to-end data-driven 

approach is exploratory, and we focus solely on missense variants due to their putative 

roles in rare genetic disorders and the challenges involved in asserting their 

pathogenicity. 

Inferring missense variant pathogenicity. To score all missense variants in each 

genome from the test set provided, we used precomputed scores from the dbNSFP 

database (33) for MutPred (34) (Model 1) and REVEL (3) (Model 2). Variants with missing 

scores were excluded. 
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Inferring gene-phenotype associations using protein-protein interaction networks. 

A naive label propagation algorithm was implemented that took as inputs: i) a list of ‘seed’ 

genes known to be associated with a given Human Phenotype Ontology (HPO) term (23), 

and ii) a protein-protein interaction network. Here, we used known associations in HPO 

to the specific phenotypes of interest in the test set for the former and the STRING protein-

protein interaction (PPI) network (35) for the latter. For each gene/HPO term relation in 

the annotations, MyGene.Info (36) was used to map the Entrez Gene ID to a set of 

Ensembl protein IDs to ensure compatibility with the STRING PPI network. The label 

propagation algorithm resulted in a matrix of protein-disease (gene-disease) associations 

for all proteins in STRING and all HPO terms in the CAGI test set. Each association was 

assigned a score between zero and one, with one indicating a higher propensity for gene-

disease association. 

Variant pre-processing, selection, and ranking. For each proband, the set of 

missense variants were filtered by keeping only “PASS” quality variants with allele 

frequencies, generated from gnomAD (37), less than 0.001. These variants were then 

cross-referenced against those in the respective parents to include only those variants 

that were unique to the proband. For each of these variants, the set of gene-disease 

association scores from the label propagation algorithm were then extracted using the 

variant’s corresponding gene/protein and all HPO terms present in the test set metadata. 

Each variant’s MutPred score was multiplied by the set of protein/HPO association 

scores, reporting the average and standard deviation of these products. For the 

secondary submission, this procedure was repeated using REVEL. 
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Team 14 (TCS) Methods 

Contact: Aditya Rao, TCS Research, adityar.rao@tcs.com 

All variants in the VCF were annotated and scored with the VPR pipeline. Only 

variants marked "PASS", with GQ >= 30, and VPR scores greater than 0.4 were 

considered for further processing. Further filtration was performed based on phase data 

if available and genes with all high scoring variants shared with a parent without disease 

phenotype discarded. Variant based gene ranks were generated by reverse sorting the 

variants based on VPR score. 

Combined ranked variants in the submission for model 1 were between 6 to 35 

(median 16) genes per proband. VPR ranked variants were 66 to 400 (median 95) per 

sample with corresponding genes ranging from 46 to 366 (median 68) per sample. 

VPR. The Variant PRioritization (VPR) tool is a rules-based engine that annotates 

and scores input variants independent of the gene of occurrence based on MAF (minor 

allele frequency), evolutionary conservation, in silico predictions and prior disease 

associations. The variant score, ranging from 0 to 1, is a weighted sum of individual 

conservation and functional components. The conservation and functional components 

in turn are built of block scores from MAF data, conservation scores from different 

predictors, deleteriousness effect predictors, and custom predictions based on the 

genomic region of the variant. Each block component score is computed through a voting 

scheme with each predictor voting for the variant being tolerated (0), probably damaging 

(0.5) or damaging (1). Individual cutoffs for the vote are set for each predictor and 

participation is based on prior performance of the predictor on the Clinvar (38) database. 

If prediction is unavailable for a particular variant, the missing predictions are ignored 
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while computing the block score. For the CAGI RGP challenge, the following predictors 

were used: 

• Conservation: GERP RS, PhyloP30, PhyloP100, PhastCons30, PhastCons100 

• MAF: 1000 Genomes, gnomAD (WG and Exomes), alpha, ExAC 

• Effect Prediction: CADD_phred, SIFT, SIFT4G, MutPred, MVP, MPC, PrimateAI, 

MutationTaster, MutationAssessor, FATHMM, REVEL, PROVEAN, MetaSVM, 

MetaLR, M_CAP 

Variant Score = 0.25 * Block Score(Conservation Predictors) + 0.25 * BlockScore(MAF) 

+ 0.5 * Block Score(Effect Predictors 

GPrio. GPrio is a gene prioritization module that provides gene scores, ranks and 

indirect gene associations given a set of HPO terms for a proband. The module is built 

on 2 different methods: 

 

Method 1. This method is based on the HPO – Gene correlations downloaded from the 

HPO (23) database. Based on all the HPO terms for each proband, scores were given 

as follows: 
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• Direct gene association: 1 

• Indirect association with maximum 2 hops: 

o 1 / 2^(number of edges between the HP nodes) 

o In the above case, parent and grandparent HP terms were scored as 

perfect match 

Scores for each gene were summed for all the proband’s HPO terms and ranked 

according to score. For example, if patient has the 2 phenotypes: 

• HP:0001324 – Muscle weakness 

• HP:0006785 – Limb-girdle muscular dystrophy 

Score for the gene TPM2 is computed for the 2 HPO terms as: 

• HP:0001324: direct association 

• HP:0006785<-HP:0003797 (Limb-girdle muscle atrophy)<-HP:000912 

(Abnormal axial skeleton morphology)* 

• Hence score is 1 + 1/8 = 1.25 

* Grandfather node has direct association 

Method 2. This method is based on the data from StringDB (39) and all gene – 

gene interactions with a confidence of above 0.9 are considered. This method is primarily 

built to explore possible indirect interactions of novel genes without apparent correlation, 

shortlisted through variant prioritization, with genes that have direct correlations with 

phenotypes of interest. The score for a gene B is computed as follows: 

• For a gene A with a direct correlation with a HPO term, if B is an interacting 

partner with maximum 2 hops between genes A and B 

• Score = Min(Gene-Gene interaction score on path between A and B) 
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• Combined score for each gene is computed 

For example, for a proband with 6 HPO terms, the score for gene GNAI1 is: 

• HP:0100704 (['GNAI1', 'GNB1'], 0.999) 

• HP:0012448 (['GNAI1', 'GNB1'], 0.999) 

• HP:0001290 (['GNAI1', 'GNB1'], 0.999) 

• HP:0001263 (['GNAI1', 'GNB1'], 0.999) 

• HP:0032807 NOT_FOUND 

• HP:0001344 (['GNAI1', 'GNAO1'], 0.968) 

Thus 5/6 HPO terms had confident interacting partners and the gene could be a novel 

association with the disease. 

Based on different combinations of these tools, three prediction models were 

submitted to the CAGI RGP challenge as follows: In model 1, the ranked variants were 

further filtered by quality and haplotype, where parent data was available, and those 

variants that overlapped with gene lists generated by either PRIORI-T or GPrio were 

retained. In addition, high scoring variants from genes that had associations with the 

proband’s phenotypes reported by GPrio’s second method or found to have associations 

through manual curation were also retained. In model 2, the ranked genes and variants 

from PRIORI-T and VPR, respectively, were combined using an internal combination 

algorithm to obtain a final ranked list of possible causal genes. This model used no 

manual intervention. Model 3 was an extension of model 2 with additional manual 

curation. 
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Team 15 Methods 

Anonymous, no methods provided. 

 

Team 16 Methods 

Anonymous, no methods provided. 

 

Reanalysis of highly ranked variants by top performing teams in solved families 

 

In P2, a proband-only family, the Invitae Moon team ranked the causal variant at 

position two, below proposed biallelic variants in MYH2, a ClinVar reported pathogenic 

frameshift variant (c.1719del, p.Gly574AlafsTer9, ENST00000245503) and a missense 

variant (c.2390G>T, p.Arg797Met, ENST00000245503) with non-deleterious in silico 

prediction of deleteriousness (REVEL 0.14 – BP4 Moderate) (40). There is a phenotype 

overlap between MYH2 and muscle weakness in the proband (MIM 160740). However, 

variants in MYH2 do not explain the proband’s contractures and pulmonary fibrosis. 

Moreover, without parental sequencing, these variants cannot be confirmed to be in trans. 

In contrast, the missense variant in FAM111B in the answer key (c.1880G>C, 

p.Arg627Thr, ENST00000343597) is absent from large population databases, falls at the 

same amino acid position (p.Arg627Gly) and at a neighboring amino acid position 

(p.Tyr621Asp, p.Thr625Asn, p.Ser628Asn, p.Ser628Arg) to missense variants reported 

in individuals with hereditary fibrosing poikiloderma with tendon contractures, myopathy, 

and pulmonary fibrosis (POIKTMP), suggesting that this position may be critical for 

protein function (41), and explains all elements of the patient’s phenotype (MIM 615704). 
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This resulted in an ACMG/AMP classification of LP, with the following criteria applied: 

PM1, PM5 Supporting, PM2, and PP4. 

In P6, a duo-sequenced family (proband and unaffected father), the Invitae Moon 

team ranked the causal variant at position three, following heterozygous variants in 

GATAD2B and ADAR. The GATAD2B missense variant (c.884C>T, p.Ala295Val, 

ENST00000368655) has in silico prediction leaning towards non-deleterious (REVEL 

0.13 – BP4 Moderate) (40) and is present in large population databases (6/152,160 

alleles in gnomAD v3, 9/264,690 alleles in TOPMed), arguing against a causal role in 

dominantly inherited infantile-onset disease (GAND syndrome, MIM 615074). The ADAR 

missense variant (c.983G>A, p.Arg328Gln, ENST00000647597) is a ClinVar VUS 

(ClinVar variation ID: 806225) reported in association with recessive Aicardi-Goutieres 

syndrome (MIM 615010). The proband is, however, missing a second variant in ADAR, 

and the identified heterozygous variant has in silico prediction leaning towards non-

deleterious (REVEL 0.23 – BP4 Supporting) (40). In contrast, the heterozygous missense 

variant in KCND2 in the answer key (c.1207C>G, p.Pro403Ala, ENST00000331113), this 

is presumed de novo given that it was not inherited from the father, explains the patient’s 

phenotype of global developmental delay, hypotonia, and visual impairment (42), is 

predicted to be deleterious by in silico prediction (REVEL 0.84 – PP3 Moderate) (40) and 

is absent from large population databases. This resulted in an ACMG/AMP classification 

of LP, with the following criteria applied: PM2 Supporting, PP3 Moderate, PS3 Supporting, 

PS4 Supporting, PS2 Moderate. 

In P7, a trio-sequenced family, the Invitae Moon team ranked the causal variant at 

position two, following compound heterozygous variants in SYNE1, a splice donor variant 
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(c.11082+1G>A, ENST00000367255) with a high spliceAI score of 0.99 predicting donor 

loss and a missense variant (c.8308T>A, p.Phe2770Ile, ENST00000367255) reported in 

ClinVar as a VUS (ClinVar variation ID: 288416, no phenotype reported) with in silico 

prediction leaning towards non-deleterious (REVEL 0.07 – BP4 Moderate) (40). 

Recessive variants in SYNE1 are reported to manifest in arthrogryposis multiplex 

congenita (MIM 618484) and spinocerebellar ataxia (MIM 610743) and are a weak 

phenotype match for the proband with a predominantly dysmorphic and neurological 

phenotype. In contrast, the de novo frameshift variant in EHMT1 (c.1051del, 

p.Asp351ThrfsTer66, ENST00000460843) in the answer key, which has previously been 

reported in Kleefstra syndrome (MIM 610253), is absent from large population databases. 

This frameshift results in a premature stop codon 66 amino acids downstream predicting 

it to result in a truncated or absent protein, which is established disease mechanism for 

EHMT1 in autosomal dominant Kleefstra syndrome. This resulted in an ACMG/AMP 

classification of P, with the following criteria applied: PVS1, PS2 Moderate, PM2 

Supporting. 

Finally, in P11, a proband-only family, the Invitae Moon team ranked the causal 

variant at position four, following heterozygous variants in SYNE1, TTN, and POLR2A, 

respectively. The SYNE1 variant (c.226-2dup, ENST00000367255) is reported in ClinVar 

with conflicting interpretations of pathogenicity (ClinVar variation ID: 279936). Though 

SYNE1 is phenotypically in-keeping with the proband’s phenotype of muscle dystrophy, 

the spliceAI score is only 0.08 (predicting acceptor gain and likely resulting in an in-frame 

protein) and the variant is present in large population databases (17/152,056 alleles in 

gnomAD v3, 33/264,690 alleles in TOPMed), arguing against a causative role in this ultra-
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rare dominantly inherited disease. The TTN missense variant (c.79867G>A, 

p.Glu26623Lys, ENST00000589042) is absent from large population databases, 

however, has in silico prediction of deleteriousness leaning towards non-deleterious 

(REVEL 0.18 – BP4 Moderate) (40). The presence of rare (≤1% population allele 

frequency) heterozygous TTN missense variants in 83,657/125,748 (66.5%) individuals 

in gnomAD v2 highlights how frequently these are encountered. Finally, a non-coding 

3’UTR variant was prioritized in POLR2A (n.6341A>G, ENST00000617998), a gene 

primarily associated with neurodevelopmental abnormalities (MIM 618603), thereby not 

in-keeping with the proband’s adult-onset, isolated muscular phenotype. In contrast, the 

causal missense variant in the answer key in TPM2 (c.344A>T, p.Glu115Val, 

ENST00000645482), a gene associated with Nemaline myopathy (MIM 609285), is a 

phenotype match. The variant is absent from large population databases and has 

supporting in silico prediction (REVEL 0.89 – PP3 Moderate) (40), resulting in an 

ACMG/AMP classification of VUS, with the following criteria applied: PM2, PP3 Moderate. 

This variant had the least evidence of pathogenicity at present but was correctly prioritized 

in the top 5 variants by 40 of 52 models and was prioritized as the top candidate by 17 

models. 
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Supplemental Figures 

 

Supplemental Figure 1. Distribution of EPCR value for all variant predictions submitted by each team’s 

primary model (model 1), indicating the total number of variant predictions submitted and the median 

number per family. 
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Supplemental Figure 2. Concordance between models for the top five ranked predictions per proband 

across all 30 families in the test set. Statistically significant values after Bonferroni correction for multiple 

testing are indicated with an asterisk. Missing predictions were considered discordant. 
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Supplemental Tables 

 

Table S1. CAGI6 RGP challenge answer key for the 35 selected families in the 

training set (see separate file) 

 

Table S2. CAGI6 RGP challenge answer key for the 30 selected families in the test 

set (see separate file) 

 

Table S3. Returnable diagnoses and novel disease gene candidates in previously 

unsolved families in the test set (see separate file) 
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