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Abstract  

Developing effective treatments for Huntington’s disease (HD) requires reliable markers of 

disease progression. Striatal atrophy has been the hallmark of HD progression, but volumetric 

anomalies are also found in other brain regions. Little is known about the potential increase in 

predictive biomarking accuracy when volumetric scores from multiple brain regions are 

combined to predict the HD status of individual participants. We used cross-sectional structural 

MRI data from 184 HD gene-positive participants to a) test a novel ensemble machine learning 

model in classifying participants in one of four HD progression states (PreHD A; PreHD B; 

HD1; HD2), and (b) identify the brain regions that carry HD biomarking signal from 15 

regions. We used 5-fold cross validation and backward feature elimination to find the optimal 

predictors and investigated the stability of the findings through repeated analyses. The 

ensemble predictive model systematically matched or outperformed the accuracy of nine 

standard machine learning models, reaching 55.3%±6.1 balanced accuracy in 4-group 

classification. The accuracy was higher for binary classifications (PreHD vs HD: 83.3%±6.3; 

PreHD A vs PreHD B: 76.7%±8.0; PreHD B vs HD1: 75.9%±8.5; HD1 vs HD2: 70.9%±9.4). 

Striatal structures (caudate and putamen) were systematically found to be top predictors. 

However, the accuracy increased substantially when we included other regions in the model 

(e.g., occipital cortex, lateral ventricles, cingulate, temporal lobe). Optimal models frequently 

included 2-7 brain regions from different areas. Overall, the accuracy of classifications 

remained stable across repetitions but the list of selected brain regions could vary, likely due 

to collinearities in volumetric scores. This is the first study to demonstrate the improvement of 

classification accuracy when predicting HD progression with a stacked ensemble model. Our 

findings indicate that HD progression is marked not only by striatal atrophy but also by 

volumetric changes outside the striatum, without which biomarking models cannot achieve 

optimal results. The robust methods applied here exposed instability in the selection of brain 
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regions despite the sizeable sample size (n=184); such instabilities could lead to different 

conclusions in different studies when single analyses are applied on smaller sample sizes. From 

a translational perspective, our study informs on the selection of candidate endpoints or target 

regions for therapeutic intervention in future clinical trials. 
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Introduction  

Huntington’s disease (HD) is a monogenic, autosomal-dominant fatal neurodegenerative 

condition characterized by motor, cognitive, and behavioural symptoms.1,2 The genetic marker 

for HD—an expansion of a CAG tract in the huntingtin gene to more than 39 repeats—is fully 

penetrant.3,4 The first known neurodegenerative processes in HD are observed most notably in 

the striatum, beginning in the caudate, affecting mainly the medium spiny neurons, and 
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progressing ventrally and laterally to the putamen5; degeneration in both the caudate and the 

putamen are hallmarks of HD neuropathology.2,5,6 

Group studies in HD have shown substantial neurodegeneration at least a decade prior to the 

clinical motor diagnosis (CMD).1,7,8,9 Volume loss as measured by structural MRI (sMRI) is 

one of the most studied biomarkers of HD.39 The gradual atrophy emerging many years before 

clinical manifestation indicates that therapeutic intervention may achieve maximal benefit 

when applied early to contain the degenerative process.1,7 Despite much interest in the use of 

sMRI-derived measures as biomarkers, their impact on actual clinical practice has been limited. 

Scientific analyses are often conducted at the group-level whereas clinical practice requires 

biomarkers that can be applied at the individual-level; i.e., inclusion/exclusion criteria, patient 

stratification into groups, etc. For neuroimaging techniques such as sMRI to be useful in 

clinical settings, they must be able to make inferences at the level of the individual.10 

Machine learning (ML) methods are widely employed when building data-driven models of 

disease state.11 The benefits of applying ML methods with sMRI data are twofold. First, ML 

methods allow characterisation at the individual level and are therefore more clinically 

translational. Second, given their multivariate nature, these approaches are sensitive to 

distributed and subtle effects in the brain that would otherwise be indiscernible using univariate 

methods that rely on differences in individual brain regions.10 Some studies that have used 

neuroimaging and machine learning for disease state classification in HD are summarized in 

supplementary material section S1.  

Despite a growing interest in exploring ML methods, studies (supplementary material section 

S1) have mostly focused on binary classification problems, such as discriminating between 

healthy controls (HC) and HD, or premanifest (PreHD) and HC. However, since diagnosis can 

be confirmed by genetic testing, these models add little value. There is therefore a pressing 
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need to better characterise the volumetric changes in the premanifest phase to identify the most 

suitable candidates for therapeutic intervention. What is more difficult but more useful would 

be to discern between PreHD vs HD or even more finely, far from CMD (PreHD A) vs close 

to CMD (PreHD B) with a view to predicting those likely to be approaching clinical onset. 

Here, we address this issue starting with testing ML models on a wider spectrum of disease 

progression and classifying participants in finer disease states. Moreover, previous studies have 

often relied on small sample sizes, which may hamper the ability to build robust, unbiased 

predictive models that generalise to the HD population. Lastly, most methods preselect the 

features or identify regions-of-interest a priori, which works well for building an optimal 

predictive model but it is not suitable when applied for knowledge discovery; rather, it might 

mislead. For instance, if several sets of risk factors are equally predictive of an event, then it is 

misleading to return only one of them and disregard the rest.  

Here we present a stacked ensemble-based ML model for the predictive classification of 

individual-level HD states that is robust to the common methodological challenges discussed 

above. Volumetric measures derived from sMRI enable the identification of HD-related brain 

alterations.21 ML models such as stacked ensemble22 allow data-driven individual-specific 

predictions of disease state.5 Quantifying feature importance aids interpretation of model 

outcomes by identifying which brain regions carry most discriminative information. We used 

baseline cross-sectional sMRI data from 184 HD gene-positive participants from the TRACK-

HD3 dataset to (a) classify HD state using the 2-tier stacked ensemble ML model, and (b) 

identify which brain regions (i.e., features) carry most discriminative information for each HD 

state. Our model classified participants according to fine-grained (PreHD A; PreHD B; HD1; 

HD2), and binary disease states (PreHD vs HD; PreHD A vs PreHD B; PreHD B vs HD1; and 

HD1 vs HD2) to quantify feature importance across disease states. 
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Our main research questions were: 

• Does our stacked ML model provide a systematic benefit for stratifying individuals 

according to HD states when using sMRI data? 

• How many brain regions are required for optimal predictive classification, what are 

those regions, and do they vary with disease states? 

We demonstrate that our stacked ML model is a powerful tool for early classification of fine-

grained HD disease state with potential applications for clinical trial stratification, and can be 

easily extrapolated to other neurodegenerative diseases. 

Materials and methods  

Participants 

We used baseline data from 184 participants from the TRACK-HD3 study (see Table 1). The 

data were collected at four different sites and included 104 PreHD and 80 manifest (HD).3  We 

excluded data from 16 PreHD and 43 HD participants as they failed visual QC.48 All imaging 

data were quality-controlled during conduct of the TRACK-HD study. 

Demographics Premanifest (PreHD) Manifest (HD) 

N  104 [58; 46] 80 [49; 31] 

Gender (0/1) 55/49 43/37 

Age (years, mean ± SD) 41.16±8.80 48.49±9.38 

CAG (repeats, mean ± SD) 43.01±2.33 43.76±3.06 

Table 1: Baseline cross-sectional demographic data for chosen subset of the TRACK-HD cohort 

 

Participants were assigned into one of four classes as described in Tabrizi et al., 2009.3 

Specifically, individuals without clinical HD symptoms but carrying the mutant HD gene were 

classed as PreHD A if they were >= 10.8 years from predicted onset, or were classed as PreHD 
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B if they were < 10.8 years from predicted onset. Participants were classed as HD1 if they were 

diagnosed with clinical HD symptoms and had total functional capacity (TFC) score of 11-13, 

or were classed as HD2 if they had a TFC score of 7-10. There were n=58 participants in PreHD 

A, n=46 in PreHD B, n=49 HD1, and n=31 in HD2. These four groups cover a wide range of 

the HD progression spectrum and constitute a fine-grained assignment that distinguishes HD 

states both pre- and post-clinical manifestation of the symptoms. 

These group classifications are derived from the original TRACK-HD study, which was 

conducted years before the novel Huntington disease integrated staging system (HD-ISS)35 

became available. Therefore, the grouping and terminology does not follow the HD-ISS 

recommendations.  

 

Magnetic resonance imaging 

Structural 3T T1-weighted MRI data were processed with The Geodesic Information Flows 

(GIF)23 software to segment and parcellate cortical and subcortical volumes. To avoid the 

influence of confounding factors that may set the groups apart, we corrected the volumes for 

age, research site, and intracranial volume (ICV) using linear regression. 

sMRI features 

We used 15 sMRI volumetric measures that cover most of the cortical and subcortical regions. 

These included: caudate, putamen, pallidum, thalamus, occipital lobe, lateral ventricles, 

frontal, temporal, accumbens area, insula, insula white matter, sensory motor, cingulate, 

parietal, and whole-brain. The imaging features were ICV corrected and standard scaled. 

There is a high degree of multicollinearity amongst these imaging features. Multicollinearity 

might not affect the accuracy of predictive models but poses a problem in the interpretability 
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of the model; i.e., there is less reliability when determining the effects of specific features 

(independent predictors) on the dependent feature (targets).24 Despite this issue, we included 

all 15 sMRI features as we hypothesized that different sMRI features are differentially sensitive 

to HD-related brain alterations at different states; these brain alterations might progress at 

different rates or might interact with other structures differently in a multivariate context to 

mark progression to the next disease state.40 

Stacked ensemble ML-model 

Ensemble models in ML combine decisions from multiple models to improve the overall 

performance.25 Research in ensemble methods field shows that they are more robust, reliable 

and accurate than standalone ML models. Single learners that conduct local searches may get 

stuck in local optima. By combining several learners, ensemble methods decrease the risk of 

obtaining a local minimum.26 

Here, we use a powerful ensemble technique called the stacked ensemble model.22 The stacked 

model consists of two or more base models, also known as level 0 models and trainable meta-

model. The base models were trained and evaluated using (repeated) k-fold cross-validation on 

actual training dataset. The predictions made by base models on out-of-sample data were then 

used to train the meta-model. The meta-model learns how to best combine the predictions made 

by the base models with the intent of reducing variance and generalisation error. The 

predictions made by meta-model are the final stacked model predictions. The schematic of 

stacked ensemble model is shown in supplementary material section S2.  

Ensemble learning has been proven to produce improved and more robust performance than 

single models, and ergo its use is being increasingly explored in several neurodegenerative 

diseases such as Parkinson’s,41,42,43 Azheimers,44,45 and multiple sclerosis.46,47 However, to our 

knowledge, no other study has explored the use of stacked model for Huntington’s disease.  
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We designed a 2-tier stacked model, consisting of six standard ML models as base models – 

logistic regression (LR),27 K-nearest neighbours (KNN);28 support vector machine classifier 

(SVM);29 Gaussian naïve bayes (Bayes);30 Decision tree (cart);31 and multi-layer perceptron 

(MLP).32 We chose these models since these they are heterogeneous with varying strengths 

and characteristics; and ensured a good mixture of simple linear models such as LR and non-

linear algorithms such as KNN, bayes, SVM, cart and MLP. We used a separate Gaussian naïve 

bayes model as the trainable meta-model. 

All six base-models were trained and evaluated on the training dataset using repeated k-fold 

cross-validation. Their predictions on out-of-sample data were then combined using 5-fold 

cross-validation to create the training set for the meta-model. We did not perform any classifier-

selection or hyperparameter tuning; the default parameter setting is described in supplementary 

material section S3. 

Cross-validation based model evaluation 

To test the stability of the results and obtain robust estimates of prediction performance, we 

used repeated stratified k-fold cross-validation. Stratified sampling makes sure that class 

distribution in each split (i.e., fold) of data matches the distribution in the complete training 

dataset. Further, we repeated model training and testing multiple times with different 5-fold 

splits and report the average results from all repetitions. These repetitions mitigate extreme 

findings of high or low accuracy due to a single k-fold split, and ultimately produce more 

accurate, stable estimates of accuracy. Additionally, to handle class-imbalance within groups 

we employed ‘balanced accuracy’ to measure model performance. More details are in 

supplementary material section S4. 

Additionally, we used dependent t-test for paired samples (ttest_rel function from python 

sklearn) to check significance of our results. We compared mean accuracy obtained for each 
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repeat for stacked model with each of the base (& other) models i.e., 50 values for stacked 

model vs 50 values for each of the other model. We also correct p-values for multiple 

comparisons using Bonferroni correction throughout the paper. 

Quantifying feature importance 

We performed feature importance analysis outside main striatal regions using a large number 

(15) of sMRI features We ranked brain regions by their importance for two reasons: 1) to aid 

the interpretation of the key regions that can be used as endpoints in future studies, and 2) to 

increase the accuracy of classification by removing unnecessary brain regions. We followed a 

greedy search approach using backward elimination. Specifically, we built a model with all the 

regions, then removed each region individually and computed the accuracy without that region, 

and then selected for removal of the region that caused the maximal increase (or the least 

decrease) in accuracy. This procedure was repeated recursively while removing one by one all 

but one last region.  

This method provides the ordering of feature elimination and hence quantifies the relative 

importance of each feature. Details about this method are in the supplementary material section 

S5. 

What differentiates our method from other HD classification studies (in supplementary material 

section S1) that employ feature selection a priori is that our method performs feature 

importance analysis via the classification tasks i.e., HD classification tasks are used to identify 

important features instead of the other way round which most studies do. 

Analysis design 

Evaluation of the stacked model for HD progression classification 
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These analyses were conducted to explore the utility of the stacked ensemble model in 

classifying subjects into fine-grained HD states. The aim was to examine the suitability of a 

stacked ensemble approach to HD state classification and consequently assessing whether 

using stacked ensemble might result in an improvement on the current state-of-the-art for 

patient stratification. Instead of seeking an optimal (aka highest possible) classification 

accuracy for a given task as is typically the case, we aimed to conduct an exploratory analysis 

investigating potential benefits of stacked modelling approach on predictive accuracy and 

feature importance.  

A total of 5 different classification tasks were performed, covering all HD states – premanifest 

vs manifest (PreHD vs HD); premanifest (PreHD A vs PreHD B); premanifest-manifest 

(PreHD B vs HD1); manifest (HD1 vs HD2); and finally fine-grained (PreHD A; PreHD B; 

HD1; HD2).  

Identifying the brain regions with the best combined predictive accuracy 

Next, for each classification task, we quantified feature importance to identify brain regions 

that carry the most discriminative information. The aim here was to investigate how many 

brain-regions are required for optimal predictive-classification of HD state, and what are those 

regions. We varied the number of repeats to evaluate the stacked model in terms of self-

consistency and stability. This approach allowed us to investigate if the ordering of feature 

elimination is consistent across repetitions and, therefore, reliable. Even if the exact order of 

feature elimination is not the same across repeats, we hypothesized that the general trends 

should be similar. For each task, we report the (a) ordering in which features were eliminated 

in a given repeat; and (b) the classification accuracy and the standard deviation values at each 

feature elimination step (Tables 4.1 to 4.5).  
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Data availability  

Requests to access TRACK-HD dataset used in this study can be made to CHDI foundation: 

https: //chdifoundation.org/policies/.  

Results  

Evaluation of the stacked model for HD progression classification 

The experiment settings are described in table 2. We compared stacked model with its 

constituent base-models. To provide a more complete perspective, we also trained and tested 

three other popular ensemble models: Adaboost (Ada),26 random forest (RF),26 and extreme 

gradient boosting (XGB)26 using exactly the same data, cross-validation splits, and accuracy 

metrics. 

Type & no. of input features used sMRI (15), ICV corrected and standard scaled 

Cross-validation details Stratified Repeated k-fold 
No. of folds = 5; No. of repeats = 50 

Classifiers Base Models: LR; KNN; SVM; Bayes; Cart; MLP; Meta-model: Bayes; 

Comparative ensemble methods: Ada; XGB; RF 

Accuracy metric Balanced accuracy 

Tasks 1. Fine-grained; 2. PreHD vs HD; 3. PreHD A vs PreHD B; 4. PreHD B vs 
HD1; 5. HD1 vs HD2 

No. of Participants (in data) PreHD A = 58 

PreHD B = 46 

HD1 = 49 

HD2 = 31 

Table2: Experiment settings 

 

Premanifest-manifest (PreHD vs HD) 

The base models distinguished PreHD from HD participants with mean accuracy varying 

between 72.3%±7.2 and 81.8%±6.2, whilst the stacked model attained 81.8%±5.9 accuracy. 

The stacked model performed as good as the best base models; however, it performs 

significantly better than most other models (p<0.05 for knn, cart, Ada, RF, and XGB).  

Premanifest (PreHD A vs PreHD B) 

104 80 
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The base models correctly classified subjects into PreHD A and PreHD B classes with 

accuracies varying between 56.9%±10.6 and 68.6%±7.4. The stacked model achieved an 

accuracy of 68.6%±8.1, and performed significantly better than all but one base-models (i.e., 

Bayesian) and other comparative ensemble methods (p <0.05). 

Premanifest-manifest (PreHD B vs HD1) 

The base models classified subjects with accuracy between 60.9%±11.4 and 71.0%±9.0. The 

stacked model performance, 70.6%±9.7, was significantly better than all other models except 

logistic regression (p<0.05).  

Manifest (HD1 vs HD2) 

The same trend was observed for this task wherein the stacked model achieved an accuracy of 

59.8%±10.8 whilst the base models’ accuracy varied between 52.2%±10.5 and 60.3%±11.7. 

The stacked model performed significantly better (p<0.05) than all models except LR.  

Fine-grained (PreHD A; PreHD B; HD1; HD2) 

The base models classified each participant as per their fine-grained disease state with mean 

accuracies between 40.2%±7.9 and 50.2%±5.6. In comparison, the stacked model achieved an 

accuracy of 52.6%±5.6, performing significantly better (p<0.0005) than all the other models. 

Performance details for all tasks such as accuracy values, standard deviations and p-values are 

included in supplementary material section S6. 

Figure 1.1-1.5 compares the distribution of mean accuracy scores per repeat (i.e., 50 values per 

model) for each model, the base models are highlighted in pink, the stacked model is in green 

whereas the comparative ensemble approaches are in blue colour. In these plots, the box 

extends from the Q1 to Q3 quartile values of the data, with an orange line at the median (Q2). 

The whiskers extend from the edges of box to show the range of the data. By default, they 
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extend no more than 1.5 * IQR (IQR = Q3 – Q1) from the edges of the box, ending at the 

farthest data point within that interval. Outliers are plotted as separate dots. The green triangle 

represents the mean. 

 
Figure 1.1: Accuracy distribution for PreHD vs HD 
classification task 

 
Figure 1.2: Accuracy scores distribution for PreHD A vs 
PreHD B 

 
Figure 1.3: Accuracy scores distribution for PreHD B vs 
HD1 task 

 
Figure 1.4: Accuracy scores distribution for HD1 vs HD2 

task 

 
Figure 1.5: Accuracy scores distribution for fine-grained task 

 

We observed that stacked model has the most consistent performance and performed on 

average better than other models. Next, we aimed to identify the set of relevant brain regions 

for each task. 
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Identifying the brain regions with the best combined predictive 

accuracy 

The experiment settings are same as those described in Table 2, albeit with varying number of 

cross-validation repeats and hierarchical clustering of sMRI features described in Table 3.  

Cross-validation details Stratified Repeated k-fold 
No. of folds = 5; No. of repeats = 10; 20; 30; 40; & 50 [~ 150] 

Hierarchical clustering Sklearn cluster.FeatureAgglomeration 
Distance metric = Euclidean; linkage metric = ward 

Table 3: Experiment settings 

 

In Tables 4.1 to 4.5, for a given no. of repeats, the columns represent the ordering of feature 

elimination starting with all features (n=15 in extreme left) to the single most important feature 

(n=1 in extreme right). The table cells display the mean accuracy and standard deviation (SD) 

attained by the stacked model at each step. For example, in Table 4.1 PreHD vs HD 

classification task, the model attained 80.4%±6.6 accuracy using all 15 features and eliminating 

Insula white matter resulted in maximum stacked model accuracy and hence it was discarded 

in that instance.  

The features highlighted in pink are the ones whose elimination resulted in increased 

classification accuracy for that number of CV repeats. Highest accuracy was achieved when a 

certain number of input features were removed; that inflection point was the ‘highest accuracy 

value’, and consequently removing the subset of features in pink gave us the optimal set of 

features (highlighted in different bold ‘cluster’ colours) required by the stacked model to 

achieve maximal accuracy.
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No. of repeats = 10 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula WM Insula Wh. Brain Pallidum Thalamus Temporal Accumbens SensMot. Parietal Putamen Occipital Cingulate Frontal Lat. Vents Caudate 

0.804 0.819 0.817 0.822 0.832 0.832 0.828 0.833 0.825 0.818 0.822 0.821 0.825 0.807 0.795 

0.066 0.053 0.059 0.062 0.052 0.060 0.056 0.047 0.056 0.060 0.049 0.051 0.045 0.061 0.064 

No. of repeats = 20 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula Wh. Brain Pallidum Insula WM Occipital Frontal Putamen Thalamus Parietal Accumbens Cingulate Temporal Lat. Vents SensMot. Caudate 

0.806 0.816 0.819 0.828 0.833 0.829 0.823 0.826 0.828 0.825 0.812 0.819 0.815 0.812 0.800 

0.064 0.056 0.057 0.054 0.063 0.062 0.060 0.061 0.063 0.067 0.061 0.065 0.057 0.060 0.060 

No. of repeats = 30 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula Insula WM Occipital Frontal Wh. Brain Pallidum Putamen Thalamus Parietal Accumbens Lat. Vents Cingulate SensMot. Temporal Caudate 

0.809 0.816 0.819 0.824 0.828 0.831 0.823 0.823 0.832 0.828 0.817 0.818 0.818 0.817 0.799 

0.055 0.056 0.058 0.052 0.059 0.059 0.054 0.060 0.052 0.060 0.054 0.062 0.064 0.059 0.062 

No. of repeats = 40 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula Insula WM Wh. Brain Pallidum Occipital Thalamus Parietal Frontal Putamen Accumbens Lat. Vents Cingulate SensMot Temporal Caudate 

0.806 0.814 0.817 0.821 0.829 0.827 0.827 0.829 0.829 0.828 0.815 0.818 0.817 0.817 0.796 

0.062 0.057 0.058 0.062 0.055 0.053 0.056 0.056 0.051 0.060 0.060 0.054 0.062 0.055 0.060 

No. of repeats = 50 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula Occipital Pallidum Wh. Brain Insula WM Thalamus Parietal Frontal Putamen Accumbens Lat. Vents Cingulate SensMot Temporal Caudate 
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0.806 0.816 0.818 0.823 0.827 0.828 0.827 0.830 0.830 0.824 0.817 0.820 0.817 0.821 0.797 

0.063 0.059 0.059 0.062 0.056 0.058 0.056 0.054 0.056 0.053 0.062 0.061 0.054 0.059 0.057 

Table 4.1: Stacked model mean accuracy and standard deviation on PreHD vs HD classification 

 
No. of repeats = 10 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Parietal Pallidum Accumbens Wh. Brain Temporal Frontal Insula Insula WM Thalamus SensMot Putamen Cingulate Occipital Lat. Vents Caudate 

0.666 0.692 0.688 0.693 0.720 0.720 0.729 0.732 0.752 0.755 0.755 0.752 0.711 0.678 0.628 

0.078 0.109 0.102 0.089 0.086 0.103 0.084 0.100 0.063 0.084 0.104 0.100 0.073 0.084 0.080 

No. of repeats = 20 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Parietal Insula Wh. Brain Pallidum Frontal Lat. Vents Accumbens Temporal Insula WM Thalamus Cingulate SensMot Caudate Occipital Putamen 

0.683 0.683 0.693 0.699 0.709 0.707 0.706 0.727 0.724 0.735 0.731 0.733 0.726 0.718 0.684 

0.087 0.081 0.097 0.101 0.083 0.088 0.097 0.080 0.092 0.082 0.094 0.100 0.077 0.086 0.102 

No. of repeats = 30 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Accumbens Parietal Insula Frontal Pallidum Wh. Brain Temporal Insula WM Thalamus SensMot Putamen Cingulate Occipital Lat. Vents Caudate 

0.678 0.678 0.691 0.702 0.699 0.707 0.729 0.729 0.749 0.767 0.759 0.751 0.713 0.670 0.621 

0.086 0.097 0.083 0.087 0.081 0.091 0.090 0.079 0.089 0.080 0.084 0.077 0.094 0.089 0.089 

No. of repeats = 40 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Parietal Insula Pallidum Insula WM Wh. Brain Temporal Frontal Accumbens Thalamus Putamen SensMot Cingulate Occipital Lat. Vents Caudate 

0.680 0.687 0.697 0.699 0.707 0.717 0.730 0.739 0.748 0.766 0.735 0.748 0.713 0.682 0.629 
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0.091 0.082 0.094 0.085 0.092 0.089 0.080 0.090 0.083 0.091 0.087 0.085 0.087 0.085 0.083 

No. of repeats = 50 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Parietal Pallidum Wh. Brain Insula WM Accumbens Temporal  Frontal Insula  Thalamus SensMot Putamen Cingulate Occipital Lat. Vents Caudate 

0.677 0.683 0.687 0.700 0.713 0.717 0.730 0.733 0.748 0.766 0.753 0.754 0.713 0.682 0.629 

0.085 0.090 0.095 0.087 0.095 0.091 0.084 0.086 0.084 0.074 0.084 0.086 0.084 0.087 0.084 

Table 4.2: Stacked model mean accuracy & standard deviation on PreHD A vs PreHD B task 

 
No. of repeats = 10 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula Pallidum Insula WM Thalamus Occipital Putamen Wh. Brain Parietal SensMot Accumbens Lat. Vents Frontal Cingulate Temporal Caudate 

0.688 0.693 0.698 0.684 0.685 0.702 0.679 0.703 0.702 0.742 0.725 0.708 0.726 0.707 0.688 

0.101 0.101 0.100 0.105 0.117 0.094 0.108 0.097 0.093 0.094 0.075 0.111 0.089 0.077 0.102 

No. of repeats = 20 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula Thalamus Pallidum Accumbens Occipital Wh. Brain SensMot Putamen Parietal Insula WM Lat. Vents Frontal Cingulate Temporal Caudate 

0.693 0.700 0.690 0.701 0.701 0.707 0.719 0.722 0.718 0.731 0.735 0.709 0.710 0.705 0.691 

0.090 0.088 0.090 0.106 0.107 0.096 0.088 0.087 0.094 0.097 0.092 0.104 0.088 0.093 0.096 

No. of repeats = 30 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula Insula WM Accumbens Pallidum Thalamus SensMot Parietal Occipital Putamen Wh. Brain Cingulate Temporal Lat. Vents Frontal Caudate 

0.690 0.696 0.688 0.694 0.698 0.691 0.695 0.713 0.705 0.706 0.739 0.719 0.716 0.705 0.691 

0.092 0.100 0.098 0.092 0.090 0.084 0.098 0.094 0.105 0.092 0.089 0.083 0.099 0.087 0.089 
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No. of repeats = 40 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Wh. Brain Pallidum Insula Lat. Vents Parietal SensMot Temporal Putamen Insula WM Thalamus Frontal Accumbens Cingulate Occipital Caudate 

0.690 0.696 0.700 0.704 0.714 0.717 0.726 0.719 0.727 0.712 0.712 0.711 0.711 0.697 0.691 

0.095 0.090 0.094 0.088 0.098 0.100 0.090 0.082 0.095 0.097 0.099 0.096 0.089 0.102 0.089 

No. of repeats = 50 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Putamen Accumbens Insula WM Pallidum Occipital Thalamus Parietal Lat. Vents Wh. Brain Frontal Cingulate SensMot Insula Temporal Caudate 

0.691 0.700 0.701 0.714 0.716 0.729 0.731 0.751 0.759 0.756 0.737 0.731 0.749 0.712 0.685 

0.094 0.088 0.094 0.088 0.097 0.087 0.098 0.094 0.085 0.091 0.090 0.095 0.090 0.084 0.094 

Table 4.3: Stacked model mean accuracy & standard deviation on PreHD B vs HD1 task 

 
No. of repeats = 10 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula WM Pallidum Accumbens Putamen Temporal Cingulate Wh. Brain Frontal Parietal SensMot Lat. Vents Thalamus Insula Occipital Caudate 

0.613 0.584 0.632 0.616 0.627 0.635 0.632 0.651 0.641 0.641 0.619 0.622 0.657 0.672 0.619 

0.122 0.092 0.110 0.089 0.095 0.105 0.080 0.110 0.114 0.119 0.119 0.091 0.080 0.097 0.074 

No. of repeats = 20 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Thalamus Lat. Vents Insula Pallidum Insula WM Cingulate Putamen Accumbens Wh. Brain Frontal Parietal SensMot Temporal Occipital Caudate 

0.592 0.592 0.623 0.641 0.632 0.641 0.645 0.660 0.674 0.683 0.682 0.672 0.680 0.673 0.624 

0.109 0.120 0.114 0.110 0.103 0.103 0.104 0.108 0.102 0.108 0.108 0.103 0.121 0.102 0.100 

No. of repeats = 30 
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15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula WM Pallidum Accumbens Wh. brain Temporal Cingulate Putamen Parietal Frontal SensMot Insula Lat. Vents Thalamus Occipital Caudate 

0.589 0.615 0.633 0.642 0.631 0.645 0.660 0.679 0.655 0.671 0.675 0.648 0.659 0.648 0.638 

0.115 0.109 0.106 0.101 0.114 0.112 0.112 0.118 0.110 0.104 0.111 0.116 0.115 0.111 0.110 

No. of repeats = 40 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Pallidum Insula WM Accumbens Wh. Brain Cingulate Temporal Frontal Insula Putamen Lat. Vents Thalamus Occipital SensMot Parietal Caudate 

0.599 0.601 0.634 0.634 0.639 0.651 0.663 0.686 0.655 0.670 0.669 0.668 0.699 0.697 0.587 

0.100 0.113 0.111 0.115 0.113 0.112 0.115 0.100 0.115 0.104 0.112 0.116 0.098 0.104 0.105 

No. of repeats = 50 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula WM Pallidum Accumbens Wh. Brain Temporal Cingulate Frontal Putamen Parietal SensMot Insula Lat. Vents Thalamus Occipital Caudate 

0.598 0.621 0.628 0.644 0.641 0.644 0.666 0.674 0.670 0.677 0.668 0.670 0.702 0.709 0.603 

0.103 0.109 0.111 0.115 0.113 0.109 0.110 0.105 0.116 0.102 0.111 0.114 0.110 0.094 0.100 

Table 4.4: Stacked model mean accuracy & standard deviation on HD1 vs HD2 task 
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No. of repeats = 10 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Accumbens Putamen Frontal Wh. Brain InsulaWM Temporal SensMot Thalamus Parietal Pallidum Insula Cingulate Lat. Vents Occipital Caudate 

0.516 0.528 0.520 0.531 0.533 0.536 0.535 0.534 0.530 0.538 0.537 0.540 0.529 0.495 0.450 

0.056 0.058 0.054 0.056 0.071 0.065 0.074 0.059 0.055 0.055 0.057 0.060 0.067 0.068 0.062 

No. of repeats = 20 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Accumbens Frontal Wh. Brain Insula WM Pallidum Insula Temporal SensMot Thalamus Parietal Putamen Cingulate Lat. Vents Occipital Caudate 

0.525 0.527 0.532 0.537 0.538 0.544 0.546 0.547 0.539 0.532 0.531 0.524 0.529 0.506 0.453 

0.061 0.056 0.062 0.056 0.064 0.059 0.066 0.057 0.062 0.054 0.063 0.063 0.066 0.060 0.064 

No. of repeats = 30 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Accumbens Frontal Insula Insula WM Pallidum Parietal Wh. Brain Thalamus Temporal SensMot Cingulate Putamen Lat. Vents Occipital Caudate 

0.523 0.528 0.531 0.531 0.539 0.544 0.539 0.538 0.553 0.544 0.533 0.535 0.525 0.512 0.456 

0.056 0.061 0.053 0.062 0.060 0.055 0.055 0.053 0.061 0.062 0.065 0.058 0.063 0.068 0.073 

No. of repeats = 40 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Insula Frontal Accumbens Insula WM Wh. Brain Pallidum Temporal Thalamus  Parietal SensMot Cingulate Putamen Lat. Vents Occipital Caudate 

0.517 0.521 0.533 0.532 0.531 0.535 0.550 0.548 0.547 0.541 0.536 0.532 0.530 0.502 0.460 

0.057 0.058 0.060 0.064 0.060 0.054 0.059 0.065 0.066 0.061 0.064 0.056 0.061 0.069 0.071 

No. of repeats = 50 

15 features 14  13 12 11 10 9 8 7 6 5 4 3 2 1 

Frontal Insula Accumbens SensMot Wh. Brain Parietal Putamen Thalamus Cingulate Temporal Insula WM Pallidum Lat. Vents Occipital Caudate 
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0.520 0.528 0.530 0.536 0.533 0.532 0.537 0.543 0.541 0.539 0.527 0.526 0.534 0.505 0.456 

0.061 0.059 0.059 0.069 0.059 0.062 0.055 0.060 0.063 0.060 0.064 0.059 0.056 0.070 0.066 

Table 4.5: Stacked model mean accuracy and standard deviation on Fine-Grained task 
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Tables 4.1-4.5 show that the removal of brain regions with backward elimination did not 

always follow the same order. We hypothesized that the instability is caused by correlated 

variables that flip their position, i.e., one correlated variable being removed earlier and the 

other later, or vice versa, depending on the splits into folds. To investigate this hypothesis, we 

ran hierarchical clustering and produced a dendrogram tree of all the variables via python 

sklearn’s built-in dendrogram and agglomerative function cluster.FeatureAgglomeration. 

The result is shown in Figure 2/Table 5. 

 
         Figure 2: Dendrogram example 

 

Further, one of our main goals was to identify which brain regions carry the most discriminative 

information for each disease state. We varied the number of repeats and applied the recursive 

feature elimination approach to determine if sequence of feature elimination is stable and 

consistent across repetitions. We hypothesized that, even though the exact order may not be 

the same, positional stability towards bottom right of heatmaps would be indicative of the most 

informative brain regions for that task. 

Our results (in tables 4.1-4.5) showed that feature elimination sequences were not exactly the 

same in different repeats. Thus, to establish the consistency of the feature elimination order, 

we plotted positional heatmaps, figures 3.1-3.5. In each figure, dark diagonal component 

indicates more stable positioning at that position. Features were assigned a position according 

X- axis 
label 

Corresponding 
feature(s) 

Cluster group 
(colour) 

3 Lateral vents 1 (blue) 

6 Thalamus 2 (lighter blue) 

1 
14 
2 

4 
5 

Accumbens 
Insula WM 
Caudate 

Putamen 
Pallidum 

 
3 (orange) 

7 

12 

Frontal 

Cingulate 

4 (green) 

8 

0 
10 
9 
11 

13 

Occipital 

Whole brain 
Sensory motor 
Parietal 
Insula 

Temporal 

 

 
5 (red) 

Table 5: Feature agglomeration 
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to the maximum likelihood sequence (i.e., baseline: y-axis), which represented the maximum 

probability of a feature getting eliminated at a particular position, i.e., y-axis ordering 

represents increasing feature importance from top-to-bottom. Details in supplementary 

material, section S7. 

Premanifest-manifest classification (PreHD vs HD) 

Table 4.1 and Figure 3.1 depict that our stacked model discriminated between PreHD and HD 

subjects with a maximum accuracy of 83%±6.3 and requires a range of 8-11 sMRI features to 

attain the highest accuracy. Caudate is consistently the most important feature across all repeats 

as it never gets eliminated before the maximal inflection point. Both the accuracy levels and 

the caudate winning the elimination procedure were stable and consistent across repetitions.  

The maximum accuracy attained by the stacked model is not significantly different from 

accuracy with just caudate. Out of these 8-11 features, a subset of 6 brain regions (caudate, 

temporal, sensory motor, cingulate, lateral ventricles and accumbens) were consistently stable 

in their respective positions for >120 repeats (out of cumulative 150 repeats). 

 
Figure 3.1: Feature elimination order across repeats PreHD vs HD task 

There was some positional variability (in < 30 repeats), but even in those cases, these features 

vary between near adjacent positions such as cingulate or lateral ventricles or they were still 
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positioned among 8-11 informative brain regions (i.e., ‘cluster’ coloured cells in table 4.1), for 

example temporal, sensory motor and Accumbens area. 

Premanifest (PreHD A vs PreHD B) classification   

The classification accuracy using just the caudate was significantly lower than the highest 

accuracy of 76.7%±8.0, which required a set of 6 sMRI measures– caudate, occipital lobe, 

lateral ventricles, putamen, cingulate and sensory motor, all of which were positionally stable 

across repetitions (table 4.2).  

 
Figure 3.2: Feature elimination order across repeats PreHD A vs PreHD B task 

Figure 3.2 highlights that variability in feature importance ordering is confined to non-relevant 

set of features i.e., top-half of diagonal; whilst for the set of important features it is stable and 

consistent across repeats and only varies a little between near adjacent positions only. 

Premanifest–manifest (PreHD B vs HD1) classification 

Table 4.3 depicts that stacked model segregates subjects into PreHD B and HD1 classes with 

an accuracy of approximately 69% by using caudate. The model attained the maximum 

accuracy of 75%±9.0 with at least 5-7 sMRI features, relying more on features belonging to 

cortical region and frontal-cingulate cluster. This result replicated across repetitions. 
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Figure 3.3: Feature elimination order across repeats PreHD B vs HD1 

We found a high degree of uncertainty in feature elimination ordering for this classification 

task (figure 3.3). Only caudate and temporal are positionally stable for 100+ repeats.  

Manifest (HD1 vs HD2) classification 

The maximum accuracy of 68%±10.0 required between 2-5 features belonging to subcortical 

striatal and cortical regions, such as caudate and occipital lobe (Table 4.4). Further, figure 3.4 

shows that the order of elimination is positionally stable towards the start (top-left) and end 

(bottom-right) wherein most features are placed strongly at diagonal. The more important 

features, i.e., those getting eliminated later (such as occipital, thalamus and lateral ventricles) 

vary within near-adjacent positions. 

 
Figure 3.4: Feature elimination order across repeats HD1 vs HD2 

Fine-grained (PreHD A; PreHD B; HD1; HD2) classification 
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Our model achieved the maximum accuracy of 55%±6.0 and caudate, lateral ventricles and 

occipital lobe were certainly required to attain this accuracy across all repeats; albeit maximum 

accuracy required at least 2-5 other sMRI features. 

 
Figure 3.5: Feature elimination order across repeats Fine-grained task 

Finally, it is worth noting that despite the instability, the set of more relevant features i.e., those 

contributing towards highest accuracy – occipital lobe, lateral ventricles and caudate remained 

stable across repetitions as seen in figure 3.5. 

Our analyses show that there is instability in the exact order of feature elimination. However, 

the brain regions with the best combined predictive accuracy for each disease state remain the 

same across repetitions. Based on these results, we identified the brain regions with the best 

combined predictive accuracy, for each disease state, as the sMRI features that were amongst 

the last ones to get eliminated, i.e., bottom-right of heatmaps (or positioned in bold coloured 

cells in tables 4.1 to 4.5) in >= 100 repeats (i.e., more than 66.66%).  

Each region’s contribution is vital to a feature subset informative for a particular classification 

task. These subsets of regions are specific for each task and were essential to attain highest 

predictive-classification accuracy. Some other features might be required in addition to these; 

however, those additional features vary with task and are unstable across repeats and therefore 

we did not include them as part of most informative brain regions. Table 6 makes it evident 

that: (1.) predictive-classification accuracy can be improved upon by including brain regions 
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outside the striatum; and (2.) for optimal prediction stacked model tends to rely on sMRI 

features from different yet complementary feature clusters. 

HD disease state(s) Most informative brain regions Max. accuracy & SD Accuracy & SD through striatum 
(caudate only) 

Premanifest-manifest (PreHD vs 
HD) 

Caudate, temporal, cingulate, lateral 
ventricles, Accumbens, sensory motor 

82.9%±5.5 – 83.3%±6.3 79.5%±6.4 – 80.0%±6.0 

Premanifest (PreHD A vs PreHD 

B) 

Caudate, lateral ventricles, occipital, 

cingulate, sensory motor, putamen 

73.5%±8.2 – 76.7%±8.0 62.1%±8.9 – 68.4%±10.2 

Premanifest-manifest (PreHD B vs 
HD1) 

Caudate, temporal, cingulate 72.7%±9.5 – 75.9%±8.5 68.5%±9.4 – 69.1%±9.6 

Manifest (HD1 vs HD2) Caudate, occipital 67.2%±9.7 – 70.9%±9.4 58.7%±10.5 - 63.8%±11.0 

Fine-grained (PreHD A; PreHD B; 
HD1; HD2) 

Caudate, occipital, lateral ventricles, 
cingulate, temporal 
 

54.0%±6.0 – 55.3%±6.1 45.0%±6.2 – 46.0%±7.1 

Table 6: Set of brain regions with the best combined predictive accuracy for each HD disease state.  

Discussion  

We investigated the utility of a stacked ensemble model for fine-grained classification of HD 

states using solely volumetric scores from sMRI. Overall, the results showed that more accurate 

predictions of disease progression state can be achieved by including structures outside the 

striatum.  

Only a few HD studies employ ML methods with neuroimaging data to differentiate symptom 

onset from cross-sectional data, as done here. Most of these studies classify HD vs. HC and/or 

PreHD vs. HC (summarized in supplementary material section S1). However, the separation 

between HD vs HC or PreHD vs HC has lower clinical translational value since HD diagnosis 

is effectively done through genetic testing. Therefore, imaging markers are not required to 

separate HD vs HC or PreHD vs HC. 

Moreover, there is a pressing need to better characterise the volumetric changes in the 

premanifest phase to identify the most suitable participants for therapeutic intervention. What 

is more difficult but will be more valuable is to examine PreHD vs HD, and even finer-grained 

(especially PreHD A vs PreHD B) distinction, with a view to predicting those likely to be 

approaching the clinical motor diagnosis. 
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In this context, to our knowledge ours is the first study that: (a) employed a novel ensemble 

ML method to predictively classify HD using neuroimaging data alone; (b) performed fine-

grained predictions that span a wide range of the temporal spectrum of HD progression; and 

(c) used a bigger sample size (n=184) compared to previous studies.5,7,12-14;15-20  

In the following sections we discuss how our results compare to available reported findings, 

and the strengths, limitations, and future work. 

PreHD vs HD classification 

By definition, this distinction is marked by the CMD, i.e., the onset of clinical signs and 

symptoms. For this reason, the distinction of participants based on sMRI scores has limited 

practical value and is mostly useful to assess the independent value of MRI at marking CMD. 

The study by Lavrador5 at al., employed SVM classifier and segmented GM from sMRI and 

FA values from DWI along with several feature selection approaches for classification of HD 

stage. They utilized specific sub-cortical structures selected a priori—bilateral caudate, 

putamen and globus pallidus—and investigated each region-of-interest separately by 

classifying 14 PreHD and 11 early-HD individuals. They reported the highest classification 

accuracy when using putamen (86.3%±4.2) or caudate (83.0%±3.7), while pallidum 

(68.1%±5.4) and whole brain (78.2%±6.8) yielded lower accuracy. 

Our findings agree with their work indicating that caudate by itself is sufficient for 

distinguishing between PreHD and HD individuals with good accuracy.1,5,34-37 

Other finer-grained binary classifications 

Out of all classification tasks, the stacked model obtained the highest predictive accuracy (max. 

76.7%±8.0) and most stable and consistent set of most informative brain regions across 

repetitions for PreHD A vs PreHD B task. It identified 6 regions of interest: caudate, putamen, 
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occipital, cingulate, lateral ventricles, and sensory motor. These regions largely agree with the 

reported order of neurodegenerative processes starting from earliest changes in striatal volumes 

(caudate, putamen) and continuing with cortical regions (occipital, cingulate) and lateral 

ventricles21. Our results also demonstrated that a combination of sMRI features is more 

accurate and informative in discriminating between progression among premanifest individuals 

compared to a single striatal volume. These findings emphasize the biomarking potential of 

multiple brain regions, especially for premanifest stratification and potential applicability to 

preventive clinical trials. 

Like PreHD vs HD classification results, our results showed feature selection instability for 

PreHD B vs HD1 task. One potential cause of feature instability could be the heterogeneity in 

these classes, i.e., premanifest classes are defined according to time-to-CMD whilst manifest 

classes are defined according to the TFC score. Another cause could be if more PreHD B 

individuals are close to predicted CMD, then their volumetric measures might be quite similar 

to those in HD1 state. 

We also noticed that manifest (HD1 vs HD2) classification accuracy levels were lower 

compared to other binary classification tasks. However, our results showed that in general a 

combination of caudate and at least one other brain region (for instance occipital lobe in repeats 

= 50) could lead to an 8-10% improvement in predictive accuracy compared to accuracy 

through just caudate. Once more, this finding suggests that disease progression is marked better 

by combining scores from striatal and non-striatal regions even after symptom manifestation. 

Fine-grained (PreHD A; PreHD B; HD1; HD2) classification 

Our stacked model achieved the best predictive accuracy for fine-grained (PreHD A; PreHD 

B; HD1; HD2) classification. This was the hardest and most complex task wherein the stacked 

model achieved the maximum accuracy of 55%±6.0, which is low but well above the 25% 
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chance level. The primary reason for the relatively low accuracy could be the heterogeneity in 

class-definition; each disease state is a priori defined by criteria of different natures that range 

from CAP score (PreHD A vs. PreHD B) to motor (PreHD B vs. HD1) and functional (HD1 vs. 

HD2) clinical batteries. Further, we used a dataset containing only 184 individuals, and these 

are split into four classes that are further divided into CV folds, yielding rather small numbers 

(9 per fold per class) to train with. Thus, relatively small groups are used to train models that 

span a vast timescale spanning decades of HD progression. 

Although caudate had the highest feature importance since it was never eliminated before the 

maximal inflection point, using just the caudate led to significantly lower classification 

accuracy. This finding again points to the distributed biomarking information across multiple 

brain regions when disease progression is predicted across the full temporal spectrum of the 

disease using a single cross-sectional MRI scan. 

Brain regions with best combined predictive accuracy for each HD 

state 

Quantifying feature importance enabled us to identify the set of brain regions with the best 

combined predictive accuracy for distinguishing pairs of HD progression state. These brain 

regions vary depending on the state but to attain maximum accuracy the stacked model tends 

to pick at least one brain region from each cluster; for example, one region from the sub-cortical 

striatal region (caudate), one or more cortical regions (such as occipital lobe or temporal), and 

one or more from the remaining brain regions (such as lateral ventricles). This indicates that 

optimal marking of disease progression requires complementary rather than redundant 

information. Further, it supports the idea that disease progression models should employ 

multivariate models that capture and exploit the interaction between variables as another source 

of progression marker. Supporting this view, a recent study in HD by Castro et al.40 found 
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similar benefits of multivariate integration and demonstrated that future atrophy in striatal 

structures is predicted by a deviant correlation between caudate and thalamus. 

Stacked ML model: stable, robust, but does not always improve 

accuracy 

The stacked ensemble model produced a stable and consistent performance for all classification 

tasks. Its greatest benefit is the model-independent utility, i.e., although the stacked model 

comprises 6 heterogeneous ML base-models, it seamlessly blended base-model predictions and 

generated an output that is robust and reliable compared to a monolithic ML model. Compared 

to the stacked model, we did not find a single base model to systematically peak at all 

classification tasks, yielding doubts on which of the base models can invariably produce the 

best result without requiring complex combinations with other models in a stacked approach. 

Literature in the ML field has systematically highlighted two main benefits of stacked models; 

they have a higher prediction accuracy than any contributing model, and they are more stable 

and robust models.25,26 Here the stacked model matched well the accuracy of the best 

constituent base model, and mostly improved over it, but it did not result in a systematically 

improved accuracy for all tasks. One reason for this could be that ensembles are known to 

improve accuracy when their constituent models are weak and make different errors or disagree 

on their decisions. However, if base-models are either highly accurate or make similar 

mistakes, then the meta-model would either have no scope for improvement (in case of former) 

or will not be able to correct base-model mistakes. Nonetheless, for the most difficult fine-

grained task, stacking resulted in significant performance improvement. Altogether, our results 

lead us to conclude that a stacked model is accurate, more robust than base models, exhibits a 

graceful performance degradation, and generalizes better than any single ML model. 
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Instability in order of feature elimination 

Although we found that regions beyond the striatum are required for optimal predictions, the 

order of brain regions did not stabilize across repeats. Some of the factors contributing to this 

instability include: (1) Multicollinearity: we followed a multivariate approach when 

investigating the associations between atrophy in different brain regions and HD states. 

However, the efficiency of such multivariate analysis is subject to correlation among predictive 

variables. The sMRI measures were highly correlated (see supplementary material section S8 

for correlation table) which can lead to the final solution potentially following different paths 

depending whether variable A or variable B (both highly correlated) is removed first from the 

model. For example, we noticed that putamen and globus pallidus sometimes swapped places 

with regard to which one is eliminated first. In the clustering dendrogram, we noticed that these 

two regions are the most highly correlated, which explains the preference of the selection 

process to retain only one of the two, but not both. In the bioengineering literature, 

multicollinearity is known to lead to biased feature importance estimation, loss of predictive 

accuracy, and reduction of interpretability of the findings.24 We considered running 

dimensionality reduction via principal component analysis prior to modelling disease 

progression, but ultimately decided to avoid another layer of complexity in the interpretation 

of results and kept the original brain regions as predictors of progression. Moreover, different 

brain regions are differentially sensitive to HD-related brain alterations at different disease 

states and could offer more informative clues than principal factors that dilute their subtle 

contributions to disease modelling. (2) Heterogeneous base models: we noticed that the set of 

most important features differed depending on ML model.38 Therefore, the underlying base-

models could “pull” in different directions regarding the importance of each brain region, 

propagating the instability in the stacked model. (3) Small sample size: although we used a 

relatively large dataset, the amount of signal derived from volumetric anomalies in each 
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subgroup is not sufficient to uncover a clear consistent group of variables among the existing 

collinearities. Small changes in data or outliers among the various data splits could change the 

set of extracted relevant features. 

The feature selection instabilities highlight an important conclusion in the ongoing HD 

biomarker development. Most of the literature on MRI markers in HD tends to point to one 

region (or very few) that is worthy of further development or adoption as an endpoint in clinical 

trials. Consequently, potential biomarkers are frequently compared for their statistical power 

and some are found to carry stronger signal. Our study not only identifies multiple regional 

volumes from across the brain that are informative, but also demonstrates that highly correlated 

markers can emerge as alternate winners of the feature elimination “race.” A standard study 

employing only one predictive model without instability analysis could produce a single 

answer that would be interpreted as the conclusion, and therefore any instability in the model 

might be concealed. Our findings show that endpoint selection should be thoroughly 

investigated rather than picked up from a single analysis as is mostly done in traditional 

research paradigms. Procedures such as bootstrapping, repeated cross-validation or 

comparative analyses with samples from different studies or geographical regions can help 

probe the reliability of biomarkers. 

Limitations & future work: 

We have identified three main limitations of this study. First, we only trained and evaluated 

our method on the TRACK-HD dataset. We chose this dataset as it has a reasonable balance 

between premanifest and manifest individuals. However, in the next phase of work we plan to 

validate our method using datasets such as PREDICT-HD and IMAGE-HD. Second, this 

research was conducted solely on baseline cross-sectional data. Longitudinal data can provide 

more accurate estimates of change over time, which can be a better predictor of ongoing disease 
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progression or proximity to the next HD state. While longitudinal analysis is another avenue 

of application of these models that we plan to test in future studies, the strength of the current 

model is the classification of individuals based on a single MRI, which can be a realistic 

scenario for stratifying participants at screening in clinical trials. In this regard, another 

pressing limitation of this work is the lack of adoption of the more recent HD Integrated Staging 

System (HD-ISS).35 This will be the subject of future extensions of our work. 
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