- 1 Proteomic studies of human placentas reveal partnerships associated with - 2 preeclampsia, diabetes, gravidity, and labor - 4 Shannon J. Ho^{1,10}, Dale Chaput^{2,10}, Rachel G. Sinkey¹, Amanda H. Garces³, Erika P. - 5 New¹, Maja Okuka¹, Peng Sang⁴, Sefa Arlier¹, Nihan Semerci¹, Thora S. Steffensen⁵, - 6 Thomas J. Rutherford^{1,6}, Angel E. Alsina⁷, Jianfeng Cai⁴, Matthew L. Anderson^{1,6}, - 7 Ronald R. Magness¹, Vladimir N. Uversky⁸, Derek A. T. Cummings⁹ & John C. M. - 8 Tsibris^{1,8 ™} - ¹Department of Obstetrics and Gynecology, University of South Florida, Tampa, Florida, - 10 USA. ²Department of Cell Biology, Microbiology and Molecular Biology, University of South - 11 Florida, Tampa, Florida, USA. ³Lisa Muma Weitz Microscopy Laboratory, University of - 12 South Florida, USA. ⁴Department of Chemistry, University of South Florida, Tampa, - 13 Florida, USA. ⁵Department of Pathology, Tampa General Hospital, Tampa, Florida, USA. - 14 ⁶Cancer Center, Tampa General Hospital, Tampa, Florida, USA. ⁷Transplant Surgery - 15 Center, Tampa General Hospital, Tampa, Florida, USA. 8Department of Molecular - 16 Medicine, University of South Florida, Tampa, Florida, USA. ⁹Department of Biology and - 17 Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA. ¹⁰These authors - 18 contributed equally. [™]e-mail: tsibris@usf.edu 19 2021 #### Abstract 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 23 VEGFR2 is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX and PICALM. The oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), the tissue-resident macrophages. MDMX, PICALM, and V1aR were on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before labor. We found select associations between higher MDMX, PICALM, OT-R and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations between PICALM-OT-R (p<2.7x10⁻⁸), PICALM-V1aR (p<0.006), and OT-R-V1aR (p<0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX. The placenta is a transient organ that performs the functions of major organs of the fetus, such as lungs, liver, and kidney¹, supplies the fetus and in particular the fetal brain with oxygen and nutrients, and facilitates waste disposal and provides immune protection^{2,3}. The genomes of placenta and fetus are identical except in cases of confined placental mosaicism. The vascular endothelial growth factor A (VEGF-A) is a key regulator of vasculogenesis, angiogenesis and placental growth that acts mainly through VEGFR1 and VEGFR2, two tyrosine kinase single-pass transmembrane receptors⁴⁻⁶. Preeclampsia is a serious complication of human pregnancy occurring in 5-7% of all gestations with newly-onset hypertension and proteinuria as its primary clinical characteristics^{2,7}. Preeclampsia is a multisystemic syndrome of different subtypes associated with serious health problems to mother and child even after pregnancy⁸. Lipid bilayer-enclosed extracellular vehicles (EV) transport extracellular nucleic acids, proteins, lipids, and metabolites⁹⁻¹². Cancer cells deploy EV to activate VEGF signaling in endothelial cells¹². Exosomes are EV measuring 20–150 nm in diameter. Placental-derived exosomes released in the maternal circulation are associated with pregnancy disorders and parturition¹¹. Tissue-based maps of the human proteome of many organs, including placentas, have been published, 13-16 but great challenges remain to discover which among the hundreds of detected proteins regulate key metabolic networks, specifically, during normal and complicated pregnancies and labor. To obtain such information, we chose to immunoprecipitate VEGFR2, an ideal target as an extensively documented regulator of placental angiogenesis. To deploy a wide net for the membrane partners of VEGFR2, we analyzed the pellets obtained after high-speed centrifugation of chorionic villi homogenates. Uterine blood in the maternal intervillous space exchanges substances with fetal blood at the villous tree. Although the villi are physically separated from uterine blood^{1,3}, the pellets contain cells and EV from it. To preserve protein complexes, we extracted the pellets with ASB-14 (amidosulfobetaine-14), an efficient non-denaturing detergent. The extracts were immunoprecipitated with the bait antibody (Ab) charged on magnetic beads knowing that extraction of membrane proteins from their native environment could alter their structure and protein links. Mass spectrometry identified proteins immunoprecipitated with VEGFR2, especially its newly discovered placental partners, the multifunctional MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). MDMX, also known as MDM4 and HDMX, is a zinc-binding protein and a p53 inhibitor acting in coordination with MDM2, a zinc-dependent E3 ubiquitin ligase¹⁷. MDMX and MDM2 have numerous p53-independent activities. In preeclampsia, p53 is upregulated in villous trophoblasts¹⁸. PICALM is a nuclear and plasma membrane protein that interacts with phosphatidylinositol to recruit clathrin and adaptor protein-2, initiates endocytosis of clathrin-coated vesicles, internalizes ligand-receptor complexes, and participates in iron and cholesterol homeostasis 19,20. PICALM is a genetic risk factor for late-onset Alzheimer's disease that participates in amyloid-β transcytosis and processing of amyloid precursor protein (APP). Human placentas express APP and APP-processing enzymes which are increased in preeclampsia²¹. Oxytocin is a hydrophilic neuropeptide and Pitocin, a synthetic oxytocin, is prescribed in the USA to induce labor and decrease postpartum hemorrhage. The oxytocin receptor (OT-R, OXTR) is a magnesium-dependent G protein-coupled receptor²² that activates a phosphatidylinositol-calcium second messenger system²³. OT-R participates in numerous activities ranging from parturition to lactation and mother-child bonding^{22,23}. OT-R functions as a homodimer and in heterocomplexes with vasopressin receptors V1aR (AVPR1A)24, V2R, and other receptors. V1aR is the most abundant among vasoactive receptors in human arteries²⁵. Here, among the newly detected partners of VEGFR2 we focused on MDMX and PICLAM based on their documented biochemical functions, and their partners OT-R and V1aR. Finding OT-R in exosome-size clusters in the fetal lumen led to the hypothesis that placental OT-R is carried to the fetus in exosomes, potential transporters of future therapeutic agents. MDMX, PICALM, OT-R, and V1aR protein levels, estimated by western blots and relative to an internal control sample, were associated with clinical characteristics of the 44 patients we studied. Potential insights on the molecular mechanisms of placental MDMX and PICALM were gained, respectively, from the cancer and Alzheimer's disease literature. ## Results Immunoprecipitations (IP). Key prerequisite for this study was that VEGFR2 protein complexes withstood tissue freezing and extraction by ASB-14. Since Blue-Native electrophoresis (BN) resolves protein mixtures under non-denaturing conditions, we fractionated placental extracts by BN followed by VEGFR2 immunostaining which revealed streaks extending up to 800 kDa. VEGFR2 monomers appear at 220 kDa in western blots. Apparently, ASB-14 stabilized the extracted protein complexes of VEGFR2. Several proteins described in this study were efficiently extracted by ASB-14 (see Methods). New VEGFR2 partners, MDMX and PICALM, were also selected for IP. Fig. 1 shows western blots of the fractions eluted from the magnetic beads and used to select the fraction for mass spectrometric analysis. Representative fractions are identified by the patient's assigned letter-number code shown on Table 1. Magnetic beads retained all of the applied VEGFR2 (**A**) as none was detected in the flow-through fraction, but the MDMX and PICALM antibodies charged on the beads retained only a fraction of their target protein as shown, respectively, in **E** and **F**. All target proteins were greatly enriched in the eluted fraction-E relative to the applied placental extract, fraction-X. OT-R co-immunoprecipitated with MDMX (**G**, right side) and with PICALM (**G**, left side), but not with VEGFR2 (**D**). V1aR co-immunoprecipitated with MDMX (**H**, left side) and with PICALM (**H**, right side), but not with VEGFR2 (**C**). Eluted MDMX appeared smaller in the VEGFR2 IP (**B**) and MDMX IP (**E**), whereas PICALM (**F**), OT-R (**G**) and V1aR (**H**) appeared larger. The size of eluted VEGFR2 was the same as in the extracts (**A**). Fig. 1. Protein elution profiles in VEGFR2, MDMX and PICALM IP. Detergent-extracted villous sample X was incubated with magnetic bead suspension charged with the target Ab (see Methods). E denotes eluted protein fractions. Western blots detected the target proteins eluted in the uniformly performed IP experiments. A. VEGFR2 in VEGFR2-IP. B. MDMX in VEGFR2-IP. C. V1aR in VEGFR2-IP. D. OT-R in VEGFR2-IP. E. MDMX in MDMX-IP. F. PICALM in PICALM-IP. G. Left-side, OT-R in samples from PICALM-IP, and right-side OT-R in
samples from MDMX-IP. H. Left-side, V1aR in samples from MDMX-IP, and right-side samples from PICALM-IP. Panel C shows the membrane in B reprobed for V1aR without stripping. **Proteomic analysis.** Results of the immunoprecipitations of VEGFR2 (samples O4, O5, O7, U1), MDMX (samples O1, O4, O6, Q1, Q4, R4), and PICALM (samples N3, O1, R4, Q1, Q4, U1) are listed in Tables 2-4. The peptide coverage was not consistent among the placental extracts in each immunoprecipitation group due to different clinical characteristics of the patients whose tissues we tested, and potential differences in post-translational modifications, such as acetylation, and ubiquitination. Soluble proteins in villous homogenates having an affinity for membrane proteins would be retained on the pellets obtained after centrifugation at 100,000*g* for 1h. 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 Select proteins that co-immunoprecipitated with VEGFR2 (Table 2). VEGFR2 was retained on the beads by an Ab raised to the cytoplasmic tail of VEGFR2 exposing extracted proteins to its extracellular, VEGF-binding, domain (see Methods). Therefore, most VEGFR2 partners must have interacted, even after VEGFR2 internalization, with its extracellular rather than its intracellular tyrosine kinase domain, and in binary associations while fewer would bind via some intermediate protein partners. In principle, VEGFR2, MDMX, and PICALM isoforms post-translationally modified at the target sequence of the immunoprecipitating antibodies, are unlikely to be retained on the beads. Our experimental design provided only an estimate of peptide levels in each placental sample. Very basic proteins, such as VEGF-A (pl=9.2), were not detected due to excessive trypsin digestion of these mostly intrinsically disordered proteins prior to mass spectrometric analysis. For example, more than 65% of the VEGF-A residues are expected to be disordered. Nevertheless, western blot analysis showed that VEGF-A co-immunoprecipitated in VEGFR2 IP, and that OT-R (pl=9.6) and V1aR (pl=9.5) co-immunoprecipitated in MDMX and PICALM IP. p53 and MDM2 were detected in IP eluates only by western blots. Under our protocol, proteins larger than 220 kDa were, most likely, identified by peptides from their smaller forms in the placenta. The E3 ubiquitin ligase TRIM21 (tripartite motif-containing protein 21) coimmunoprecipitated with VEGFR2 and in MDMX and PICALM IP (Tables 2-4). TRIM21, a member of the large TRIM family, contains a zinc-binding as well as other motifs. TRIM21 is found in the cytosol and nucleus and is unique among all proteins as the highest-affinity Fc receptor in humans²⁶. TRIM21 does not distinguish free from bound antibodies. Another VEGFR2 partner was PDC-E2 (*DLAT*), the E2 component of pyruvate dehydrogenase (Table 2). The association of PDC-E2 with VEGFR2 probably occurs in the nuclei²⁷ and mitochondria, as discussed later, and is shown in the vasculature of the villi (video). Other VEGFR2 partners were complement components (Table 2) revealing complement activation known to occur in placental dysfunctions²⁸. Immunoglobulin heavy constant alpha 1 (*IGHA1*), an autoantibody antigen and signature protein of plasma cells²⁹, was among the large amounts of immunoglobulins detected that are carried by placental endothelial cells³⁰ and maternal blood cells. A smaller than 220 kDa form of the giant protein titin was also detected in VEGFR2 and PICALM IP (Tables 2, 4). # Select proteins that co-immunoprecipitated with MDMX and PICALM (Tables 3, 4). VEGFR2 was not detected in MDMX and PICALM IP, probably because of the limited binding capacity of the MDMX and PICALM antibody charged on the beads. Among the proteins that co-immunoprecipitated with MDMX were PICALM, annexins, arginase-1, RNA-binding protein HNPNPA2B1³¹ and others that immunoprecipitated also in VEGFR2 and PICALM IP (Tables 2, 4). Protein-glutamine gamma-glutamyltransferase 2 (*TGM2*), which co-immunoprecipitated with MDMX and PICALM (Tables 3, 4), catalyzes protein cross-linking, is considered a bridge between inflammation and hypertension, and is upregulated in preeclampsia³². We indicated in Table 3 the few proteins common in VEGFR2, MDMX and PICALM immunoprecipitations, and many more that co-immunoprecipitated only with MDMX, likely members of the HC proteome. After an initial statistical analysis associated MDMX with the mode of delivery, we were prompted to study the OT-R, which is activated in the myometrium causing uterine contractions²², and its partner V1aR, after validating two commercial antibodies (Figure 10). Immunohistochemistry and whole mount immunofluorescence. VEGFR2 strongly stained the endothelium of the villous capillaries (Fig. 2A). TRIM21 staining is seen in the cytoplasm of villous trophoblasts and stronger staining in intervillous maternal leukocytes (Fig. 2B, arrows). MDMX is predominantly expressed (Fig. 2, C and D) on Hofbauer cells (HC)³³⁻³⁷ that are targets of Zika and other viruses³⁸. Strong MDMX staining was limited to the cytoplasm of HC, easily identified within the villous stroma, some within stromal channels (Fig. 2C). CD163^{33,39}, a marker for placental macrophages⁴⁰, stained the **Fig. 2.** Immunohistochemical staining of placental sections. **A.** VEGFR2 immunostaining is strongly positive in villous endothelial cells (patient Q3). **B.** TRIM21 is uniformly positive in villous trophoblast (patient N4). Very strong staining is seen of maternal leukocytes (arrows). **C.** MDMX is strongly positive in the cytoplasm of HC and moderately positive in endothelial cells (patient W2). **D.** CD163 is strongly positive in the cytoplasm of the HC (patient U1). **E.** PICALM is strongly positive in the trophoblast (patient R4). **F.** PICALM positivity seen in the villous endothelial cells and fetal blood leukocytes (patient R4). Magnifications in A-F were 10x, 20x and 40x. The co-localization of VEGFR2 (red) and PDC-E2 (green) in endothelial cells of the villous vasculature of a normotensive patient is shown on the video obtained from reconstructed stacked images of whole mount immunofluorescence. Nuclei were stained blue with DAPI. Immunogold electron microscopy (IGEM). VEGFR2 was localized along segments of endoplasmic reticulum, and in mitochondria (Fig. 3). MDMX was localized diffusely within the cytoplasm of an HC and was seen clustering in the nucleus and cytosol. Clusters ran along the nuclear membrane and appeared associated with mitochondrial and endoplasmic reticulum membranes (Fig. 4). PICALM was localized to endothelial cell junctions, along endothelial cell plasma membrane, in cytoplasmic projection into the lumen and adjacent stroma and fetal blood (Fig. 5). OT-R was detected in endoplasmic reticulum and cytoplasmic "peninsulas" of endothelial cells extending into the lumen and on clusters (Fig. 6). V1aR was localized to endothelial cell membrane, nucleus, and stroma. V1aR was also seen on a fetal RBC (Fig. 7). Details are seen in Figures 3-7. Fig. 3. Detection of VEGFR2 by IGEM in chorionic villi of placenta Ho-73 (preeclamptic). A. Top left micrograph shows a villous capillary. P: pericyte, E: RBC, SC: stromal cells. Bottom image details area outlined on the top micrograph and shows endothelial cell (EC) cytoplasm, pericyte (P), tight junction (*), collagen fibers in villous stroma (VS), and capillary lumen (L). Image at right: Enlargement of area outlined on the bottom left shows VEGFR2 in mitochondria (arrows). B. Micrograph on top left shows villous capillary, stroma (S), luminal RBC (E), and Hofbauer cell (HC). Enlargement of rectangle at bottom shows prominent nucleolus, mitochondria, and endoplasmic reticulum of HC. Micrographs on the right show enlargement of areas outlined on the bottom left micrograph that detail clusters of VEGFR2 (arrows) in the cytosol (C), along segments of endoplasmic reticulum (ER), and mitochondria (M). Enlargement of image at bottom right shows diffuse localization of VEGFR2 clusters throughout the nucleoplasm (arrows). **C.** Top left micrograph: Villus stroma depicting a fibroblast (Fb), and a pericyte (P) associated with fetal capillary in partial profile, RBC (E), and EC cytoplasm. Bottom left is enlargement of area outlined on the top graph and shows fibroblast cytosol, mitochondria (M), and villous stroma (S). To the right, enlargement of two areas show VEGFR2 in cytoplasm and in partial profiles of mitochondrial matrix (white arrow heads). **D.** A TEM micrograph after osmication provided a better outline of mitochondria in an EC, compared to **A, B** and **C** panels. **E.** Fetal capillaries with luminal RBC (E) are shown in the top left image, IS: intervillous space; mE: maternal RBC. Bottom: enlargement of outlined area shows a fetal macrophage in greater detail; a syncytiotrophoblast (SCT) is also present. Right micrograph: enlargement of area in bottom left micrograph, points to VEGFR2 labelling in an incomplete profile of a mitochondrion. Dashed arrows outline the outer double membrane of the labeled and unlabeled mitochondria. The gold particle diameter is 6 nm. **Fig. 4. Detection of MDMX by IGEM in chorionic villi of placentas Ho-71** (normotensive) and Ho-73 (preeclamptic). A. Left micrograph: Nucleus (N) of endothelial cell (EC) from Ho-73. Arrow heads point to small MDMX clusters, parallel to the inner aspect of the EC plasma membrane. Area outlined, top left: EC junction; P: pericyte process; E: RBC in capillary lumen, S: stroma. This area is enlarged on the top right graph and shows MDMX clusters along the junction (Ju), and endoplasmic reticulum (ER). Bottom right: enlargement of outlined area shows diffuse pattern of MDMX clusters throughout the nucleoplasm. **B.** Top left micrograph shows an outline of apoptotic macrophage in the lumen of fetal capillary (cap) from Ho-71. P: pericyte, F: partial profile of fibroblast (F) and HC
partially marked by a white outline. Enlargement on the top right image shows diffuse MDMX localization in the vacuolated cytoplasm of luminal macrophage. Image at bottom left is enlargement of area outlined in white and shows MDMX clustering in the nucleus (N) and cytosol of the HC. Clusters, averaging 50-100 nm in diameter, run along the nuclear membrane and appear to be associated with mitochondrial and endoplasmic reticulum membranes. Bottom right: enlarged area shows MDMX clusters of approximately 100 nm. The gold particle diameter is 6 nm. Fig. 5. Detection of PICALM in chorionic villi of placentas Ho-71 (normotensive) and Ho-73 (preeclamptic). A. Top IGEM micrograph: partial profile of villus capillary from Ho-71. EC: endothelial cells; E: RBC; stroma. Bottom images: enlargement of two selected areas of endothelium show PICALM localization (arrows) at EC junctions (Ju), along EC plasma membrane, in cytoplasmic projections into lumen (L) and adjacent stroma (S). B. Top micrograph: the nuclei of endothelium of a villus capillary from Ho-71, and the adjacent pericyte (P) are patent. Bottom image: enlargement of nucleus, shows PICALM in nucleoplasm near chromatin, on EC cytoplasmic membrane (white arrows) and in luminal space (black arrow). **C.** Top micrograph: HC in stroma of Ho-73. E: RBC in capillary. At bottom: enlargement shows PICALM in HC nucleus (arrows). **D.** Top micrograph: HC cell in the stroma of placenta Ho-71. Bottom image: enlargement shows PICALM in nucleoplasm in association with chromatin. **E.** PICALM is shown (arrows) at the junction (Ju), and plasma membrane of EC and in adjacent stroma (S) of fetal capillary from Ho-73. **F.** PICALM is shown (arrows) in cytoplasm and plasma membrane of EC of capillary from Ho-71, and in basal lamina (BL), stroma (S) and capillary lumen. The gold particle diameter is 10 nm. **Fig. 6. Detection of Oxytocin Receptor (OT-R) in chorionic villi of placentas of normotensive Ho-71, and preeclamptic Ho-73 patients. A.** Top IGEM micrograph: Villus capillary from Ho-71. P: pericyte adjacent to the endothelial cell (EC); L: lumen. White arrow shows cluster of PICALM on P. Bottom: enlargement shows OT-R in endoplasmic reticulum (ER) and cytoplasm projections of EC into the lumen. (arrows). **B.** Top micrograph: Partial view of villus capillary from Ho73, E: RBC; S: stroma. Bottom graph shows EC junction (J) and OT-R clusters on J, EC cytoplasm, and lumen (arrow). **C.** OT-R is seen in the nucleus of an EC from Ho-73. The gold particle diameter is 10 nm. **Fig. 7. Detection of Vasopressin Receptor V1aR in chorionic villus of placenta Ho-72 (diabetic). A.** Composite IGEM image shows nucleus of HC in stroma on the left and enlargements of three demarcated regions of its nucleus on the right. V1aR clusters, 20-100 nm, in the nucleus are indicated by arrows. **B.** Top micrograph shows EC aspect of a villus capillary. Bottom image is enlargement that shows V1aR on EC membrane, nucleus, and stroma (arrows). **C.** Top micrograph shows aspect of EC of villus capillary; an RBC is seen in the lumen. Bottom image is enlargement that shows several 20-100 nm clusters of V1aR on surface of the RBC (arrows). The gold particle diameter is 10 nm. Fig. 8. Transmission electron microscopy of osmicated chorionic villus from placenta Ho-73 (preeclamptic). A. An exosome⁹ is shown in the lumen with the characteristic lipid bilayer adjacent to RBC (E). B. A dense particle with a lipid bilayer, perhaps an exomere¹², is shown in the lumen next to an RBC (E). Scale in A and B is 50 μ m. Statistical analysis of protein levels in placental extracts. To estimate the protein levels of MDMX, PICALM, OT-R and V1aR, we analyzed by western blots 25 µg protein from each of the 44 placental extracts (Table 1). The intensity of the native-protein band, shown at the top of the representative western blots in Fig. 9, is relative to an internal control sample (Q1 or V1) taken as 100% (Table 5). Violin plots show the analysis of the mean protein levels (Fig. 9) among different clinical conditions. Precluded from the statistical analysis were VEGFR2, since its protein levels did not differ significantly among the 44 placentas analyzed in this study, and TRIM21 due to extensive degradation of its native 50-kDa form in our placental extracts. Fig. 9. Representative western blots (A) of MDMX, PICALM, OT-R, and V1aR, and violin plots of their relative protein levels associated with diabetes, gravidity, labor, neonatal weight, preeclampsia, BMI, or maternal age, as indicated in B-E. Western blots show the molecular mass (kDa) and the placental extracts identified by a letternumber code shown in Table 1. Internal control for MDMX and PICALM was sample Q1, and sample V1 for OT-R and V1aR. Next, we performed univariable and multivariable analyses, shown in Tables 6-12, to test whether the mean protein levels of MDMX, PICALM, OT-R and V1aR, represented by western blot band intensity of placental extracts and relative to an internal reference sample Q1 or T1, varied as a function of maternal age, gravidity, gestational age, body mass index, race, preeclampsia, diabetic status, delivery mode, neonatal sex, and neonatal weight. Preeclamptic patients were compared to non-preeclamptic, and diabetic to non-diabetic patients. **Univariable analysis of protein levels.** Protein expression units are the percent values relative to an internal control sample taken as 100% (Table 5). MDMX protein levels were associated with diabetes with an increase of 47.63 units (95% CI 14.27, 90.00) among those with Type II diabetes and 47.91 (95% CI 5.51, 90.32) among those with gestational diabetes mellitus (GDM) compared to those without diabetes, and gravidity with an increase of 9.66 (95% CI 3.59, 15.70) with each unit increase in gravidity, neonatal weight (an increase of 0.03 (95% CI 0.01, 0.06) for each increase in grams), and preeclampsia (-44.13 (95% CI -71.63, -16.64). Regarding the mode of delivery, cesarean delivery, CD, prior to the onset of labor was associated with an increase of 56.16 (95% CI 24.13, 88.18) compared to those with SVD. See Table 6 for full results. Recently, CD163 expression in Hofbauer cells was associated with BMI, gravidity, and fetal birthweight⁴¹. Increased PICALM levels were associated with maternal age with an increase of 3.68 (95% CI 0.28, 7.08) in intensity for each year increase, and body mass index with an increase of 2.06 (95% CI 0.66, 3.45) for each unit increase. Regarding the mode of delivery, CD prior to the onset of labor had an increase of 59.96 (19.24, 100.68) compared to those with SVD. See Table 7 for full results. OT-R protein levels were associated with maternal age, an increase of 1.56 (95% CI 0.13, 2.99) for each year of age, and diabetes with an increase of 24.16 (95% CI 5.47, 42.85) among those with Type II diabetes compared to those without diabetes. Neonatal weight was associated with an increase of 0.01 (95% CI 8.36x10⁻⁴, 0.03) for each increase in grams. See Table 8 for full results. V1aR protein levels were statistically significantly associated with mode of delivery, CD prior to onset of labor 20.36 (95% CI 10.58, 30.13) compared to SVD. See Table 9 for full results. No associations were found for race, neonatal sex, or gestational age between 35-42 weeks for any outcome. **Multivariable analysis of protein levels.** A multivariable model considered simultaneously all variables that were statistically significant in univariable analysis. MDMX protein levels showed a statistically significantly association with gravidity 7.19 (95% CI 1.24, 13.14), and preeclampsia -40.61 (95% CI -66.18, -15.04) as shown on Table 10. There were no significant associations for PICALM or OT-R as shown in Tables 11-12. The best fit model for V1aR included only an intercept (no covariate). To account for the spread in the replicate measurements of MDMX, PICALM, OTand V1aR (Table 5), we carried out the bootstrapping analysis shown in Tables 14-19. The statistical results were robust to bootstrapped resampling (n=1000) of data points included in the analyses. We also looked at the correlation of MDMX, PICALM, OT-R and V1aR protein levels with each other and found significant correlations between PICALM and OT-R (0.72 95% CI 0.54, 0.84, p<2.7x10⁻⁸), PICALM and V1aR (0.41 95% CI 0.12, 0.63, p<0.006), and OT-R and V1aR (0.47 95% CI 0.20, 0.67, p<0.001). MDMX was not correlated with PICALM, OT-R or V1aR. #### **Discussion** Mass spectrometry placed VEGFR2, MDMX and PICALM and their partners in the molecular landscape of chorionic villi of placentas at term. The co-immunoprecipitated proteins represent the most prevalent and stable complexes. IGEM provided a detailed map of VEGFR2, MDMX, PICALM, OT-R and V1aR in the villi, and hints about protein traffic, specifically, of placental exosomes transporting OT-R to the fetus. In future studies, IGEM can show if two proteins are within 10-20 Å of each other, with secondary antibodies labeled with gold particles of different size⁴², such as 6 nm and 12 nm, even though larger particles may occasionally eclipse the smaller ones. A comprehensive statistical analysis of 44 placental extracts associated MDMX, PICALM, OT-R and V1aR protein levels with labor at term and a number of clinical parameters and gestational complications. Further studies may assign their binary protein interactions into networks of signaling partnerships among patient groups with normal gestation and gestational complications.⁴³ The predominant expression of MDMX on fetal macrophages (HC)³⁷ and the association of MDMX levels in the villi with most of the clinical characteristics we tested, suggest that MDMX has a central role in comorbidities, that originate from deficient trophoblast proliferation,⁴⁴ and are linked to pre-existing conditions and environmental exposures.⁴⁵ **MDMX** immunoprecipitations. We were puzzled that the immunoprecipitated MDMX had a molecular mass of
50 kDa, instead of 75 kDa in the placental extracts (Fig. 1, B and E). A possible explanation was offered by the discovery⁴⁶ that MDMX interacts with TRPM7. a bi-functional cation channel protein fused with a kinase domain. TRPM7 is a master regulator of the cellular balance of divalent cations, that mediates the uptake of Zn²⁺, Mg²⁺ and Ca²⁺,⁴⁷ and senses oxidative stress to release Zn²⁺ from intracellular vesicles⁴⁸. TRPM7 regulates MDMX levels by modulating Zn²⁺ concentration, and induces the formation of faster moving forms of MDMX on SDS-PAGE gels⁴⁶. These forms depend on the channel function of TRPM7 and proteasomal degradation. We hypothesize that placental TRPM7, which is downregulated in preeclampsia, 49 interacted with MDMX during the overnight incubation with the immunoprecipitation beads stripping MDMX of Zn²⁺. Proteasomal degradation was prevented by including MG-132 in our tissue-extraction and IP buffer. We missed detecting TRPM7 because it did not enter the top section of the 4-12% Bis-Tris NuPAGE gels we used to fractionate the IP proteins with and submit the 25-220 kDa strips for proteomic analysis (see Methods). TRPM7 has a theoretical mass of 213 kDa and pl 8.1, but on SDS-PAGE gels it is shown at 230 kDa and was reported at 245 kDa in BN electrophoresis. **Autoantibody antigens and TRIM21.** Although our patients did not show symptoms of autoimmune diseases, a few of the immunoprecipitated proteins listed on Table 20 were also among the autoantigens detected by Neiman *et al.* in healthy adults⁵⁰, such as the extensively studied autoantigens TRIM21/Ro(SS-A) and PDC-E2, also an autoantigen in primary biliary cholangitis and other autoimmune diseases. PDC-E2 would be held on the beads as a partner of VEGFR2. TRIM21 is also extracted from intervillous maternal leucocytes based on their staining with TRIM21 (Fig. 2B). Maternal autoantigen-autoantibody complexes, with an affinity for proteins in the villous membrane fraction, would be trapped on the beads by Fc-receptor TRIM21 based on its high affinity for IgG²⁶. Since TRIM21 has broad species specificity, it could bind to the sheep anti-rabbit Ab on the Dynabeads and the IP-bait, the anti-rabbit Ab the beads were charged with. If TRIM21 clusters on the beads remain catalytically active, they could, in principle, retain VEGFR2, MDMX and PICALM, as substrates of ubiquitin ligases, along with other proteins, many not *in vivo* TRIM21 substrates, detected by mass spectrometry. Consequently, TRIM21 can confound immunoprecipitations, performed according to our protocol, by retaining proteins unrelated to the bait-Ab. Based on the extensive TRIM21 literature, placental TRIM21 could participate in metabolic pathways as an E3 ubiquitin ligase, ^{51,52} and as Fc receptor defending against infections. Immunohistochemistry and immunogold electron microscopy. The distribution of VEGFR2, MDMX and PICALM in the villi was shown by IHC (Fig. 2) and by IGEM which also showed the distribution of OT-R and V1aR (Figures 3-7). VEGFR2 was detected in the nucleus, as previously reported^{27,53}, and in mitochondria, a novel observation to the best of our knowledge (Fig. 3, panels A, B and C). Translocation in the other direction, mitochondria to the nucleus, was shown for the entire pyruvate dehydrogenase complex to supply acetyl-CoA for histone acetylation⁵⁴. VEGFR2 is distributed through relay networks in lipid rafts and endosomal trafficking⁵⁵ and SUMOylation holds VEGFR2 at the traffic control Golgi apparatus⁵⁶. Gradients in receptor concentration may exist along the placental vascular tree, as was shown for the purinergic P2Y₂ receptor (pl=9.7)⁵⁷. Distortion of receptor gradients in preeclampsia and diabetes could affect protein traffic and even expose proteins to degradation. Regarding the latter, it may be pertinent to consider the mechanism of action of estrogen receptor antagonists that decreased the estrogen receptor intra-nuclear mobility and subsequently induced its turnover⁵⁸. MDMX appeared in nuclear clusters (Fig. 4, A and B). PICALM was detected in nuclei (Fig. 5, B and C). The very basic OT-R and V1aR were also detected (Figures 6 and 7). Surprisingly, clusters of V1aR became clearly visible on a fetal RBC after increasing gamma (Fig. 7, C). Since vasopressin receptors participate in erythropoiesis⁵⁹ their presence on RBC was not very surprising. We hypothesize that in addition to non-traditional functions, such as critical immune sensors,⁶⁰ RBC transport V1aR to the endothelial cells of the villi²⁵. PICALM and OT-R were detected on endothelial cell projections into the fetal lumen (Figures 5A, 6A) where OT-R clusters were also observed (Fig. 6, A and B) matching the dimensions of microvesicles-exosomes^{10,11}. Although we cannot prove that OT-R clusters are inside exosomes with the characteristic bi-lipid membranes, as seen in standard EM cellular morphology, we propose that fetal exosomes carry to the fetus the OT-R and other proteins produced in the placenta. A limitation of IGEM, from the exosome perspective, is that bi-lipid layers are greatly impaired during the processing of tissues because OsO4 is omitted in a post-fixation step used to increase the visualization of such membranes. OsO4 reacts strongly with lipid complexes, and while it enhances contrast for standard EM cell morphological imaging, it can oxidize many antigen epitopes in IGEM. Fig. 8 shows representative intraluminal vesicles⁹ seen in the fetal capillary of the placenta sample that was processed with the OsO₄ post-fixational step included. Membranes are more clearly defined here, compared to the IGEM sample, representing exosomes or microvesicles⁹ in the fetal lumen (Fig. 8, A and B). We noticed similarities between our IGEM Figures 5 and 6 and transmission electron microscopy images in a study at two polluted cities in Mexico showing that environmental nanoparticles of Fe, Ti, Cu, Hg and Sn accumulated in HC and endothelial cells of chorionic villi sampled at term⁶¹. Statistical analysis of protein levels and clinical presentations. Our search for the function of the newly detected placental membrane proteins MDMX, PICALM, and of OTR and V1aR, was accelerated by a statistical analysis of their protein levels, which revealed numerous associations with clinical characteristics of the 44 patients. MDMX, located predominantly in HC (Fig. 2C), took center stage based on its association with most of the clinical characteristics we tested. Although many of our statistical associations from 44 placentas are highly unlikely to be observed by chance, our conclusions could change by testing a larger number of placenta samples and integrating, after further research, protein isoforms and post-translational modifications of the newly detected proteins. But to what extent did proteins from intervillous blood, reflecting also the maternal immune system,⁴⁵ contribute to the observed clinical associations? An initial answer was provided for MDMX by the statistical analyses showing that tissue-resident HC contributed most extensively since they predominantly express MDMX (Fig. 2). **Diabetes.** In diabetic patients, higher MDMX levels (Table 6) seem to correspond to the higher number of cells stained with CD163⁶², a marker of HC³⁹. It is not known if MDMX upregulation and higher HC numbers mark a metabolic shift towards diabetes. A diabetic atherosclerosis rat model showed upregulation of MDMX mRNA and protein levels⁶³. MDMX was shown in cell cultures to serve as a nutrient sensor by inhibiting mTORC1⁶⁴. HC could facilitate nutrient transportation in the villous stroma³⁴ linking placental MDMX to nutrient levels and metabolic networks. OT-R levels are higher in Type 2 diabetes (Table 8), and there is an association of *OXTR* variants with insulin sensitivity and Type 2 diabetes⁶⁵. **Preeclampsia.** Villous trophoblasts in pregnancies complicated by preeclampsia had higher p53 and lower MDM2 levels 18 . Although MDMX was not measured, we believe it would have been decreased also. Lower MDMX levels (Tables 6, 10) could reflect the decreased numbers of HC in preeclampsia 40,41 . What can cause the decrease of HC? In cancer, abnormal vascularity disrupts the penetration of immune cells, 66 and their function is hindered by the tumor microenvironment 67,68 . Here, defective placental vascularity and increased placental stiffness 69 , both changing the architecture of the villi, could have an adverse effect on HC levels. In preeclampsia, placental stiffness could be increased by higher levels of tissue transglutaminase/TGM2 (Tables 3, 4) which catalyzes protein crosslinking 32 . MDMX could be involved in the reprogramming of fetal macrophages (HC) during preeclampsia and other gestational complications and labor. Drawing from the breast cancer literature 70 , downregulation of placental MDMX in preeclampsia could be linked to estrogen receptor- α^{71} and lower estrogen levels 72,73 . In preeclampsia large quantities of magnesium sulfate are prescribed to prevent seizures. A potentially relevant study of a blood-brain barrier (BBB) model of primary endothelial cells from human brain 74 , showed that TRPM7 mediated the entry of extracellular Mg²⁺ into cells and that high Mg²⁺ levels speeded up the clearance of A β to the blood side via BBB transcytosis and upregulation of PICALM and LRP-1 that is also expressed in HC⁷⁵. It was shown recently that TRPM7 kinase activity induces amyloid- β degradation and clearance⁷⁶. Among other mechanisms, the accumulation of placental A β ²¹ could be related to TRPM7 and limiting PICALM-dependent transcytosis. **Gravidity.** Univariable and multivariable regression analysis found a significant association of gravidity with MDMX levels (Tables 6, 10). Gravidity was recently associated with HC levels determined by CD163 immunostaining⁴¹. While multigravida women have shorter telomeres and increased DNA methylation age,⁷⁷ a role of p53 and
MDMX on telomere length is not established in normal human tissues, to the best of our knowledge. DNA methylation age is associated with MDMX and prenatal smoke exposure⁷⁸. The gravidity-MDMX association, which registers in the villi, could reflect the cost of multiple pregnancies to the mother⁷⁹. **PICALM**, **OT-R** and **V1aR**. The association of placental PICALM levels with BMI (Table 7) is intriguing because the placenta functions in the absence of adipocytes. A potential precedent for such association was provided by a study on gastric bypass surgery where PICALM mRNA levels in the blood were decreased after a significant drop of BMI⁸⁰. Furthermore, among the Alzheimer's risk nucleotide polymorphisms (SNP), a PICALM SNP is associated with obesity⁸¹. The strong correlation of protein levels of PICALM with OT-R (p<2.7x10⁻⁸), PICALM with V1aR (p<0.006), and OT-R with V1aR (p<0.001) point to fundamental interactions by yet unknown mechanisms. MDMX was not correlated with PICALM, OT-R or V1aR. Downregulation of OT-R in spontaneous vaginal deliveries (SVD) relative to CD prior to the onset of labor (Table 8), would be consistent with the higher oxytocin levels in SVD than CD. It is not known to what extend extravillous blood cells and exosomes may have supplied OT-R, and V1aR, detected in placental membrane extracts. Nevertheless, IGEM images of the chorionic villi support the hypothesis that the lipid-covered exosomes carry a cargo of the very basic, magnesium-dependent OT-R across the blood-brain barrier to interact also with fetal microglia⁸²⁻⁸⁴, the resident immune cells of the brain⁸⁵. OT-R protein levels in venous and arterial blood from the umbilical cord may reveal differences in bi-directional OT-R traffic in normal, preterm and postterm deliveries. In that case, OT-R protein levels and epigenetic modifications⁸⁶ may lead to therapeutic interventions with exosomes⁸⁷ prepared, ideally, with the transmembrane orientation¹² of OT-R in villous exosomes. Labor. The decrease of MDMX in the membrane fraction of chorionic villi in SVD vs. CD prior to the onset of labor (Table 6), could be related to the decrease of immune cells in peripheral maternal blood with approaching labor⁸⁸, and the molecular signature of the "immune clock". 45,89 Lower MDMX levels could also indicate a molecular switch in late gestation, locally, to energy-preserving measures or other mechanisms involving uterine macrophages⁹⁰. MDMX, PICALM, OT-R and V1aR could be components of the fetal and maternal immune system during pregnancy and as the fetus develops immunity in preparation for birth. 91,92 Concomitant downregulation of MDMX, PICALM, OT-R and V1aR occurred only in SVD compared to CD prior to the onset of labor (Tables 6-9) signifying a potential convergence of metabolic networks to prepare the uterus for the final act in pregnancy, delivery of the fetus. ## Materials and methods **Human Subjects.** All patients signed consent forms prior to their inclusion in the study according to the protocol approved by the Institutional Review Board of the University of South Florida and Tampa General Hospital. Placental samples were obtained from 44 patients with singleton pregnancies, aged 19-40 and gestational ages ranging from 35-42 weeks based on the dating criteria from the American College of Obstetricians and Gynecologists (ACOG) (https://pubmed.ncbi.nlm.nih.gov/28426621/) for women who delivered vaginally or by cesarean delivery (CD), between 7 AM to 4 PM, based on obstetric indications (Table 1). Patients were excluded if they had active viral infections or fetal growth restriction, defined as estimated fetal weight of <10th% per the Hadlock growth curve. Preeclampsia was diagnosed according to the criteria established in 2013 by ACOG (DOI: 10.1097/01.AOG.0000437382.03963.88). Low risk pregnancy was defined by the absence of maternal co-morbidities including chronic hypertension defined as hypertension prior to pregnancy or systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg prior to 20 weeks' gestation, pregestational or gestational diabetes, smoking, renal disease, and autoimmune disease. Patients with preeclampsia with severe features defined by the 2013 ACOG Guidelines received magnesium sulfate for seizure prophylaxis during induction of labor or CD through 24*h* postpartum. The demographic Table 21 shows that 91% of study participants were 18-34 years old and 75% were multiparous. Most participants (91%) were ≥37 weeks' gestation. There was no risk of bias in the selection of placentas which was at random. Sample/patient IDs (e.g., H-1, J-1, etc.) are not known to anyone outside the research group, and are assigned identifiers not using any personally identifiable information. Reagents. Most of the reagents were purchased from Thermo Fisher Scientific (Waltham, MA, USA), MMP-200 metalloprotease inhibitor III, proteasome inhibitor MG-132, protease inhibitor cocktail III, marimastat, Hammarsten-grade casein, detergent ASB-14, Novagen S-protein HRP conjugate 69047-3, Novex 4-12% BT SDS-PAGE gels, CL-XPosure film, magnetic Dynabeads M-280 charged with sheep anti-rabbit antibodies, Maxisorp Nunc C-bottom 8-well strips, protein assay Pierce BCA 562 nm kit 23225 (Pierce, Rockford, IL), and Protein Perfect HRP MW markers 69079-3/ Millipore-Calbiochem (Billerica, MA). Additional reagents are provided in the sections below. Antibodies (Protein target/vendor). VEGFR2 (55B11) no. 2479/Cell Signaling (Danvers, MA), MDMX A300-287A/Bethyl Laboratories (Montgomery, TX), PDC-E2 SC-365276/Santa Cruz Biotechnology (Santa Cruz, CA), PICALM Prestige HPA019053, OT-R ABN1735/Millipore (Temecula, CA), V1aR Sigma MBS176788/MyBiosource (San Diego, CA), CD163 MA5-33091/InVitrogen-Thermo Fisher Scientific, TRIM21 Novus NBP1-33548 (Centennial, CO), Alexa-488 (green) and Alexa-64 (red) goat anti-rabbit/mouse conjugated secondary antibodies/Life Technologies (Eugene, OR), immunogold donkey-anti-rabbit secondary antibodies 25702 (6 nm) and 25705 (10 nm) (Electron Microscopy Sciences (Hatfield, PA). Placenta tissue collection, homogenization, and protein extraction with ASB-14 Within 15 min of the delivery of the placenta, samples were obtained from the fetal side of the placental bed at 4-5 cm from the umbilical cord and were placed on dry ice and then stored at -80°C. Tissues were also fixed in formalin for IHC or in paraformaldehyde-tannic acid for IGEM. Frozen tissue samples were finely cut and placed, at 150 mg per mL, in homogenization buffer containing 50 mM sodium phosphate pH 7.6, 50 mM NaCl, 50 µM sodium o-vanadate, 10 mM NaF, 20 µM proteasome inhibitor MG-132, 10 µM marimastat and 6 µL protease inhibitor cocktail-III per mL. After homogenization at 4°C by three 15s bursts of a homogenizer with one-minute cooling in between, the homogenates were centrifuged for 1h at 100,000g. On top of the pellets was a thin pink fluffy layer, presumably of RBC membranes, which was included when the pellets were suspended in homogenization buffer containing 1% ASB-14 and then extracted overnight, due to logistical reasons, at 6-8°C by end-over-end rotation. The zwitterionic detergent ASB-14 was superior in solubilizing membrane proteins to CHAPSO or n-octyl β-D-maltoside. After centrifugation at 100,000g for 1h, the supernatant solution was used in immunoprecipitations and western blots. We refrained from washing the membrane pellets in order to capture weak protein complexes. Protein levels of the membrane extracts were determined in quadruplicate at two dilutions with the Pierce BCA 562 nm kit. Final yield: 10-15 mg of detergent-extracted proteins per g wet tissue. To determine the efficiency of protein extraction by ASB-14, the post-ASB-14 100,000g pellets were solubilized in SDS-DTT at 95°C and then probed in western blots. Extraction yield was 100% for VEGFR2, MDMX and PICALM, 86% for PDC-E2 and 64% for TOMM20, a marker for inner mitochondrial membranes. 637 638 639 640 641 642 643 644 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 Peptide synthesis to validate the OT-R and V1aR antibodies. Fig. 10 shows OT-R peptides EGNRTAGPPRRNEA (within the OT-R immunogen range given for this antibody), AEAPEGAAAGDGGRVA (outside the OT-R immunogen range) and V1aR immunogen peptide HPLKTLQQPARRSRLMIAA to validate the OT-R Millipore ABN1735 (0.5 μ g/ μ L) and V1aR MyBioSourse MBS176788 (0.5 μ g/ μ L) antibodies. The peptides were synthesized on 100 mg Rink Amide-MBHA resin (0.65 mmol/g) at room temperature under air using standard solid phase peptide synthesis protocol. 647 Fig. 10. Validation of OT-R and V1a **Fig. 10. Validation of OT-R and V1aR antibodies.** The synthesized peptides and their pl are shown next to the scans of the coated Nunc C-bottom strips probed with the antibodies being validated. Validation method for OT-R and V1aR antibodies. Maxisorp Nunc C-bottom strips were coated overnight at 4°C with the indicated amounts of synthetic peptides (Fig. 10) dissolved in sodium carbonate buffer pH 9.6°3. After blocking, as in western blot experiments, the OT-R and V1aR antibodies were added for 2h at room temperature at the indicated dilution followed by the secondary anti-rabbit antibody conjugated with horseradish peroxidase. Detection of bound OT-R or V1aR antibodies was conducted by ECL on films exposed for the indicated times. The OT-R and V1aR antibodies bound only to peptide sequences used to raise them. Immunoprecipitations. Each immunoprecipitation of the 4-6 placental extracts, shown in Table 3-5, was carried out in one batch. Half mL of pellicular support M-280 Dynabeads was washed in homogenization buffer containing 1% ASB-14 and charged separately at room temperature for 2h with 0.9 μg VEGFR2, 15 μg MDMX or 7.5 μg PICALM antibody. Three mg of ASB14-extracted placental membranes from each placenta were mixed separately with the beads, overnight for logistical reasons, at 6-8°C. Most
proteins adhering to the beads were removed by washing four times with homogenization buffer containing 1% ASB-14 and once with detergent-free buffer. Bound proteins were eluted at 95°C with 100 mM Tris-HCl pH 7.6, 4% SDS (w/v) and 100 mM DTT. Eluted proteins were fractionated on 4-12% Bis-Tris NuPAGE gels. After Coomassie blue staining, gel strips from 25-220 kDa were submitted for mass spectrometric analysis. Mass spectrometry. Samples were submitted and analyzed in a double-blinded fashion. Immunoprecipitated proteins were digested with Trypsin/Lys-C overnight at 37° C as described⁹⁴. Each group of immunoprecipitated samples was analyzed with a new trap and HPLC column. Peptides were dried in a vacuum concentrator and resuspended in 0.1% formic acid for LC-MS/MS analysis. Peptides were separated with a C18 reversed-phase-HPLC column on an Ultimate3000 UHPLC with a 60-min gradient and analyzed on a Q-Exactive Plus using data-dependent acquisition. Raw data files were processed in MaxQuant (www.maxquant.org) and searched against the UniprotKB human protein sequence database. Search parameters included constant modification of cysteine by carbamidomethylation and the variable modification, methionine oxidation. Proteins were identified using the filtering criteria of 1% protein and peptide false discovery rate. Western blot analysis. 25 µg of protein from placental extracts were resolved on 4-12% Bis-Tris NuPAGE gels, transferred to PVDF membranes and blocked overnight at room temperature in 1% Hammarsten-grade casein or 5% Difco skimmed milk powder. MDMX, PICALM, OT-R or V1aR primary antibody dilutions ranged from 1:800 to 1:10000. PVDF membranes incubated with ECL reagents were exposed to film for 1-20s. Films were scanned in the transmittance mode (Epson Perfection 3200 Photo, Epson America, Los Alamitos, CA, USA). The intensity of the top band (Fig. 9) was measured with Li-Cor Image Studio Lite software (Lincoln, Nebraska, USA) and chosen from a film exposed at the linear portion of the correlation between band intensity and film exposure time before films were overexposed. In the statistical analyses we used the mean intensity from 3.6 blots, on the average, and relative to an internal control sample Q1 or V1 (Table 5). **Immunohistochemistry.** 4 μm formalin-fixed paraffin embedded tissue sections were processed for IHC and stained with VEGFR2 (1:50), MDMX (1:500) or PICALM (1:1000) antibodies. Slides were exposed with diaminobenzidine tetrahydrochloride dehydrate as a chromogen and counterstained with hematoxylin before permanent mounting. 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 697 698 Immunogold electron microscopy. Tissue samples were promptly fixed in buffered 4% paraformaldehyde and kept overnight at 4°C and then immersed in 0.75% buffered solution of tannic acid for 2h at room temperature. Samples were rinsed in filtered glassdistilled water, dehydrated through a series of increasing ethanol concentration, infiltrated, and embedded in LRW acrylic resin. Selected blocks were sectioned at 90-100 nm and mounted on formvar coated copper grids. The immunogold reaction was performed by incubating grids in standard blocking solution for 30 min at room temperature and transferring to either 1:100 MDMX rabbit Ab, 1:400 PICALM rabbit Ab, 1:100 VEGFR2 rabbit Ab or 1:600 OT-R or V1aR rabbit Ab for an overnight incubation at 4°C. After washing in PBS, gold-conjugated donkey anti-rabbit Ab 25703 (Electron Microscopy Sciences, Hatfield, PA), was applied at 1:50 dilution for 90 min at room temperature. The diameter of the gold particles (Electron Microscopy Sciences, Hatfield, PA) was 6 nm in VEGFR2 and MDMX and 10 nm in PICALM and OT-R experiments. Excess secondary antibody was removed by washing with glass-distilled water and the grids were further treated with 2% aqueous uranyl acetate added for contrast. In control experiments excluding the primary antibody, 1-2 gold particles were detected throughout the grids. In morphological analysis by transmission electron microscopy, tissues were fixed in 2% OsO4, after 2.5% glutaraldehyde fixation and prior to the dehydration and resin infiltration steps. Images were obtained with a JEM-1400 transmission electron microscope (JEOL, Peabody, MA) and Orius-832 camera (Gatan Inc., Pleasanton, CA). 720721 722 723 724 725 726 727 Whole mount immunofluorescence (WMIF). Small samples (2x2x2 mm) of placental tissues, were fixed in 1 mL 90% methanol for 2h at 4°C according to Bushway et al. 95 with modifications. After washing with PBS, the samples were blocked for 2h at 4°C with 1% Hammarsten-grade casein in PBS containing 0.02% Thimerosal. After washing with 0.5% Casein in PBS, antibodies to VEGFR2 and PDC-E2 were added at 1:400 dilution and incubated overnight at 4°C, followed by washing with 0.5% Casein-PBS containing 0.3% Triton-X and incubation with the secondary antibodies at 1:100 dilutions. WMIF slides were observed with a Leica TCS SP5 AOBS laser scanning confocal microscope through a 40X/1.3NA Plan Apochromat oil immersion objective lens (Leica Microsystems CMS GmbH, Germany). 405 Diode, Argon 488 and He-Ne 647 laser lines were applied to excite the samples and tunable emissions were used to minimize crosstalk between fluorochromes. Images were captured with photomultiplier detectors and prepared with the LAS AF software version 2.7 (Leica Microsystems CMS GmbH, Germany). A 3D projected image was created by Z-stack of images taken at 1.0-0.5-micron intervals to create a movie by Imaris version 7.6 (Bitplane AG, Switzerland) (video). Statistical analysis. The protein levels of MDMX, PICALM, OT-R and V1aR were analyzed for univariable and multivariable associations by linear regression using the R statistical program (https://www.r-project.org, 4.1.3). Parsimonious multivariable models were selected using Akaike's Information Criteria with a stepwise selection procedure (StepAIC in the MASS package of R) and were run with covariates that were identified as statistically significant in univariable analysis. A p-value of less than 0.05 was considered statistically significant. Violin plots were made by R statistical program, and data Figures and graphs were assembled using Fiji ImageJ, GraphPad Prism 9.4.0, Adobe Illustrator and Windows Office365 software. To test the robustness of results to the specific datapoints included in the analysis, bootstrapped resampling (with replacement) was used to generate 1000 replicate datasets, upon which regression analyses were redone. Results of bootstrapped resampled analyses were summarized and compared to the full dataset to characterize consistency of point estimates and patterns of statistical significance. Pearson correlation coefficients were used to characterize correlation of protein measurements with each other. # Acknowledgements This study was supported by the Department of Obstetrics and Gynecology at the University of South Florida and research funds from Tampa General Hospital (AEA) and the Teasley Foundation (TJR). The WMIF images were obtained by the Analytic Microscopy Core Facility at the H. Lee Moffitt Cancer Center & Research Institute, an NCI designated Comprehensive Cancer Center (P30-CA076292). We thank Umit A. Kayisli for advice on IHC, and Santo V. Nicosia and Greg Arsenis for reading the manuscript and comments. 761 762 #### **Author contributions** 763 JCMT conceived the study, performed most wet chemistry experiments, and wrote the first 764 draft of the manuscript in consultation with VNU and RRM. SJH, RGS, and EPN recruited 765 patients, collected, and interpreted clinical data in consultation with TSS, TJR, AEA, and 766 MLA. DC performed proteomic analyses. MO assisted in the analysis of western blot data 767 and confocal and WMIF experiments. SA and NS performed IHC experiments. AG 768 performed and interpreted IGEM. PS and JC synthesized OT-R and V1aR peptides. DATC 769 performed analyses and statistical data presentation. All authors critically read and 770 approved the manuscript. 771 772 # Competing interests DATC declares a grant from Merck for research unrelated to this manuscript. The remaining authors declare no competing interests. 775 776 ## Data availability - 777 The video of the chorionic villi is deposited at - 778 https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fzenodo.org%2Frecord%2 - 779 F8160169%3Ftoken%3DevJhbGciOiJIUzUxMilsImV4cCl6MTY5MiMwOTU5OSwiaWF0ljoxNig5 - 780 Njk3NDQzfQ.eyJkYXRhljp7InJIY2lkljo4MTYwMTY5fSwiaWQiOjM1ODEzLCJybmQiOjJjMTlkOT - 781 M2NCJ9.2OSYKMRxBpqO7afBKem S8HdQJgmbtnahLFTgJ 5hoiK3wxcbB2fvuygEPJ0PeTtF r - 782 9f9Zuocr6LcfXPs2- - 783 gw&data=05%7C01%7Ctsibris%40usf.edu%7C02564875fb61480dab4f08db87ae6fdb%7C741bf - 784 7dee2e546df8d6782607df9deaa%7C0%7C0%7C638252955485880125%7CUnknown%7CTWF - 785 pbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7 - 786 C3000%7C%7C%7C&sdata=iukZjlFOvoliQAdfd566alnMH33jLMz3TV%2BDqPv5Trk%3D&reser - 787 ved=0. - 788 All MS raw files and corresponding results files will be deposited to the ProteomeXchange - 789 Consortium via the PRIDE partner repository. 791 792 REFERENCES 793 - Burton, G. J. & Fowden, A. L. The placenta: a multifaceted, transient organ. *Philos Trans R Soc Lond B Biol Sci* **370**, 20140066 (2015). https://doi.org:10.1098/rstb.2014.0066 - Burton, G. J., Redman, C. W., Roberts, J. M. & Moffett, A. Pre-eclampsia: pathophysiology and clinical implications. *BMJ* **366**, I2381 (2019). https://doi.org/10.1136/bmj.I2381 - Aplin, J. D., Myers, J. E., Timms, K. & Westwood, M. Tracking placental development in health and disease. *Nat Rev Endocrinol* **16**, 479-494 (2020). https://doi.org:10.1038/s41574-020-0372-6 - Shibuya, M. VEGFR and type-V RTK activation and signaling. *Cold
Spring Harbor perspectives in biology* **5**, a009092 (2013). https://doi.org:10.1101/cshperspect.a009092 - Peach, C. J. *et al.* Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J Mol Sci **19** (2018). https://doi.org:10.3390/ijms19041264 - Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. *Nature reviews. Molecular cell biology* **17**, 611-625 (2016). https://doi.org:10.1038/nrm.2016.87 - 807 7 Qu, H. & Khalil, R. A. Vascular mechanisms and molecular targets in hypertensive pregnancy and 808 Physiol Heart Circ Physiol preeclampsia. Аm J 319, H661-H681 (2020).809 https://doi.org:10.1152/ajpheart.00202.2020 - 810 8 Roberts, J. M. *et al.* Subtypes of Preeclampsia: Recognition and Determining Clinical Usefulness. 811 *Hypertension* **77**, 1430-1441 (2021). https://doi.org:10.1161/HYPERTENSIONAHA.120.14781 - Mincheva-Nilsson, L. Immunosuppressive Protein Signatures Carried by Syncytiotrophoblast-Derived Exosomes and Their Role in Human Pregnancy. *Front Immunol* **12**, 717884 (2021). https://doi.org:10.3389/fimmu.2021.717884 - Ormazabal, V., Nair, S., Carrion, F., McIntyre, H. D. & Salomon, C. The link between gestational diabetes and cardiovascular diseases: potential role of extracellular vesicles. *Cardiovasc Diabetol* 21, 174 (2022). https://doi.org:10.1186/s12933-022-01597-3 - Morelli, A. E. & Sadovsky, Y. Extracellular vesicles and immune response during pregnancy: A balancing act. *Immunol Rev* (2022). https://doi.org:10.1111/imr.13074 - Kugeratski, F. G., Santi, A. & Zanivan, S. Extracellular vesicles as central regulators of blood vessel function in cancer. *Science signaling* **15**, eaaz4742 (2022). https://doi.org:10.1126/scisignal.aaz4742 - Uhlen, M. *et al.* Proteomics. Tissue-based map of the human proteome. *Science* **347**, 1260419 (2015). https://doi.org:10.1126/science.1260419 - Wang, D. *et al.* A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol Syst Biol **15**, e8503 (2019). https://doi.org:10.15252/msb.20188503 - Di Meo, A. *et al.* Proteomic Profiling of the Human Tissue and Biological Fluid Proteome. *J Proteome Res* **20**, 444-452 (2021). https://doi.org:10.1021/acs.jproteome.0c00502 - Manna, S. *et al.* A proteomic profile of the healthy human placenta. *Clin Proteomics* **20**, 1 (2023). https://doi.org:10.1186/s12014-022-09388-4 - Klein, A. M., de Queiroz, R. M., Venkatesh, D. & Prives, C. The roles and regulation of MDM2 and MDMX: it is not just about p53. *Genes Dev* (2021). https://doi.org:10.1101/gad.347872.120 - Sharp, A. N. *et al.* Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast. *PLoS One* **9**, e87621 (2014). https://doi.org:10.1371/journal.pone.0087621 - Tebar, F., Bohlander, S. K. & Sorkin, A. Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of - 837 overexpression on clathrin-mediated traffic. *Mol Biol Cell* **10**, 2687-2702 (1999). 838 https://doi.org:10.1091/mbc.10.8.2687 - Ando, K. *et al.* PICALM and Alzheimer's Disease: An Update and Perspectives. *Cells* **11** (2022). https://doi.org:10.3390/cells11243994 - 841 21 Buhimschi, I. A. *et al.* Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. *Science translational medicine* **6**, 245ra292 (2014). https://doi.org:10.1126/scitranslmed.3008808 - Meyerowitz, J. G. *et al.* The oxytocin signaling complex reveals a molecular switch for cation dependence. *Nat Struct Mol Biol* (2022). https://doi.org:10.1038/s41594-022-00728-4 - Jurek, B. & Neumann, I. D. The Oxytocin Receptor: From Intracellular Signaling to Behavior. *Physiol Rev* **98**, 1805-1908 (2018). https://doi.org:10.1152/physrev.00031.2017 - Dekan, Z. *et al.* Nature-inspired dimerization as a strategy to modulate neuropeptide pharmacology exemplified with vasopressin and oxytocin. *Chem Sci* **12**, 4057-4062 (2021). https://doi.org:10.1039/dosc05501h - Liu, X., Luo, D., Zhang, J. & Du, L. Distribution and relative expression of vasoactive receptors on arteries. *Sci Rep* **10**, 15383 (2020). https://doi.org:10.1038/s41598-020-72352-5 - Zeng, J. *et al.* Target-induced clustering activates Trim-Away of pathogens and proteins. *Nat Struct*Mol Biol **28**, 278-289 (2021). https://doi.org:10.1038/s41594-021-00560-2 - Domingues, I., Rino, J., Demmers, J. A., de Lanerolle, P. & Santos, S. C. VEGFR2 translocates to the nucleus to regulate its own transcription. *PLoS One* **6**, e25668 (2011). https://doi.org:10.1371/journal.pone.0025668 - Collier, A. Y., Smith, L. A. & Karumanchi, S. A. Review of the immune mechanisms of preeclampsia and the potential of immune modulating therapy. *Hum Immunol* **82**, 362-370 (2021). https://doi.org:10.1016/j.humimm.2021.01.004 - Streicher, K. *et al.* The plasma cell signature in autoimmune disease. *Arthritis & rheumatology* (Hoboken, N.J.) **66**, 173-184 (2014). https://doi.org:10.1002/art.38194 - Gafencu, A., Heltianu, C., Burlacu, A., Hunziker, W. & Simionescu, M. Investigation of IgG receptors expressed on the surface of human placental endothelial cells. *Placenta* **24**, 664-676 (2003). https://doi.org:10.1016/s0143-4004(03)00041-9 - Hu, L. *et al.* Identification of a novel heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) ligand that disrupts HnRNPA2B1/nucleic acid interactions to inhibit the MDMX-p53 axis in gastric cancer. *Pharmacol Res* **189**, 106696 (2023). https://doi.org:10.1016/j.phrs.2023.106696 - Liu, C., Kellems, R. E. & Xia, Y. Inflammation, Autoimmunity, and Hypertension: The Essential Role of Tissue Transglutaminase. *Am J Hypertens* **30**, 756-764 (2017). https://doi.org:10.1093/ajh/hpx027 - Reyes, L. & Golos, T. G. Hofbauer Cells: Their Role in Healthy and Complicated Pregnancy. *Front Immunol* **9**, 2628 (2018). https://doi.org:10.3389/fimmu.2018.02628 - Zulu, M. Z., Martinez, F. O., Gordon, S. & Gray, C. M. The Elusive Role of Placental Macrophages: The Hofbauer Cell. *J Innate Immun* 11, 447-456 (2019). https://doi.org:10.1159/000497416 - Semmes, E. C. & Coyne, C. B. Innate immune defenses at the maternal-fetal interface. *Curr Opin Immunol* **74**, 60-67 (2021). https://doi.org:10.1016/j.coi.2021.10.007 - Fakonti, G., Pantazi, P., Bokun, V. & Holder, B. Placental Macrophage (Hofbauer Cell) Responses to Infection During Pregnancy: A Systematic Scoping Review. *Front Immunol* **12**, 756035 (2021). https://doi.org:10.3389/fimmu.2021.756035 - Ning, J., Zhang, M., Cui, D. & Yang, H. The pathologic changes of human placental macrophages in women with hyperglycemia in pregnancy. *Placenta* **130**, 60-66 (2022). https://doi.org/10.1016/j.placenta.2022.11.004 - Girsch, J. H. *et al.* Host-Viral Interactions at the Maternal-Fetal Interface. What We Know and What We Need to Know. *Frontiers (Boulder)* **2** (2022). https://doi.org:10.3389/fviro.2022.833106 - 886 39 Lasch, M. *et al.* Isolation of Decidual Macrophages and Hofbauer Cells from Term Placenta-887 Comparison of the Expression of CD163 and CD80. *Int J Mol Sci* **23** (2022). 888 https://doi.org:10.3390/ijms23116113 - Mercnik, M. H., Schliefsteiner, C., Fluhr, H. & Wadsack, C. Placental macrophages present distinct polarization pattern and effector functions depending on clinical onset of preeclampsia. *Front Immunol* **13**, 1095879 (2022). https://doi.org:10.3389/fimmu.2022.1095879 - Mittelberger, J. *et al.* The programmed cell death protein 1 (PD1) and the programmed cell death ligand 1 (PD-L1) are significantly downregulated on macrophages and Hofbauer cells in the placenta of preeclampsia patients. *Journal of reproductive immunology* **157**, 103949 (2023). https://doi.org:10.1016/j.jri.2023.103949 - Zinn, V. Z., Khatri, A., Mednieks, M. I. & Hand, A. R. Localization of cystic fibrosis transmembrane conductance regulator signaling complexes in human salivary gland striated duct cells. *Eur J Oral Sci* **123**, 140-148 (2015). https://doi.org:10.1111/eos.12184 - Maron, B. A. *et al.* Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. *Nat Commun* **12**, 873 (2021). https://doi.org:10.1038/s41467-021-21146-y - 902 44 Burton, G. J. & Jauniaux, E. The human placenta: new perspectives on its formation and function during early pregnancy. *Proc Biol Sci* **290**, 20230191 (2023). https://doi.org:10.1098/rspb.2023.0191 - 905 45 Ozen, M. *et al.* Omics approaches: interactions at the maternal-fetal interface and origins of child health and disease. *Pediatr Res*, 1-10 (2022). https://doi.org:10.1038/s41390-022-02335-x - Wang, H. *et al.* The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation. *J Biol Chem*, 101292 (2021). https://doi.org:10.1016/j.jbc.2021.101292 - 909 47 Nadezhdin, K. D. *et al.* Structural mechanisms of TRPM7 activation and inhibition. *Nat Commun* **14**, 2639 (2023). https://doi.org:10.1038/s41467-023-38362-3 - 911 48 Abiria, S. A. *et al.* TRPM7 senses oxidative stress to release Zn(2+) from unique intracellular vesicles. 912 *Proc Natl Acad Sci U S A* **114**, E6079-E6088 (2017). https://doi.org:10.1073/pnas.1707380114 - 913 49 Yang, H., Kim, T. H., Lee, G. S., Hong, E. J. & Jeung, E. B. Comparing the expression patterns of placental magnesium/phosphorus-transporting channels between healthy and preeclamptic pregnancies. *Mol Reprod Dev* 81, 851-860 (2014). https://doi.org:10.1002/mrd.22353 - 916 50 Neiman, M. *et al.* Individual and stable autoantibody repertoires in healthy individuals. 917 *Autoimmunity* **52**, 1-11 (2019). https://doi.org:10.1080/08916934.2019.1581774 - 918 51 Cheng, J. *et al.* TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT pathway and PPP metabolism. *Nat Commun* **11**, 1880 (2020). https://doi.org:10.1038/s41467-020-15819-3 - 921 52 Park, J. S. *et al.* Mechanical regulation of glycolysis via cytoskeleton architecture. *Nature* **578**, 621-922 626 (2020). https://doi.org:10.1038/s41586-020-1998-1 - 923 Silva, J. A. F., Qi, X., Grant, M. B. & Boulton, M. E. Spatial and temporal VEGF receptor intracellular trafficking in microvascular and macrovascular endothelial cells. *Sci Rep* **11**, 17400 (2021). https://doi.org:10.1038/s41598-021-96964-7 - 926 54 Sutendra, G. *et al.* A nuclear pyruvate dehydrogenase complex is important for the generation of 927 acetyl-CoA and histone acetylation. *Cell* **158**, 84-97 (2014). 928 https://doi.org:10.1016/j.cell.2014.04.046 - 929 55 Kofler, N. *et al.* The Rab-effector protein RABEP2 regulates endosomal trafficking to mediate vascular endothelial growth factor receptor-2 (VEGFR2)-dependent signaling. *J Biol Chem* **293**, 4805-4817 (2018). https://doi.org:10.1074/jbc.M117.812172 - Shou, H. J. *et al.* SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis. *Nat Commun* **9**, 3303 (2018). https://doi.org:10.1038/s41467-018-05812-2 - 934 57 Buvinic, S. *et al.* P2Y1 and P2Y2 receptor distribution varies along the human placental vascular tree: role of nucleotides in vascular tone regulation. *The Journal of physiology* **573**, 427-443 (2006). 936 https://doi.org:10.1113/jphysiol.2006.105882 - Guan, J. *et al.* Therapeutic Ligands Antagonize Estrogen Receptor Function by Impairing Its Mobility. *Cell* **178**, 949-963 e918 (2019). https://doi.org:10.1016/j.cell.2019.06.026 - 939 59 Mayer, B. *et al.* Vasopressin stimulates the proliferation and differentiation of red blood cell precursors and improves recovery from anemia. *Science translational medicine* **9** (2017). https://doi.org:10.1126/scitranslmed.aao1632 - 942 60 Lam, L. K. M. *et al.* DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. *Science translational medicine* **13**, eabj1008 (2021). https://doi.org:10.1126/scitranslmed.abj1008 - 945 61 Calderon-Garciduenas, L. *et al.* Environmental Nanoparticles Reach Human Fetal Brains. 946 *Biomedicines* **10** (2022). https://doi.org:10.3390/biomedicines10020410 - 947 62 Kerby, A. *et al.* Placental Morphology and Cellular Characteristics in Stillbirths in Women With 948 Diabetes and Unexplained Stillbirths. *Arch Pathol Lab Med* **145**, 82-89 (2021). 949 https://doi.org/10.5858/arpa.2019-0524-OA - 950 63 Li, Y. *et al.* MicroRNA profiling of diabetic atherosclerosis in a rat model. *Eur J Med Res* **23**, 55 (2018). https://doi.org:10.1186/s40001-018-0354-5 - 952 64 Mancini, F. *et al.* MDM4 actively restrains cytoplasmic mTORC1 by sensing nutrient availability. 953 *Mol Cancer* **16**, 55 (2017). https://doi.org:10.1186/s12943-017-0626-7 - 954 65 Amin, M., Wu, R. & Gragnoli, C. Novel Risk Variants in the Oxytocin Receptor Gene (OXTR) Possibly 955 Linked to and Associated with Familial Type 2 Diabetes. *Int J Mol Sci* **24** (2023). 956 https://doi.org:10.3390/ijms24076282 - Huang, Y. et al. Improving immune-vascular crosstalk for cancer immunotherapy. *Nat Rev Immunol* 18, 195-203 (2018). https://doi.org:10.1038/nri.2017.145 - 959 67 Kao, K. C., Vilbois, S., Tsai, C. H. & Ho, P. C. Metabolic communication in the tumour-immune microenvironment. *Nat Cell Biol* **24**, 1574-1583 (2022). https://doi.org:10.1038/s41556-022-01002-x - 268 Zheng, W. et al. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of antiangiogenesis and immune checkpoint blockade. Front Immunol 13, 1035323 (2022). https://doi.org:10.3389/fimmu.2022.1035323 - 966 Spiliopoulos, M. *et al.* Characterizing placental stiffness using ultrasound shear-wave elastography in healthy and preeclamptic pregnancies. *Arch Gynecol Obstet* **302**, 1103-1112 (2020). https://doi.org:10.1007/s00404-020-05697-x - 969 70 Mancini, F., Giorgini, L., Teveroni, E., Pontecorvi, A. & Moretti, F. Role of Sex in the Therapeutic 970 Targeting of p53 Circuitry. Front Oncol 11, 698946 (2021). 971 https://doi.org:10.3389/fonc.2021.698946 - 972 71 Swetzig, W. M., Wang, J. & Das, G. M. Estrogen receptor alpha (ERalpha/ESR1) mediates the p53-973 independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. *Oncotarget* **7**, 974 16049-16069 (2016). https://doi.org:10.18632/oncotarget.7533 - 975 72 Berkane, N. *et al.* From Pregnancy to Preeclampsia: A Key Role for Estrogens. *Endocr Rev* **38**, 123- 144 (2017). https://doi.org:10.1210/er.2016-1065 - Jobe, S. O., Tyler, C. T. & Magness, R. R. Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular - 979 dysfunction. *Hypertension* **61**, 480-487 (2013). 980 https://doi.org:10.1161/HYPERTENSIONAHA.111.201624 - Zhu, D., Su, Y., Fu, B. & Xu, H. Magnesium Reduces Blood-Brain Barrier Permeability and Regulates Amyloid-beta Transcytosis. *Mol Neurobiol* 55, 7118-7131 (2018). https://doi.org:10.1007/s12035-018-0896-0 - Hentschke, M. R. *et al.* Is the atherosclerotic phenotype of preeclamptic placentas due to altered lipoprotein concentrations and placental lipoprotein receptors? Role of a small-for-gestational-age phenotype. *J Lipid Res* **54**, 2658-2664 (2013). https://doi.org:10.1194/jlr.M036699 - Zhang, S., Cao, F., Li, W. & Abumaria, N. TRPM7 kinase activity induces amyloid-beta degradation to reverse synaptic and cognitive deficits in mouse models of Alzheimer's disease. *Science signaling* eade6325 (2023). https://doi.org:10.1126/scisignal.ade6325 - Ryan, C. P. *et al.* Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women. *Sci Rep* **8**, 11100 (2018). https://doi.org:10.1038/s41598-018-29486-4 - 992 78 Richmond, R. C., Suderman, M., Langdon, R., Relton, C. L. & Davey Smith, G. DNA methylation as a marker for prenatal smoke exposure in adults. *Int J Epidemiol* **47**, 1120-1130 (2018). 994 https://doi.org:10.1093/ije/dyy091 - 995 79 Ryan, C. P. *et al.* Immune cell type and DNA methylation vary with reproductive status in women: possible pathways for costs of reproduction. *Evol Med Public Health* **10**, 47-58 (2022). https://doi.org:10.1093/emph/eoac003 - 998 80 Ghanim, H. *et al.* Reduction in inflammation and the expression of amyloid precursor protein and other proteins related to Alzheimer's disease following gastric bypass surgery. *J Clin Endocrinol Metab* 97, E1197-1201 (2012). https://doi.org:10.1210/jc.2011-3284 - Hinney, A. *et al.* Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer's disease and obesity. *Am J Med Genet B Neuropsychiatr Genet* **165B**, 283-293 (2014). https://doi.org:10.1002/ajmg.b.32234 - Behura, S. K. *et al.* The brain-placental axis: Therapeutic and pharmacological relevancy to pregnancy. *Pharmacol Res* **149**, 104468 (2019). https://doi.org:10.1016/j.phrs.2019.104468 - Mairesse, J. *et al.* Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia **67**, 345-359 (2019). https://doi.org:10.1002/glia.23546 - Shook, L. L., Sullivan, E. L., Lo, J. O., Perlis, R. H. & Edlow, A. G. COVID-19 in pregnancy: implications for fetal brain development. *Trends Mol Med* **28**, 319-330 (2022). https://doi.org:10.1016/j.molmed.2022.02.004 - Lazarov, T., Juarez-Carreno, S., Cox, N. & Geissmann, F. Physiology and diseases of tissue-resident macrophages. *Nature* **618**, 698-707 (2023). https://doi.org:10.1038/s41586-023-06002-x - 1013 86 Erickson, E. N., Myatt, L., Danoff, J. S., Krol, K. M. & Connelly, J. J. Oxytocin receptor DNA methylation is associated with exogenous oxytocin needs during parturition and postpartum hemorrhage. *Commun Med (Lond)* 3, 11 (2023). https://doi.org:10.1038/s43856-023-00244-6 - 1016 87 Liang, Y., Duan, L., Lu, J. & Xia, J. Engineering exosomes for targeted drug delivery. *Theranostics* **11**, 1017 3183-3195 (2021). https://doi.org:10.7150/thno.52570 - 1018 Stelzer, I. A. *et al.* Integrated trajectories of the maternal metabolome, proteome, and immunome predict labor onset. *Science translational medicine* **13** (2021). https://doi.org:10.1126/scitranslmed.abd9898 - 1021 89 Aghaeepour, N. *et al.* An immune clock of human pregnancy. *Sci Immunol* **2** (2017). https://doi.org:10.1126/sciimmunol.aan2946 - 1023 90 Gomez-Lopez, N. *et al.* Macrophages exert homeostatic actions in pregnancy to protect against preterm birth and fetal inflammatory injury. *JCI Insight* **6** (2021). https://doi.org:10.1172/jci.insight.146089 | 1026
1027 | 91 | Rackaityte, E. & Halkias, J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. <i>Front Immunol</i> 11 , 588 (2020). https://doi.org:10.3389/fimmu.2020.00588 | |--------------|----|---| | 1028 | 92 | Miller, D. et al. Single-Cell Immunobiology of the Maternal-Fetal Interface. J Immunol 209, 1450- | | 1029 | | 1464 (2022). https://doi.org:10.4049/jimmunol.2200433 | | 1030 | 93 | Braitbard, O., Glickstein, H., Bishara-Shieban, J., Pace, U. & Stein, W. D. Competition between | | 1031 | | bound and free peptides in an ELISA-based procedure that assays peptides derived from protein | | 1032 | | digests. Proteome Sci 4, 12 (2006). https://doi.org:10.1186/1477-5956-4-12 | | 1033 | 94 | Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass | | 1034 | | spectrometric characterization of proteins and proteomes. Nat Protoc 1, 2856-2860 (2006). | | 1035 | | https://doi.org:10.1038/nprot.2006.468 | | 1036 | 95 | Bushway, M. E. et al. Morphological and phenotypic analyses of the human placenta using whole | | 1037 | | mount immunofluorescence. Biol Reprod 90, 110 (2014). | | 1038 | | https://doi.org:10.1095/biolreprod.113.115915 | Table 1. Clinical characteristics of 47 patients in the study group. **A.** Patient samples were labelled with a code consisting of a letter and 1, 2, 5, 6, 7 for non-preeclamptic, 3, 4 for preeclamptic patients or a Ho-number. **B**. Patients Ho-71, Ho-72 and Ho-73 provided placental samples for immunogold electron microscopy. | A | | | | | | | | | | | | | |---------|-----------|---------|----------------------------|------------|------|------|--------------|----|------------------|----------------------|------------|------------------------| | Patient | Age Range | Gravida | Gestational Age
(weeks) | BMI in L&D | Race | cHTN | Preeclampsia | DM | Delivery
Mode | Pitocin pre-delivery | Sex
F=1 | Neonatal
weight (g) | | H1 | 21-25 | 1 | 38.0 | 30.0 | 6 | 0 | 0 | 0 | 1 | 1 | 1 | 2,940 | | H2 | 21-25 | 2 | 37.0 | 24.0 | 8 | 0 | 0 | 0 | 1 | NA | 2 | 2,590 | | H3 | 31-35 | 2 | 37.0 | 32.0 | 8 | 0 | 1 | 0 | 1 | NA | 1 | 3,040 | | I-1 | 21-25 | 3 | 38.0 | 34.0 | 2 | 0 | 0 | 0 | 3 | 1 | 2 | 2,631 | | I-2 | 21-25 | 1 | 42.0 | 30.0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | 3,759 | | I-3 | 26-30 | 8 | 35.0 | 34.0 | 2 | 0 | 1 | 2 | 2 | 0 | 2 | 3,195 | | I-4 | 18-20 | 1 | 36.6 | 41.0 | 8 | 0 | 1 | 0 | 3 | 0 | 1 | 3,335 | | J-1 | 26-30 | 2 | 39.0 | 25.0 | 8 | 0 | 0 | 0 | 3 | 0 | 2 | 3,300 | | J-2 | 36-40 | 2 | 37.4 | 22.0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 3,460 | | J-3 | 26-30 | 3 | 38.5 | 28.0 | 1 | 0 | 1 | 3 | 3 | <u>1</u> | 2 | 3,630 | | L1 | 21-25 | 1 | 39.0 | 24.0 | 3 | 0 | 0 | 0 | 3 | 0 | 1 | 3,147 | | L2 | 18-20 | 1 | 39.0 | 29.0 | 6 | 0 | 0 | 0 | 1 | 1 | 1 | 2,920 | | L3 | 21-25 | 3 | 35.0 | 30.0 | 2 | 0 | 1 | 0 | 2 | 0 | 2 | 2,235 | | L4 | 26-30 | 3 | 40.0 | 29.0 | 8 | 0 | 1 | 0 | 1 | NA | 1 | 3,010 | | M1 | 21-25 | 3 | 40.1 | 55.0 | 2 | 0 | 0 | 0 | 2 | 0 | 1 | 3,795 | | М3 | 18-20 | 2 | 37.0 | 31.3 | 8 | 0 | 1 | 0 | 2 | 0 | 1 | 3,490 | | M4 | 26-30 | 1 | 40.1 | 39.8 | 8 | 0 | 1 | 0 | 1 | 1 | 2 | 3,380 | | N1 | 31-35 | 4 | 39.1 | 30.0 | 8 | 0 | 0 | 2 | 2 | 0 | 2 | 3,800 | | N2 | 31-35 | 2 | 39.3 | 32.8 | 8 | 0 | 0 | 0 | 2 | 0 | 1 | 3,180 | | N3 | 31-35 | 2 | 39.0 | 35.5 | 8 | 0 | 1 | 0 | 2 | 0 | 2 | 3,390 | | N4 | 18-20 | 2 | 36.4 | 29.5 | 1 | 0 | 1 | 0 | 3 | 1 | 2 | 3,510 | | 01 | 21-25 | 2 | 39.3 | 26.2 | 1 | 0 | 0 | 0 | 4 | 1 | 1 | 2,960 | | 02 | 21-25 | 1 | 38.4 | 34.8 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 2,940 | | O3 | 26-30 | 1 | 37.1 | 29.5 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 2,800 | | 04 | 21-25 | 3 | 40.3 | 52.5 | 1 | 0 | 1 | 0 | 3 | 1 | 2 | 3,575 | | O5 | 36-40 | 4 | 39.1 | 50.4 | 8 | 0 | 0 | 3 | 2 | 0 | 2 | 4,295 | | 07 | 32-35 | 12 | 39.3 | 35.2 | 2 | 0 | 0 | 0 | 2 | 0 | 1 | 3,780 | | Q1 | 21-25 | 2 | 37.0 | 47.8 | 1 | 0 | 0 | 3 | 2 | 0 | 1 | 3,885 | | Q2 | 31-35 | 4 | 39.1 | 35.8 | 2 | 0 | 0 | 3 | 2 | 0 | 1 | 3,390 | | Q3 | 26-30 | 2 | 37.2 | 66.7 | 1 | 1 | 1 | 0 | 3 | 1 | 2 | 3,375 | | Q4 | 31-35 | 4 | 39.1 | 77.2 | 2 | 0 | 1 | 3 | 2 | 0 | 2 | 3,835 | | R3 | 21-25 | 1 | 37.6 | 49.5 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 2,560 | | R4 | 26-30 | 4 | 39.1 | 29.8 | 2 | 0 | 1 | 2 | 3 | 1 | 1 | 3,960 | | R5 | 21-25 | 6 | 39.0 | 30.9 | 2 | 0 | 0 | 0 | 2 | 0 | 1 | 3,205 | | S1 | 26-30 | 2 | 37.4 | 46.2 | 8 | 0 | 0 | 2 | 2 | 0 | 2 | 4,675 | | S2 | 26-30 | 3 | 37.5 | 42.2 | 1 | 0 | 0 | 2 | 2 | 0 | 1 | 4,600 | | T1 | 26-30 | 5 | 38.0 | 41.9 | 1 | 0 | 0 | 2 | 2 | 0 | 1 | 3,090 | | T2 | 26-30 | 1 | 39.1 | 53.3 | 1 | 0 | 0 | 2 | 2 | 0 | 2 | 3,960 | | U1 | 31-35 | 3 | 37.1 | 62.6 | 2 | 1 | 0 | 2 | 2 | 0 | 2 | 4,440 | | U2 | 26-30 | 3 | 37.1 | 52.7 | 1 | 1 | 0 | 2 | 2 | 0 | 2 | 5,020 | | V1 | 36-40 | 5 | 37.1 | 35.5 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 2,720 | | V2 | 36-40 | 2 | 38.4 | 26.1 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 4,150 | | W1 | 18-20 | 1 | 39.2 | 30.5 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 3,470 | | W2 | 26-30 | 8 | 37.0 | 51.7 | 2 | 1 | 0 | 0 | 2 | 0 | 1 | 3,000 | | 3 | | | | | | | | | | | | | | Ho-71 | 31-35 | 6 | 37.1 | N/A | 2 | 0 | 0 | 0 | 2 | 0 | 1 | 3,195 | | Ho-72 | 26-30 | 1 | 39.3 | 29.4 | 2 | | 0 | 3 | 2 | NA | 1 | 3,400 | | Ho-73 | 26-30 | 1 | 37.0 | 29.1 | 8 | 0 | 1 | 0 | 1 | 1 | 2 | 2,780 | Abbreviations: *Race*: White 1, Black 2, Asian 3, Hispanic 8, unknown 6. *Chronic hypertension*: cHTN 1. *Preeclampsia* 1. *Diabetes (DM)*: Type-1 1, Type-2 2, Gestational 3. *Delivery mode*: Spontaneous vaginal delivery (SVD) 1, Cesarean delivery (CD) prior to the onset of labor 2, CD after the onset of labor 3, Vaginal birth after CD (VBAC) 4. Pitocin pre-delivery 1. *Fetal sex*: Female 1, Male 2. *L&D*: Labor and delivery suite. *NA*, not available. The number of patients in each category were as follows: Diabetes: 30 no, Type-2 9, Gestational 5. Preeclampsia: 28 no, 16 yes. Delivery Mode: SVD 12; CD prior to the onset of labor 23; CD after the onset of labor 9; VBAC 1. Table 2 Proteins identified in VEGFR2 immunoprecipitations. Placental extracts O4, O5, U1, and O7 were immunoprecipitated in one experiment. | Placental extracts O4, O5, | U1, and O7 were immunoprecipitated in one exper | iment. | | Internality | Internality | luta na itu | Internality | | |----------------------------|---|---------------------|--------------------------------|------------------------------|----------------------------|---------------------------|------------------------------|----------| | Majority Protein ID | Protein | Gene | Total Intensity | Intensity
VEGFR2
O4 | Intensity
VEGFR2
O5 | Intensity
VEGFR2
U1 | Intensity
VEGFR2
O7 | Peptides | | P01857 | lg gamma-1 chain C region | IGHG1 | 24,993,000,000 | | | 4,017,600,000 | | 16 | | O15151-5 | Protein Mdm4 | MDM4 | 14,682,000,000 | 14,638,000,000 | 0 | 21,714,000 | 22,289,000 | 14 | | P01834 | Ig kappa chain C region | IGKC | 11,450,000,000 | | | 2,438,900,000 | | 7 | | A0A0B4J231 | Immunoglobulin lambda-like polypeptide 5;lg lam | IGLL5 | 10,336,000,000 | 1,336,300,000 | | | | 4 | | P01871 | Ig mu chain C region | IGHM | 4,544,300,000 | 2,132,500,000 | 923,280,000 | 706,680,000 | 781,900,000 | 16 | | P20073-2 | Annexin A7 | ANXA7 | 3,045,300,000 | 1,631,900,000 | 402,390,000 | 522,590,000 | 488,400,000 | 19
2 | | P01624
A0A286YES1 | Ig kappa chain V-III region POM
Ig gamma-3 chain C region | IGKV3D-15
IGHG3 | 2,885,700,000
2,266,900,000 | 707,630,000
1,322,900,000 | 775,800,000
493,150,000 | 239,480,000 | 1,381,500,000
211,400,000 | 2
14 | | Q9Y6R7 | IgGFc-binding protein | FCGBP | 1,815,700,000 | 1,201,900,000 | 310,570,000 | 246,590,000 | 56,630,000 | 50 | | J3KT55 | Protein-tyrosine-phosphatase;Receptor-type tyro | PTPRM | 1,604,700,000 | 511,350,000 | 129,960,000 | 380,380,000 | 582,970,000 | 1 | | P01701 | Ig lambda chain V-I region NEW | IGLV1-51 | 1,311,400,000 | 193,890,000 | 242,130,000 | 234,850,000 | 640,570,000 | 3 | | P50995-2 | Annexin A11 | ANXA11 | 984,170,000 | 401,780,000 | 125,800,000 | 283,580,000 | 173,010,000 | 18 | | P01583 | Ig kappa chain V-I region AU | IGKV1D-33 | 948,420,000 | 223,440,000 | 220,510,000 | 138,140,000 | 366,330,000 | 2 | | P01709 | Ig lambda chain V-II region MGC; | IGLV2-8 | 640,270,000 | 48,724,000 |
120,690,000 | 169,210,000 | 301,660,000 | 2 | | P05783 | Keratin, type I cytoskeletal 18 | KRT18 | 610,030,000 | 342,270,000 | 114,070,000 | 75,571,000 | 78,111,000 | 19 | | P35968 | Vascular endothelial growth factor receptor 2 | KDR | 571,130,000 | 132,550,000 | 167,190,000 | 146,080,000 | 125,310,000 | 28 | | A0A286YEY4 | Ig gamma-2 chain C region | IGHG2 | 460,180,000 | 213,440,000 | 63,593,000 | 99,658,000 | 83,492,000 | 13 | | A0A286YEY1 | lg alpha-1 chain C region
Titin | IGHA1
TTN | 403,780,000 | 211,760,000 | 52,913,000 | 85,992,000 | 53,116,000 | 6 | | Q8WZ42
A0A075B6K4 | Ig lambda chain V-IV region Bau | IGLV3-10 | 396,070,000
353,630,000 | 215,440,000
0 | 31,243,000
105,060,000 | 97,005,000
0 | 52,381,000
248,570,000 | 2
1 | | P01602 | lg kappa chain V-I region HK102 | IGKV1-5 | 352,740,000 | 23,518,000 | 98,394,000 | 83,336,000 | 147,490,000 | 1 | | P07355 | Annexin A2;Annexin;Putative annexin A2-like pro | ANXA2 | 310,810,000 | 50,471,000 | 50,738,000 | 48,427,000 | 161,170,000 | 9 | | P0DP08 | Ig heavy chain V-II region NEWM;Ig heavy chain | IGHV4-61 | 304,360,000 | 139,200,000 | 44,252,000 | 64,988,000 | 55,917,000 | 2 | | A0A4W8ZXM2 | Immunoglobulin heavy variable 3-72 | IGHV3-72 | 293,310,000 | 149,140,000 | 29,272,000 | 50,152,000 | 64,749,000 | 3 | | A0A140T8W4 | Ras/Rap GTPase-activating protein SynGAP | SYNGAP1 | 288,030,000 | 44,004,000 | 63,931,000 | 66,499,000 | 113,600,000 | 1 | | P01619 | Ig kappa chain V-III region B6 | IGKV3D-20 | 270,720,000 | 61,855,000 | 116,270,000 | 75,359,000 | 17,241,000 | 3 | | A0A0C4DH42 | Ig heavy chain V-III region BUT;Ig heavy chain V | IGHV3-66 | 262,750,000 | 165,010,000 | 39,894,000 | 44,120,000 | 13,734,000 | 3 | | A0A087WW87 | Ig kappa chain V-II region FR;Ig kappa chain V-II | IGKV2-40 | 253,710,000 | 36,751,000 | 64,720,000 | 43,474,000 | 108,760,000 | 3 | | P59666 | Neutrophil defensin 3;HP 3-56;Neutrophil defens | DEFA3 | 216,520,000 | 69,150,000 | 64,470,000 | 3,576,200 | 79,326,000 | 3 | | P69905 | Hemoglobin subunit alpha | HBA1 | 215,170,000 | 0 | 0 | 7,679,400 | 207,490,000 | 3 | | P68871
A0A2R8Y804 | Hemoglobin subunit beta;LVV-hemorphin-7;Spinc Catenin beta-1 | HBB
CTNNB1 | 212,010,000
209,290,000 | 31,855,000
166,480,000 | 0
20,293,000 | 8,761,200
22,516,000 | 171,400,000
0 | 5
1 | | H0Y2X5 | Aldehyde dehydrogenase family 1 member A3 | ALDH1A3 | 208,040,000 | 81,161,000 | 28,288,000 | 92,767,000 | 5,824,900 | 1 | | P0DOY3 | lg lambda-6 chain C region;lg lambda-7 chain C | IGLC6 | 206,310,000 | 71,942,000 | 14,393,000 | 49,459,000 | 70,513,000 | 3 | | P17931 | Galectin-3;Galectin | LGALS3 | 177,750,000 | 8,812,900 | 12,846,000 | 37,357,000 | 118,730,000 | 4 | | P60709 | Actin, cytoplasmic 1;Actin, cytoplasmic 1, N-term | ACTB | 169,720,000 | 77,252,000 | 11,135,000 | 41,447,000 | 39,882,000 | 7 | | P0DP03 | Ig heavy chain V-III region CAM;Ig heavy chain V | IGHV3-23 | 161,210,000 | 84,420,000 | 37,310,000 | 16,539,000 | 22,945,000 | 3 | | P08670 | Vimentin | VIM | 138,160,000 | 72,126,000 | 18,191,000 | 31,138,000 | 16,707,000 | 14 | | A0A0A0MRZ8 | Ig kappa chain V-III region VG | IGKV3D-11 | 111,170,000 | 34,909,000 | 76,260,000 | 0 | 0 | 1 | | A0A075B6K5 | Ig lambda chain V-III region LOI | IGLV3-9 | 96,087,000 | 25,060,000 | 23,281,000 | 14,993,000 | 32,753,000 | 1 | | A0A286YFJ8 | Ig gamma-4 chain C region | IGHG4 | 87,485,000 | 47,260,000 | 30,192,000 | 1,565,900 | 8,467,600 | 9 | | A0A075B6Z5 | T cell receptor alpha joining 4 | TRAJ4 | 81,903,000 | 16,074,000 | 21,003,000 | 0 | 44,826,000 | 1
1 | | Q96Q89-4
P31942-3 | Kinesin-like protein KIF20B
Heterogeneous nuclear ribonucleoprotein H3 | KIF20B
HNRNPH3 | 80,885,000
80,200,000 | 35,045,000
14,536,000 | 8,063,900
9,591,700 | 37,776,000
10,848,000 | 0
45,224,000 | 4 | | P0DP01 | Ig heavy chain V-I region HG3;Ig heavy chain V-I | IGHV1-3 | 75,366,000 | 33,904,000 | 12,319,000 | 16,686,000 | 12,457,000 | 1 | | C9JA05 | Immunoglobulin J chain | JCHAIN | 74,956,000 | 6,239,800 | 24,681,000 | 8,971,600 | 35,063,000 | 1 | | A6NJ08 | Putative methyl-CpG-binding domain protein 3-lik | MBD3L5 | 72,585,000 | 0 | 0 | 72,585,000 | 0 | 1 | | O43866 | CD5 antigen-like | CD5L | 67,251,000 | 6,765,200 | 12,049,000 | 0 | 48,437,000 | 3 | | A0A075B6H9 | Immunoglobulin lambda variable 4-69 | IGLV4-69 | 66,271,000 | 0 | 23,139,000 | 15,467,000 | 27,664,000 | 1 | | A0A0C4DH31 | Ig heavy chain V-I region V35 | IGHV1-18 | 66,003,000 | 33,480,000 | 6,768,000 | 14,275,000 | 11,480,000 | 2 | | Q8IZ41 | Ras and EF-hand domain-containing protein | RASEF | 63,614,000 | 0 | 0 | 0 | 63,614,000 | 1 | | Q5JTQ6 | Alpha-catulin | CTNNAL1 | 57,823,000 | 0 | 0 | 0 | 57,823,000 | 1 | | S4R460
P31943 | Immunoglobulin heavy variable 3/OR16-9 Heterogeneous nuclear ribonucleoprotein H;Hete | IGHV3OR16-9 | 55,031,000
53,003,000 | 38,287,000
27,450,000 | 3,882,000
6,928,200 | 8,163,400
12,581,000 | 4,697,800 | 3
8 | | P01700 | | HNRNPH1
IGLV1-47 | | | | | 6,044,000 | 2 | | P69892 | Ig lambda chain V-I region HA
Hemoglobin subunit gamma-2;Hemoglobin subur | HBG2 | 52,593,000
51,210,000 | 4,428,100
4,832,700 | 9,274,400
6,432,400 | 10,578,000
4,039,100 | 28,313,000
35,906,000 | 2 | | Q01469 | Fatty acid-binding protein, epidermal | FABP5 | 49,218,000 | 9,923,200 | 8,054,700 | 6,476,700 | 24,764,000 | 1 | | A0A0C4DH38 | Immunoglobulin heavy variable 5-51 | IGHV5-51 | 47,777,000 | 21,306,000 | 9,176,600 | 9,526,200 | 7,768,200 | 2 | | P06312 | Ig kappa chain V-IV region | IGKV4-1 | 45,342,000 | 3,210,900 | 8,777,500 | 9,179,900 | 24,174,000 | 2 | | A0A075B7B8 | Immunoglobulin heavy variable 3/OR16-12 | IGHV3OR16-12 | 42,463,000 | 23,390,000 | 6,964,700 | 8,836,000 | 3,272,300 | 2 | | D6RF44 | Heterogeneous nuclear ribonucleoprotein D0 | HNRNPD | 42,167,000 | 25,423,000 | 6,531,800 | 3,981,200 | 6,231,100 | 2 | | P12314 | High affinity immunoglobulin gamma Fc receptor | FCGR1A | 41,035,000 | 21,744,000 | 3,306,900 | 13,766,000 | 2,217,200 | 4 | | A0A075B6I0 | Immunoglobulin lambda variable 8-61 | IGLV8-61 | 36,318,000 | 0 | 15,369,000 | 0 | 20,949,000 | 1 | | P01023 | Alpha-2-macroglobulin | A2M | 34,428,000 | 24,712,000 | 0 | 5,408,900 | 4,307,000 | 9 | | M0R1R1
A0A1C7CYZ1 | Serine/threonine-protein kinase PAK 4 Mitogen-activated protein kinase 15 | PAK4
MAPK15 | 33,472,000
33,062,000 | 0
6,944,400 | 0
14,185,000 | 33,472,000
7,347,000 | 0
4,586,000 | 1
1 | | A0A0C4DGL8 | Haptoglobin;Haptoglobin alpha chain;Haptoglobi | HP | 32,080,000 | 0,944,400 | 14,183,000 | 7,347,000 | 32,080,000 | 2 | | P05109 | Protein S100-A8; Protein S100-A8, N-terminally p | S100A8 | 29,241,000 | 14,931,000 | 0 | 10,002,000 | 4,308,000 | 2 | | Q03135 | Caveolin-1;Caveolin | CAV1 | 28,128,000 | 0 | 0 | 0 | 28,128,000 | 2 | | P01714 | Ig lambda chain V-III region SH | IGLV3-19 | 26,041,000 | 4,373,400 | 0 | 0 | 21,668,000 | 1 | | P19474 | E3 ubiquitin-protein ligase TRIM21 | TRIM21 | 25,255,000 | 18,886,000 | 4,813,800 | 1,555,300 | 0 | 4 | | P62979 | Ubiquitin-40S ribosomal protein S27a;Ubiquitin;4 | RPS27A | 25,055,000 | 1,656,300 | 2,801,700 | 7,174,300 | 13,423,000 | 2 | | P81605 | Dermcidin;Survival-promoting peptide;DCD-1 | DCD | 22,842,000 | 12,716,000 | 3,502,900 | 0 | 6,623,700 | 2 | | P52594-2 | Arf-GAP domain and FG repeat-containing protei | AGFG1 | 22,167,000 | 16,991,000 | 2,315,700 | 2,860,400 | 0 | 1 | | A0A0C4DH35 | Probable non-functional immunoglobulin | IGHV3-35 | 20,964,000 | 12,648,000 | 3,344,000 | 2,850,000 | 2,122,100 | 1 | | Q86VF2-5 | Isoform 5 of Immunoglobulin-like | IGFN1 | 20,453,000 | 0 | 0 | 0 | 20,453,000 | 1 | | K7EJT5 | 60S ribosomal protein L22 | RPL22 | 18,553,000 | 4,268,800 | 0 | 0 | 14,284,000 | 2 | | A0A0A0MSV6
A0A075B6K0 | Complement C1q subcomponent subunit B | C1QB | 18,258,000 | 0 | 6,523,400
4,095,500 | 3 407 600 | 11,734,000 | 2
1 | | P06702 | Ig lambda chain V-IV region Hil;Ig lambda chain \ Protein S100-A9 | IGLV3-16
S100A9 | 18,172,000
17,656,000 | 10,525,000 | 4,095,500 | 3,407,600
7,131,300 | 10,669,000 | 2 | | F8W0I9 | Microspherule protein 1 | MCRS1 | 16,973,000 | 16,973,000 | 0 | 7,131,300 | 0 | 1 | | P48741 | Putative heat shock 70 kDa protein 7;Heat shock | HSPA7 | 15,835,000 | 7,272,600 | 1,230,000 | 4,196,900 | 3,135,800 | 2 | | | | | | | | | | | | P04430 | lg kappa chain V-I region BAN | IGKV1-16 | 15,155,000 | 0 | 1,349,600 | 3,349,700 | 10,456,000 | 1 | |------------|--|-----------|------------|------------|-----------|-----------|------------|---| | O75594 | Peptidoglycan recognition protein 1 | PGLYRP1 | 14,595,000 | 2,156,900 | 2,885,000 | 0,040,700 | 9,552,700 | 1 | | P01599 | Ig kappa chain V-I region Gal | IGKV1-17 | 14,133,000 | 1,638,200 | 1,801,900 | 5,586,300 | 5,106,400 | 1 | | A0A6Q8PHQ9 | Prelamin-A/C;Lamin-A/C | LMNA | 13,477,000 | 10,473,000 | 0 | 990,760 | 2,014,100 | 3 | | F8WCU1 | Coiled-coil domain-containing protein 150 | CCDC150 | 13,165,000 | 13,165,000 | 0 | 0 | 0 | 1 | | P11021 | 78 kDa glucose-regulated protein | HSPA5 | 12,097,000 | 12,097,000 | 0 | 0 | 0 | 3 | | P10515 | Dihydrolipoyllysine-residue acetyltransferase cor | DLAT | 11,577,000 | 0 | 0 | 0 | 11,577,000 | 2 | | A0A0C4DH73 | Ig kappa chain V-I region Daudi;Ig kappa chain V | IGKV1-12 | 11,157,000 | 4,228,600 | 3.358.000 | 0 | 3,570,100 | 1 | | Q02413 | Desmoglein-1 | DSG1 | 11,044,000 | 6,539,700 | 4,504,100 | 0 | 0 | 4 | | A0A2R8Y851 | 40S ribosomal protein S29 | RPS29 | 10,819,000 | 0 | 0 | 0 | 10,819,000 | 1 | | E9PHT9 | Annexin;Annexin A5 | ANXA5 | 10,757,000 | 0 | 0 | 0 | 10,757,000 | 2 | | P01766 | Ig heavy chain V-III region BRO | IGHV3-13 | 9,742,100 | 6,872,500 | 2.869.600 | 0 | 0 | 3 | | I3L0Q1 | CREB-binding protein; Histone acetyltransferase | CREBBP | 9,408,100 | 9,408,100 | 0 | 0 | 0 | 2 | | A0A0A0MT36 | Immunoglobulin kappa variable 6D-21 | IGKV6D-21 | 9,327,900 | 0 | 0 | 0 | 9,327,900
| 1 | | P35030-5 | Trypsin-3 | PRSS3 | 8,538,700 | 4,010,200 | 0 | 0 | 4,528,500 | 1 | | P02747 | Complement C1q subcomponent subunit C | C1QC | 8,466,800 | 0 | 6,587,500 | 1,879,200 | 0 | 2 | | A0A0B4J1V0 | Immunoglobulin heavy variable 3-15 | IGHV3-15 | 8,461,900 | 2,460,400 | 6,001,500 | 0 | 0 | 2 | | C9JD14 | Guanine nucleotide-binding protein G(I)/G(S)/G(| GNB4 | 8,022,200 | 0 | 0 | 0 | 8,022,200 | 1 | | A0A0C4DH68 | Immunoglobulin kappa variable 2-24 | IGKV2-24 | 7,515,800 | 7,515,800 | 0 | 0 | 0 | 2 | | Q5T3N1 | Annexin;Annexin A1 | ANXA1 | 7,426,700 | 1,331,300 | 0 | 803,800 | 5,291,600 | 2 | | A0A0A0MRA5 | Heterogeneous nuclear ribonucleoprotein U-like | HNRNPUL1 | 6,653,000 | 6,653,000 | 0 | 0 | 0 | 3 | | P0DP04 | lg heavy chain V-III region DOB | IGHV3-43D | 6,600,800 | 0 | 3,028,100 | 3,572,700 | 0 | 3 | | P02675 | Fibrinogen beta chain; Fibrinopeptide B; Fibrinoge | FGB | 6,128,300 | 6,128,300 | 0 | 0 | 0 | 2 | | Q9NZT1 | Calmodulin-like protein 5 | CALML5 | 6,023,300 | 1,202,800 | 0 | 4,408,400 | 412.040 | 3 | | A0A0C4DH67 | Immunoglobulin kappa variable 1-8 | IGKV1-8 | 5,877,100 | 2,421,000 | 3,456,100 | 0 | 0 | 1 | | A0A2R8YD12 | Serpin B6 | SERPINB6 | 5,710,400 | 5,710,400 | 0 | 0 | 0 | 1 | | A0A0A0MRQ5 | Peroxiredoxin-2;Peroxiredoxin-1 | PRDX1 | 5,706,700 | 0 | 0 | 2,361,100 | 3,345,600 | 1 | | Q5VVL7 | Lipoamide acyltransferase component of branche | DBT | 5,612,200 | 3,395,200 | 0 | 2,217,000 | 0 | 1 | | P06310 | Ig kappa chain V-II region RPMI 6410 | IGKV2-30 | 5,336,000 | 0 | 0 | 2,017,100 | 3,318,900 | 2 | | P50991 | T-complex protein 1 subunit delta | CCT4 | 4,474,800 | 0 | 0 | 0 | 4,474,800 | 1 | | A0A0C4DH36 | Probable non-functional immunoglobulin heavy v | IGHV3-38 | 4,238,600 | 0 | 4,238,600 | 0 | 0 | 2 | | P47929 | Galectin-7 | LGALS7 | 4,195,800 | 0 | 0 | 1,755,800 | 2,440,000 | 3 | | B4E1S2 | Annexin; Annexin A4 | ANXA4 | 4,022,500 | 0 | 0 | 0 | 4,022,500 | 1 | | E7ETU5 | RNA-binding motif, single-stranded-interacting pr | RBMS1 | 3,858,200 | 2,150,500 | 0 | 1,707,700 | 0 | 2 | | I3L1P8 | Mitochondrial 2-oxoglutarate/malate carrier prote | SLC25A11 | 3,820,000 | 0 | 0 | 0 | 3,820,000 | 1 | | Q71U36-2 | Tubulin alpha-1A chain;Tubulin alpha-1B chain;T | TUBA1A | 3,782,000 | 3,782,000 | 0 | 0 | 0 | 2 | | D6R9P3 | Heterogeneous nuclear ribonucleoprotein A/B | HNRNPAB | 3,571,200 | 3,120,400 | 0 | 450,800 | 0 | 2 | | E9PJT1 | Phosphatidylinositol-binding clathrin assembly pr | PICALM | 3,561,800 | 3,561,800 | 0 | 0 | 0 | 1 | | A0A0B4J1V6 | Immunoglobulin heavy variable 3-73 | IGHV3-73 | 3,460,100 | 0 | 1,501,600 | 1,958,600 | 0 | 3 | | P14923 | Junction plakoglobin | JUP | 3,261,700 | 2,178,900 | 0 | 0 | 1,082,900 | 3 | | Q5T749 | Keratinocyte proline-rich protein | KPRP | 3,196,400 | 3,196,400 | 0 | 0 | 0 | 2 | | P15924 | Desmoplakin | DSP | 2,976,300 | 0 | 2,479,300 | 0 | 497,000 | 3 | | E9PKD2 | Nuclear pore complex protein Nup214 | NUP214 | 2,854,500 | 1,488,400 | 1,366,100 | 0 | 0 | 1 | | B3KV94 | Lysine-specific demethylase 5B | KDM5B | 2,598,600 | 0 | 2,598,600 | 0 | 0 | 1 | | P78406 | mRNA export factor | RAE1 | 2,408,100 | 2,408,100 | 0 | 0 | 0 | 1 | | P17661 | Desmin | DES | 2,140,500 | 0 | 0 | 1,047,300 | 1,093,200 | 4 | | P31994-5 | Low affinity immunoglobulin gamma Fc | FCGR2B | 2,042,300 | 0 | 2,042,300 | 0 | 0 | 1 | | A0A087WT15 | N-acetylglucosaminyldiphosphodolichol | ALG13 | 1,878,000 | 0 | 1,878,000 | 0 | 0 | 1 | | P31944 | Caspase-14;Caspase-14 subunit p17, mature for | CASP14 | 880,720 | 0 | 880,720 | 0 | 0 | 1 | | A0A3B3ISA6 | Complement C4-A;Complement C4 beta chain;C | C4B | 664,880 | 0 | 0 | 0 | 664,880 | 1 | | | | | | | | | | | Table 3 Proteins identified in MDMX immunoprecipitations (IP). Protein extracts O1, O4, O6, Q1, Q4, and R4 were immunoprecipitated in one experiment. | | | Majority protein | Protein | Gene | Total Intensity | Intensity
MDMX | Intensity
MDMX | Intensity
MDMX | Intensity
MDMX | Intensity
MDMX | Intensity
MDMX | Peptides | |------------|------------|------------------------|---|-----------------------|----------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------| | MDMX IP | to all IP | ID
P01857 | Ig gamma-1 chain C region | IGHG1 | | 01
22,238,000,000 | 04 | 06 | Q1
85,828,000,000 | Q4 | R4
47,830,000,000 | 17 | | | Yes | P68871 | Hemoglobin subunit beta | HBB | 49,360,000,000 | 2,016,400,000 | 36,158,000,000 | 924,450,000 | 902,880,000 | 6,065,100,000 | 3,293,300,000 | 14 | | | Yes | P69905
P20073-2 | Hemoglobin subunit alpha
Annexin A7 | HBA1
ANXA7 | 46,601,000,000
25,375,000,000 | 3,529,000,000
5,386,800,000 | 26,425,000,000
1,897,400,000 | 1,616,500,000
6,836,600,000 | 1,416,300,000
2,658,100,000 | 6,485,900,000
3,368,800,000 | 7,128,000,000
5,226,900,000 | 15
31 | | | Yes | Q9Y6R7
P81605 | IgGFc-binding protein Dermcidin;Survival-promoting peptide;DCD-1 | FCGBP
DCD | 19,471,000,000
11,575,000,000 | 6,976,500,000
2,289,500,000 | 5,284,100,000
1,337,700,000 | | 1,183,900,000
2,832,500,000 | 470,780,000
985,260,000 | 3,105,900,000
1,971,800,000 | 75
9 | | Yes | Yes | P50995
P01871 | Annexin A11 Ig mu chain C region | ANXA11
IGHM | 11,312,000,000
10,253,000,000 | 478,090,000
2.115.600.000 | 1,687,700,000
3.548,100,000 | | 1,407,600,000
926,840,000 | | 2,827,400,000
1,620,700,000 | 22
18 | | | | P63261 | Actin, cytoplasmic 2 | ACTG1 | 7,787,800,000 | 669,640,000 | 2,068,500,000 | 955,900,000 | 645,430,000 | 2,563,700,000 | 884,630,000 | 16 | | Yes | Yes | P69892
P55072 | Hemoglobin subunit gamma-2
Transitional endoplasmic reticulum ATPase | HBG2
VCP | 7,148,400,000
4,620,000,000 | 1,386,800,000
185,550,000 | 780,010,000
758,330,000 | 795,220,000
1,565,000,000 | 661,950,000
411,970,000 | 460,580,000
553,090,000 | 3,063,800,000
1,146,000,000 | 12
39 | | Yes | Yes | P07355
P15924 | Annexin A2;Annexin;Putative annexin A2-like Desmoplakin | ANXA2
DSP | 4,497,800,000
4,032,200,000 | 586,000,000
470,760,000 | 417,330,000
397,430,000 | 1,170,600,000
777,640,000 | 722,980,000
503,940,000 | 573,440,000
1,011,000,000 | 1,027,400,000
871,340,000 | 24
71 | | | Yes
Yes | Q02413
P01834 | Desmoglein-1
Ig kappa chain C region | DSG1
IGKC | 3,842,500,000
3,261,700,000 | 671,480,000
842,260,000 | 532,380,000
1,005,100,000 | 484,300,000
115,500,000 | 578,340,000
198,480,000 | 684,390,000
706,400,000 | 891,590,000
393,970,000 | 23
8 | | Yes | | P08670
A0A0C4DH90 | Vimentin Ig kappa chain V-III region POM | VIM
IGKV3OR2-268 | 3,157,700,000
2,570,200,000 | 489,550,000
1,897,100,000 | 337,990,000 | 734,410,000
13,227,000 | 251,720,000 | 392,940,000
225,870,000 | 951,130,000
434,010,000 | 25
1 | | Yes | | V9HW50 | Alcohol dehydrogenase 1B | HEL-S-117 | 2,525,500,000 | 0 | 2,445,000,000 | 0 | 0 | 80,447,000 | 0 | 17 | | Yes | Yes | P17931
Q08554-2 | Galectin-3;Galectin Desmocollin-1 | LGALS3
DSC1 | 2,429,700,000
2,289,200,000 | 1,214,100,000
409,040,000 | 169,570,000
260,520,000 | 378,710,000
496,130,000 | 177,170,000
269,620,000 | 77,588,000
267,980,000 | 412,490,000
585,960,000 | 8
11 | | | Yes
Yes | P0DOY3
P14923 | Ig lambda-1 chain C regions Junction plakoglobin | IGLC1
JUP | 2,060,500,000
1,729,100,000 | 902,940,000
212,940,000 | 302,390,000
113,640,000 | 106,470,000
343,050,000 | 55,564,000
269,710,000 | 332,740,000
404,730,000 | 360,390,000
385,000,000 | 6
15 | | Yes | | Q8N5G2-2
Q5T749 | Macoilin
Keratinocyte proline-rich protein | MACO1
KPRP | 1,581,700,000
1,575,500,000 | 99,294,000
330,330,000 | 476,890,000
141,660,000 | 430,010,000
226,220,000 | 308,790,000
285,640,000 | 0
313,090,000 | 266,730,000
278,590,000 | 2
12 | | | Yes
Yes | P19474
Q9NZT1 | E3 ubiquitin-protein ligase TRIM21
Calmodulin-like protein 5 | TRIM21
CALML5 | 1,493,600,000
1,415,300,000 | 373,480,000
243,820,000 | 221,830,000
182,070,000 | 137,660,000
222,180,000 | 252,360,000
153,060,000 | 260,040,000
70,118,000 | 248,270,000
544,030,000 | 10
5 | | | 165 | P04083 | Annexin A1;Annexin | ANXA1 | 1,402,800,000 | 51,347,000 | 99,256,000 | 209,080,000 | 80,360,000 | 733,430,000 | 229,300,000 | 12 | | Yes
Yes | | P02647
A0A3B3IS80 | Apolipoprotein A-I;Proapolipoprotein A-I
Fructose-bisphosphate aldolase B | APOA1
ALDOB | 1,331,000,000
1,149,700,000 | 11,399,000
0 | 117,700,000
1,053,900,000 | 5,319,000
0 | 16,475,000
0 | 1,162,800,000
95,806,000 | 17,217,000
0 | 15
15 | | | Yes | P04406
A0A286YES1 | Glyceraldehyde-3-phosphate dehydrogenase
Ig gamma-3 chain C region | GAPDH
IGHG3 | 1,024,600,000
1,009,000,000 | 45,228,000
138,810,000 | 381,510,000
318,110,000 | 144,970,000
154,420,000 | 70,343,000
99,280,000 | 219,600,000
160,810,000 | 162,960,000
137,620,000 | 13
15 | | | Yes | P02675
A0A5F9ZH78 | Fibrinogen beta chain
Arginase-1 | FGB
ARG1 | 987,840,000
985,040,000 | 3,484,400
29.882.000 | 109,660,000
296,130,000 | 9,669,900
165,080,000 | 133,750,000 | 843,190,000
191,750,000 | 21,839,000
168,450,000 | 8
7 | | | | P04040
A0A286YEY1 | Catalase Ig alpha-1 chain C region | CAT
IGHA1 | 883,310,000 | 55,685,000 | 377,410,000 | 124,610,000 | 80,278,000 | 132,340,000 | 112,980,000 | 10
11 | | | Yes | P01023 | Alpha-2-macroglobulin | A2M | 816,250,000
764,980,000 | 19,070,000
22,095,000 | 323,900,000
427,860,000 | 34,146,000
9,797,400 | 95,177,000
18,372,000 | 136,490,000
162,150,000 | 207,470,000
124,700,000 |
19 | | Yes | Yes | Q2L6G8
P11021 | Corneodesmosin 78 kDa glucose-regulated protein | CDSN
HSPA5 | 755,530,000
754,080,000 | 85,379,000
73,659,000 | 142,160,000
267,450,000 | 258,560,000
111,330,000 | 81,346,000
14,914,000 | 84,291,000
122,090,000 | 103,800,000
164,640,000 | 5
19 | | Yes | Yes | Q14103-3
S4R460 | Heterogeneous nuclear ribonucleoprotein D0
Ig heavy chain V-III region BRO | HNRNPD
IGHV3OR16-9 | 743,760,000
737,650,000 | 190,940,000
77,631,000 | 159,680,000
167,330,000 | 172,750,000
68,300,000 | 62,051,000
164,380,000 | 75,439,000
145,600,000 | 82,904,000
114,400,000 | 7
2 | | Yes | | Q8N257
P02671 | Histone H2B type 3-B
Fibrinogen alpha chain; Fibrinopeptide A | HIST3H2BB
FGA | 735,150,000
727,500,000 | 68,866,000
0 | 97,720,000
39,906,000 | 133,440,000 | 90,551,000 | 222,990,000
687,600,000 | 121,590,000 | 4
20 | | Yes | | H0Y9N0 | Alcohol dehydrogenase 4 | ADH4
LMNA | 720,950,000 | 0
124,240,000 | 690,910,000 | 0 | 0
16,496,000 | 30,039,000 | 0 | 13 | | Yes | | A0A6Q8PFJ0
P31327 | Prelamin-A/C;Lamin-A/C
Carbamoyl-phosphate synthase [ammonia], mitochondrial | CPS1 | 692,900,000
684,130,000 | 0 | 137,300,000
639,470,000 | 102,670,000
0 | 0 | 157,450,000
44,655,000 | 154,750,000
0 | 15
22 | | | Yes | P02787
Q01469 | Serotransferrin Fatty acid-binding protein, epidermal | TF
FABP5 | 652,910,000
620,650,000 | 95,889,000 | 470,270,000
59,613,000 | 0
208,230,000 | 97,652,000 | 146,010,000
68,443,000 | 36,628,000
90,819,000 | 17
6 | | Yes
Yes | | Q9BTM1
P02042 | Histone H2A.J
Hemoglobin subunit delta | H2AFJ
HBD | 616,220,000
608,730,000 | 134,230,000
5,412,700 | 164,340,000
569,100,000 | 41,711,000
0 | 94,091,000 | 86,576,000
34,217,000 | 95,268,000
0 | 3
11 | | Yes | Yes | P31943
Q15007 | Heterogeneous nuclear ribonucleoprotein H
Pre-mRNA-splicing regulator WTAP | HNRNPH1
WTAP | 586,320,000
583,670,000 | 235,200,000
146,160,000 | 40,807,000
79,564,000 | 91,509,000
83,145,000 | 52,962,000
52,450,000 | 116,480,000
83,328,000 | 49,360,000
139,020,000 | 10
11 | | 163 | | E7ETU5 | RNA-binding motif, single-stranded-interacting protein 1 | RBMS1 | 582,990,000 | 101,720,000 | 109,470,000 | 87,943,000 | 47,975,000 | 117,990,000 | 117,880,000 | 4 | | Yes | | F8VZY9
P01024 | Keratin, type I cytoskeletal 18
Complement C3;Complement C3 beta chain | KRT18
C3 | 508,470,000
484,020,000 | 182,680,000
0 | 57,886,000
112,750,000 | 98,079,000
0 | 48,183,000
0 | 67,435,000
371,270,000 | 54,210,000
0 | 11
18 | | Yes
Yes | | F5H5D3
C9JEU5 | Tubulin alpha-1C chain;Tubulin alpha-1B chain
Fibrinogen gamma chain | TUBA1C
FGG | 478,170,000
455,740,000 | 54,611,000
0 | 141,340,000
79,865,000 | 66,825,000
2,023,400 | 35,734,000
0 | 118,870,000
368,680,000 | 60,793,000
5,169,500 | 7
8 | | Yes | Yes | P31942-2
A0A286YEY4 | Heterogeneous nuclear ribonucleoprotein H3
Ig gamma-2 chain C region | HNRNPH3
IGHG2 | 453,350,000
432,350,000 | 48,222,000
114,780,000 | 34,002,000
109,100,000 | 131,920,000
83,334,000 | 77,527,000
18,798,000 | 103,460,000
68,437,000 | 58,216,000
37,904,000 | 7
10 | | Yes | | P06733
E9PGY2 | Alpha-enolase | ENO1
DNAAF5 | 410,010,000
404,800,000 | 29,654,000 | 202,800,000
183,310,000 | 42,689,000 | 15,683,000 | 119,190,000
69,246,000 | 0
65,333,000 | 12 | | Yes | | E5RHP7 | Dynein assembly factor 5, axonemal
Carbonic anhydrase 1 | CA1 | 401,260,000 | 19,772,000 | 391,980,000 | 67,144,000 | 0 | 9,284,600 | 0 | 8 | | | | O43866
O14979-3 | CD5 antigen-like
Heterogeneous nuclear ribonucleoprotein D-like | CD5L
HNRNPDL | 377,830,000
365,710,000 | 69,239,000
19,376,000 | 55,821,000
5,685,600 | 96,818,000
198,730,000 | 44,043,000
94,806,000 | 63,341,000
32,417,000 | 48,571,000
14,696,000 | 7
8 | | Yes | | Q9UNZ2
P01767 | NSFL1 cofactor p47 Ig heavy chain V-III region BUT | NSFL1C
IGHV3-66 | 347,920,000
341,860,000 | 35,893,000
194,310,000 | 47,043,000
62,905,000 | 106,430,000
0 | 50,500,000
45,120,000 | 26,935,000
39,526,000 | 81,121,000
0 | 8 | | | | P06702
E7EQB2 | Protein S100-A9
Lactotransferrin;Lactoferricin-H | S100A9
LTF | 328,250,000
327,250,000 | 18,939,000
38,827,000 | 139,660,000 | 0
27,766,000 | 0
5,594,100 | 309,310,000
60,142,000 | 0
55,260,000 | 5
7 | | Yes | | J3QSA3
P35579 | Ubiquitin-40S ribosomal protein S27a
Myosin-9 | UBB
MYH9 | 324,440,000
312,240,000 | 21,637,000
3.676,700 | 77,494,000
19,015,000 | 57,113,000
0 | 32,248,000
0 | 60,277,000
289,550,000 | 75,668,000
0 | 2
14 | | Yes | | P00488 | Coagulation factor XIII A chain | F13A1 | 309,550,000 | 38,304,000 | 144,670,000 | 49,351,000 | 0 | 12,444,000 | 64,783,000 | 11 | | Yes | | P16403
P05091 | Histone H1.2
Aldehyde dehydrogenase, mitochondrial | HIST1H1C
ALDH2 | 308,980,000
295,420,000 | 26,941,000
0 | 14,080,000
295,420,000 | 6,953,300
0 | 0 | 29,397,000
0 | 231,610,000
0 | 8
13 | | Yes | Yes | P31944
P23141-3 | Caspase-14;Caspase-14 subunit p17, mature form
Liver carboxylesterase 1 | CASP14
CES1 | 292,460,000
287,760,000 | 41,450,000
0 | 20,154,000
275,240,000 | 92,287,000
0 | 47,890,000
0 | 24,225,000
12,513,000 | 66,452,000
0 | 5
8 | | Yes | | Q13492-3
P08263 | Phosphatidylinositol-binding clathrin assembly protein
Glutathione S-transferase A1 | PICALM
GSTA1 | 280,250,000
276,080,000 | 0 | 13,085,000
276,080,000 | 54,721,000
0 | 40,016,000
0 | 68,106,000
0 | 104,330,000 | 2
6 | | Yes | | P01709
K7EMS3 | lg lambda chain V-II region MGC
Keratin, type I cytoskeletal 19 | KRT19 | 272,320,000
271,550,000 | 194,040,000
43,143,000 | 27,482,000
35,179,000 | 0
52,355,000 | 0
28,751,000 | 20,496,000
3,693,300 | 30,296,000
108,430,000 | 1 8 | | Yes | | P32119
P11142 | Peroxiredoxin-2 | PRDX2
HSPA8 | 264,970,000
256,440,000 | 10,440,000 | 193,050,000 | 17,114,000
39 021 000 | 0 | 28,665,000 | 15,708,000 | 7 | | Yes | | H3BQ34 | Heat shock cognate 71 kDa protein
Pyruvate kinase;Pyruvate kinase PKM | PKM | 253,600,000 | 21,135,000
157,610,000 | 64,536,000
12,316,000 | 26,633,000 | 7,716,200 | 87,034,000
41,154,000 | 44,712,000
8,175,000 | 12
4 | | Yes | | M0QZK8
P62805 | Gamma-glutamylcyclotransferase
Histone H4 | GGCT
HIST1H4A | 252,790,000
247,550,000 | 23,067,000
32,165,000 | 23,773,000
44,025,000 | 53,047,000
57,166,000 | 57,290,000
32,274,000 | 26,710,000
24,152,000 | 68,899,000
57,770,000 | 3 | | Yes | | F8VV32
A0A2R8YGD1 | Lysozyme;Lysozyme C
Tripeptidyl-peptidase 1 | LYZ
TPP1 | 237,840,000
228,720,000 | 25,942,000
59,580,000 | 54,297,000
36,930,000 | 24,124,000
40,003,000 | 46,944,000
12,722,000 | 38,336,000
48,382,000 | 48,197,000
31,107,000 | 3
2 | | Yes | | A0A286YFJ8
P30086 | Ig gamma-4 chain C region Phosphatidylethanolamine-binding protein 1 | IGHG4
PEBP1 | 221,300,000
220,410,000 | 21,901,000 | 25,795,000
220,410,000 | 0 | 48,084,000
0 | 94,876,000
0 | 30,645,000
0 | 9 | | Yes | | Q8NDC0
E9PSB3 | MAPK-interacting and spindle-stabilizing protein-like Eukaryotic translation initiation factor 3 Sub M | MAPK1IP1L
EIF3M | 219,790,000
204,390,000 | 0 | 0 | 74,677,000
204,390,000 | 0 | 55,083,000 | 90,029,000 | 1 | | Yes | | P00367 | Glutamate dehydrogenase 1, mitochondrial | GLUD1 | 202,320,000 | 0 | 194,820,000 | 0 | 0 | 7,505,800 | 0 | 8 | | Yes
Yes | | P01040
H0Y755 | Cystatin-A;Cystatin-A, N-terminally processed
Low affinity immunoglobulin gamma Fc region receptor III-A | CSTA
FCGR3A | 200,650,000
200,010,000 | 31,866,000
96,729,000 | 28,575,000
0 | 24,874,000
76,577,000 | 17,883,000
15,235,000 | 0 | 97,455,000
11,468,000 | 3
2 | | Yes
Yes | | Q6UWP8
H0YH81 | Suprabasin ATP synthase subunit beta,mitochondrial | SBSN
ATP5B | 199,090,000
192,440,000 | 23,686,000
0 | 5,567,100
150,240,000 | 53,784,000
11,186,000 | 11,163,000
0 | 9,392,600
26,174,000 | 95,502,000
4,835,000 | 7
3 | | Yes | Yes | P00738
P05109 | Haptoglobin;Haptoglobin alpha chain
Protein S100-A8;Protein S100-A8, N-terminally processed | HP
S100A8 | 191,600,000
188,970,000 | 0
15,112,000 | 83,217,000
51,461,000 | 6,955,600 | 7,752,500 | 105,830,000
102,410,000 | 2,547,800
5.286.800 | 8
4 | | | | P10412
P30101 | Histone H1.4 Protein disulfide-isomerase A3 | HIST1H1E
PDIA3 | 188,770,000
184,850,000 | 0
27.987.000 | 51,503,000
81,404,000 | 19,340,000
9,267,600 | 0 | 38,303,000
52,967,000 | 79,622,000
13,224,000 | 7 | | Yes | Yes | Q60FE5
P59666 | Filamin-A Neutrophil defensin 3:HP 3-56:Neutrophil defensin 2 | FLNA
DEFA3 | 176,900,000
175,940,000 | 17,314,000
12,525,000 | 62,222,000
147,180,000 | 4,156,600 | 0 | 93,211,000 | 16,235,000 | 14
4 | | | res | A0A7I2V4I6 | Heterogeneous nuclear ribonucleoproteins A2/B1 | HNRNPA2B1 | 175,770,000 | 10,611,000 | 33,709,000 | 0
28,025,000 | 3,763,900 | 47,208,000 | 52,448,000 | 8 | | Yes | | C9JZN1
E9PJX3 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit 2
DC-STAMP domain-containing protein 1 | GNB2
DCST1 | 167,230,000
165,830,000 | 0
165,830,000 | 32,409,000
0 | 0 | 114,540,000
0 | 0 | 20,285,000 | 3
1 | | Yes
Yes | | Q93088
Q08188 | Betainehomocysteine S-methyltransferase 1 Protein-glutamine gamma-glutamyltransferase E | BHMT
TGM3 | 156,930,000
151,040,000 | 0
19,454,000 | 156,930,000
14,749,000 | 30,930,000 | 0
27,901,000 | 0
11,456,000 | 0
46,554,000 | 5
6 | | Yes | | Q5JP53
P00352 | Tubulin beta chain;Tubulin beta-2B chain
Retinal dehydrogenase 1
 TUBB
ALDH1A1 | 148,810,000
147,820,000 | 0 | 39,759,000
143,910,000 | 10,457,000 | 5,418,600 | 93,172,000
3,905,500 | 0 | 3 | | | | A0A7I2V3H3 | Putative elongation factor 1-alpha-like 3 | EEF1A1 | 146,880,000 | 10,829,000 | 56,560,000 | 10,460,000 | 7,325,300 | 52,315,000 | 9,388,600 | 1 | | Yes | | P29508-2
P47929 | Serpin B3
Galectin-7 | SERPINB3
LGALS7 | 144,360,000
142,190,000 | 34,074,000
14,374,000 | 0 | 63,249,000
53,808,000 | 7,558,700
19,822,000 | 7,745,700
41,851,000 | 31,729,000
12,331,000 | 3
4 | | Yes
Yes | | P02730
P25705-2 | Band 3 anion transport protein
ATP synthase subunit alpha, mitochondrial | SLC4A1
ATP5A1 | 137,560,000
135,600,000 | 0
25,045,000 | 122,820,000
92,411,000 | 6,434,500
4,146,300 | 0 | 0
14,002,000 | 8,304,400
0 | 6
9 | | Yes
Yes | | P09467
A0A6Q8PFK8 | Fructose-1,6-bisphosphatase 1
Heat shock protein beta-1 | FBP1
HSPB1 | 134,090,000
129,770,000 | 0
6,293,600 | 112,310,000
23,017,000 | 0
23,662,000 | 0
14,009,000 | 21,781,000
27,850,000 | 0
34,937,000 | 4 | | . 00 | | P14625
A0A5F9ZHX5 | Endoplasmin Chromodomain-helicase-DNA-binding protein 3 | HSP90B1
CHD3 | 128,220,000
126,410,000 | 0,255,000
0
72,151,000 | 87,804,000
0 | 12,003,000 | 1,880,000 | 22,276,000 | 4,253,300
54,262,000 | 6 | | ., | | D3YTK1 | B-cell lymphoma/leukemia 11B | BCL11B | 124,710,000 | 76,098,000 | 14,068,000 | 16,701,000 | 0 | 0 | 17,845,000 | 1 | | Yes
Yes | | P07476
P00558-2 | Involucrin Phosphoglycerate kinase 1 | IVL
PGK1 | 120,360,000
119,430,000 | 0 | 106,620,000 | 0 | 0 | 120,360,000
12,816,000 | 0 | 6
5 | | Yes | | A0A0G2JRN3
P10599-2 | Alpha-1-antitrypsin;Short peptide from AAT
Thioredoxin | SERPINA1
TXN | 119,420,000
119,320,000 | 0
32,992,000 | 7,421,500 | 0
15,014,000 | 0
6,942,900 | 119,420,000
38,357,000 | 0
18,590,000 | 2 | | | | A0A087WVQ6 | Clathrin heavy chain;Clathrin heavy chain 1 | CLTC | 118,860,000 | 7,694,400 | 39,319,000 | 4,351,100 | 5,094,400 | 27,799,000 | 34,607,000 | 5 | | | | P11166 | Solute carrier family 2, facilitated glucose transporter member 1 | SLC2A1 | 117,840,000 | 27,594,000 | 20,800,000 | 27,638,000 | 17,045,000 | 17,769,000 | 6,991,000 | 1 | |------------|-----|--------------------------|--|----------------------|----------------------------|--------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------| | Yes | | A0A0A0MSI0
P04843 | Peroxiredoxin-1 Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 | PRDX1
RPN1 | 117,410,000
114,750,000 | 0
14,069,000 | 23,434,000
19,291,000 | 24,158,000
38,305,000 | 0 | 50,913,000
5,918,100 | 18,908,000
37,166,000 | 6
5 | | Yes | | Q9BS26
P31040 | Endoplasmic reticulum resident protein 44 Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial | ERP44
SDHA | 114,410,000
110,870,000 | 0
21,023,000 | 19,792,000
29,762,000 | 0
5.004.900 | 57,777,000
6,511,700 | 15,611,000
7,760,200 | 21,226,000
40,805,000 | 2 | | Yes | | E9PS23
P00918 | Cofilin-1 Carbonic anhydrase 2 | CFL1
CA2 | 105,680,000
103,530,000 | 0 | 47,412,000
103,530,000 | 6,922,800 | 6,769,200 | 42,374,000 | 2,206,100 | 2 | | Yes | | P40926 | Malate dehydrogenase, mitochondrial; Malate dehydrogenase
Glutathione S-transferase A2 | MDH2 | 102,110,000 | 0 | 102,110,000
101,640,000 | 0 | 0 | 0 | 0 | 6 | | Yes
Yes | | P09210
P09211 | Glutathione S-transferase P | GSTA2
GSTP1 | 101,640,000
101,360,000 | 0 | 24,528,000 | 0 | 0 | 76,833,000 | 0 | 2 | | Yes
Yes | | P00338-3
P30084 | L-lactate dehydrogenase A chain
Enoyl-CoA hydratase, mitochondrial | LDHA
ECHS1 | 101,020,000
100,510,000 | 0 | 67,486,000
100,510,000 | 0 | 0 | 33,536,000
0 | 0 | 4
5 | | Yes
Yes | | P00326
P11182 | Alcohol dehydrogenase 1C
Lipoamide acyltransferase component of branched-chain α-keto acid | ADH1C
DBT | 99,362,000
98,020,000 | 0
2,429,500 | 99,362,000
0 | 0
88,425,000 | 7,165,200 | 0 | 0 | 12
6 | | Yes
Yes | | P60174
P31995-4 | Triosephosphate isomerase Low affinity immunoglobulin gamma Fc region receptor II-c | TPI1
FCGR2C | 96,410,000
95,150,000 | 0 | 96,410,000
0 | 0
21,613,000 | 0
16,029,000 | 0 | 0
57.508.000 | 6 | | Yes | | P81605-2
A0A7I2V2R3 | Dermcidin;Survival-promoting peptide;DCD-1
Heterogeneous nuclear ribonucleoprotein A3 | DCD
HNRNPA3 | 94,948,000
94,476,000 | 0 | 17,310,000
0 | 24,755,000
40,480,000 | 14,705,000
18,442,000 | 27,485,000
11,950,000 | 10,693,000
23,604,000 | 8 | | Yes
Yes | | Q15828
P04259 | Cystatin-M
Keratin, type II cytoskeletal 6B | CST6
KRT6B | 90,006,000
89,853,000 | 23,842,000 | 0
3,936,600 | 12,469,000
12,262,000 | 11,616,000
4,134,500 | 14,124,000
69,520,000 | 27,955,000 | 1
56 | | | | K7EQ02 | DAZ-associated protein 1 | DAZAP1 | 88,043,000 | 0 | 4,283,400 | 36,199,000 | 21,232,000 | 26,328,000 | 0 | 2 | | Yes
Yes | | P08238
Q13835-2 | Heat shock protein HSP 90-beta
Plakophilin-1 | HSP90AB1
PKP1 | 87,486,000
87,271,000 | 9,004,500
14,367,000 | 43,177,000
4,843,200 | 0 | 0
14,614,000 | 26,031,000
47,376,000 | 9,274,000
6,070,300 | 8 | | Yes | | P16401
P21549 | Histone H1.5 Serinepyruvate aminotransferase | HIST1H1B
AGXT | 86,334,000
84,253,000 | 0 | 0
84,253,000 | 0 | 0 | 33,838,000
0 | 52,496,000
0 | 5
3 | | Yes
Yes | | E7EQR4
A8MW49 | Ezrin Fatty acid-binding protein, liver | EZR
FABP1 | 83,177,000
80,281,000 | 11,616,000
0 | 57,174,000
80,281,000 | 0 | 0 | 0 | 14,386,000
0 | 6
3 | | Yes
Yes | | Q09666
P06396-2 | Neuroblast differentiation-associated protein AHNAK
Gelsolin | AHNAK
GSN | 79,609,000
77,391,000 | 4,552,900
0 | 0 | 0 | 0 | 75,056,000
77,391,000 | 0 | 8
5 | | Yes
Yes | | P08311
P07737 | Cathepsin G Profilin-1 | CTSG
PFN1 | 75,345,000
73,460,000 | 0 | 64,752,000
45,606,000 | 0 | 0 | 10,593,000
27,854,000 | 0 | 3 | | Yes
Yes | | Q13867
A0A0G2JIW1 | Bleomycin hydrolase
Heat shock 70 kDa protein 1A;Heat shock 70 kDa protein 1B | BLMH
HSPA1A | 71,299,000
70,838,000 | 15,720,000 | 8,186,000
40,124,000 | 22,679,000
9.828.700 | 0 | 9,475,800
14,307,000 | 15,237,000
6,577,900 | 2 | | Yes | | P25311 | Zinc-alpha-2-glycoprotein | AZGP1
HSPD1 | 70,437,000 | 17,679,000 | 10,057,000 | 36,466,000 | 0 | 0 | 6,235,100 | 6 | | Yes | | A0A7I2YQK6
P30041 | 60 kDa heat shock protein, mitochondrial Peroxiredoxin-6 | PRDX6 | 70,230,000
70,214,000 | ō | 41,023,000
70,214,000 | 0 | Ō | 29,206,000 | 0 | 2 | | Yes | Yes | P17066
E9PHT9 | Heat shock 70 kDa protein 6;Putative heat shock 70 kDa protein 7
Annexin;Annexin A5 | HSPA6
ANXA5 | 69,823,000
69,705,000 | 7,186,600 | 31,296,000
4,930,200 | 5,901,700
11,971,000 | 4,534,000
16,361,000 | 18,897,000
5,489,900 | 9,194,300
23,766,000 | 4 | | | | P31025
P31930 | Lipocalin-1;Putative lipocalin 1-like protein 1 Cytochrome b-c1 complex subunit 1, mitochondrial | LCN1
UQCRC1 | 68,579,000
66,759,000 | 17,246,000
0 | 7,055,500 | 8,715,500
32,142,000 | 19,543,000
9,727,500 | 9,898,400
17,834,000 | 13,176,000
0 | 2 | | Yes
Yes | | P22735
Q6ZVX7 | Protein-glutamine gamma-glutamyltransferase K
F-box only protein 50 | TGM1
NCCRP1 | 66,068,000
65,548,000 | 9,145,000
18,299,000 | 8,097,100
1,627,800 | 11,141,000
13,871,000 | 12,123,000
10,069,000 | 8,823,300
9,179,600 | 16,739,000
12,502,000 | 2 2 | | Yes | | Q92637
P31947-2 | High affinity immunoglobulin gamma Fc receptor IB
14-3-3 protein sigma | FCGR1B
SFN | 65,085,000
65,014,000 | 14,808,000 | 24,911,000 | 0 | 0 | 0
65,014,000 | 25,367,000 | 2 | | | | M0R3F1
Q9HAU0-6 | Heterogeneous nuclear ribonucleoprotein U-like protein 1 Pleckstrin homology domain-6 | HNRNPUL1
PLEKHA6 | 64,921,000
64,712,000 | 7,997,300
0 | 41,310,000 | 15,614,000
0 | 0
35,710,000 | 03,014,000 | 15,006,000 | 3 | | Yes | | Q16822 | Phosphoenolpyruvate carboxykinase [GTP], mitochondrial | PCK2 | 63,356,000 | 0 | 63,356,000 | 0 | 0 | 0 | 0 | 6 | | Yes
Yes | | P42765
V9GYC1 | 3-ketoacyl-CoA thiolase, mitochondrial Apolipoprotein A-II;Proapolipoprotein A-II;Truncated apolipoprotein A-II | ACAA2
APOA2 | 63,130,000
63,025,000 | 0 | 63,130,000
0 | 0 | 0 | 0
63,025,000 | 0 | 3 | | Yes | | O95954
P01833 | Formimidoyltransferase-cyclodeaminase
Polymeric immunoglobulin receptor;Secretory component | FTCD
PIGR | 62,955,000
62,780,000 | 0
55,565,000 | 62,955,000
0 | 0
7,215,700 | 0 | 0 | 0 | 3
2 | | Yes
Yes | | H3BUH7
I3NI03 | Fructose-bisphosphate aldolase;Fructose-bisphosphate aldolase A
Protein disulfide-isomerase | ALDOA
P4HB | 61,547,000
61,057,000 | 0
5,594,500 | 30,590,000
24,393,000 | 0
6,481,000 | 0
4,107,900 | 30,957,000
14,479,000 | 0
6,001,800 | 2 | | Yes
Yes | | P04899-4
J3QS36 | Guanine nucleotide-binding protein G(i) subunit alpha-2
L-xylulose reductase | GNAI2
DCXR | 60,628,000
58,887,000 | 0 | 5,045,200
58,887,000 | 17,245,000
0 | 6,652,900
0 | 12,318,000
0 | 19,367,000 | 3
4 | | Yes | | D6REM4
P01594 | Casein kinase I isoform alpha;Casein kinase I isoform alpha-like
Ig kappa chain V-I region AU;Ig kappa chain V-I region AG | CSNK1A1
IGKV1D-33 | 58,574,000
58,512,000 | 58,574,000
35,985,000 | 4,295,800 | 2,809,900 | 3,517,000 | 0
4,290,800 | 0
7,612,700 | 1 | | Yes | | A0A0A0MSV6
P69891 | Complement C1q subcomponent subunit B Hemoglobin subunit gamma-1 |
C1QB
HBG1 | 58,010,000
57,351,000 | 0 | 0 | 58,010,000
20,525,000 | 0
11,885,000 | 0 | 24,940,000 | 2
11 | | Yes | | Q5T6W2 | Heterogeneous nuclear ribonucleoprotein K | HNRNPK | 56,797,000 | 0 | 9,694,800 | 10,343,000 | 0 | 20,754,000 | 16,006,000 | 1 | | Yes
Yes | | Q6P0N6
P08559-3 | Dystonin Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial | DST
PDHA1 | 55,054,000
54,649,000 | 0 | 0 | 0
36,915,000 | 55,054,000
17,733,000 | 0 | 0 | 2 | | Yes
Yes | | P54868
K7EP41 | Hydroxymethylglutaryl-CoA synthase, mitochondrial
Glucose-6-phosphate isomerase | HMGCS2
GPI | 54,294,000
51,787,000 | 0 | 54,294,000
28,093,000 | 0 | 0 | 0
23,693,000 | 0 | 3
1 | | Yes | | A0A7I2V5R8
P02745 | Dipeptidyl peptidase 4 soluble form
Complement C1q subcomponent subunit A | DPP4
C1QA | 49,250,000
49,029,000 | 16,947,000
0 | 0 | 6,971,900
26,241,000 | 7,260,800 | 0 | 25,332,000
15,527,000 | 3
1 | | Yes
Yes | | H7C131
P14550 | 3-ketoacyl-CoA thiolase, peroxisomal
Alcohol dehydrogenase [NADP(+)] | ACAA1
AKR1A1 | 49,012,000
48,970,000 | 0 | 39,040,000
48,970,000 | 0 | 0 | 9,971,800
0 | 0 | 2 | | Yes
Yes | | H7BYH4
O75891-2 | Superoxide dismutase [Cu-Zn] Cytosolic 10-formyltetrahydrofolate dehydrogenase | SOD1
ALDH1L1 | 48,641,000
47,334,000 | 0 | 36,536,000
47,334,000 | 0 | 0 | 12,105,000
0 | 0 | 1 | | Yes
Yes | | P16152
Q16762 | Carbonyl reductase [NADPH] 1 Thiosulfate sulfurtransferase | CBR1
TST | 46,537,000
46,314,000 | 0 | 46,537,000
46,314,000 | 0 | 0 | 0 | 0 | 3 | | | | P98082-2 | Disabled homolog 2 | DAB2 | 46,020,000 | 7,661,800 | 4,233,100 | 4,780,500
0 | 11,910,000 | 4,537,100
0 | 12,898,000 | 1 3 | | Yes
Yes | | A0A2R8Y7L2
F5H5P2 | Peroxisomal multifunctional enzyme type 2;Enoyl-CoA hydratase 2
2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial | HSD17B4
BCKDHA | 44,462,000
44,336,000 | 0 | 44,462,000
0 | 27,748,000 | 6,992,100 | 9,596,700 | 0 | 2 | | | | P07910
P01701 | Heterogeneous nuclear ribonucleoproteins C1/C2
Ig lambda chain V-I region NEW | HNRNPC
IGLV1-51 | 44,199,000
43,260,000 | 0
43,260,000 | 0 | 19,282,000
0 | 0 | 24,917,000
0 | 0 | 2
1 | | Yes
Yes | | Q16610-2
P80748 | Extracellular matrix protein 1
Ig lambda chain V-III region LOI | ECM1
IGLV3-9 | 43,164,000
39,938,000 | 16,073,000
39,938,000 | 0 | 4,679,200
0 | 16,017,000
0 | 0 | 6,394,400
0 | 3
2 | | Yes
Yes | | P00480
P06727 | Ornithine carbamoyltransferase, mitochondrial
Apolipoprotein A-IV | OTC
APOA4 | 38,811,000
38,730,000 | 0 | 38,811,000
0 | 0 | 0 | 0
38,730,000 | 0 | 3
4 | | | Yes | A0A3B3ISA6
C9J2I0 | Complement C4-A;Complement C4 beta chain
Arf-GAP domain and FG repeat-containing protein 1 | C4B
AGFG1 | 37,477,000
37,463,000 | 0 | 0
19,993,000 | 0 | 0
17,470,000 | 37,477,000
0 | 0 | 3
1 | | Yes
Yes | | P62081
P00505 | 40S ribosomal protein S7 Aspartate aminotransferase, mitochondrial | RPS7
GOT2 | 36,563,000
36,173,000 | 0 | 36,173,000 | 0 | 0 | 36,563,000 | 0 | 1 | | Yes | | Q14669 | E3 ubiquitin-protein ligase TRIP12
Plasminogen;Plasmin heavy chain A;Activation peptide;Angiostatin | TRIP12 | 35,387,000 | 5,063,600
0 | 0 | 0 | 1,274,500 | 7,478,400 | 21,571,000 | 2 | | Yes
Yes | | P00747
A0A5F9ZHD4 | Acetyl-CoA acetyltransferase, mitochondrial | PLG
ACAT1 | 35,204,000
34,864,000 | 0 | 18,546,000
34,864,000 | 0 | 0 | 16,658,000
0 | 0 | 2 | | Yes
Yes | | P42357
P08574 | Histidine ammonia-lyase
Cytochrome c1, heme protein, mitochondrial | HAL
CYC1 | 34,798,000
34,705,000 | 3,023,300
17,970,000 | 5,789,400
0 | 4,315,200
0 | 4,655,100
3,321,100 | 3,693,900
6,646,500 | 13,321,000
6,767,300 | 1 | | Yes | | A0A7I2V2G2
Q13151 | Stress-70 protein, mitochondrial
Heterogeneous nuclear ribonucleoprotein A0 | HSPA9
HNRNPA0 | 34,422,000
34,332,000 | 3,644,700
9,337,700 | 30,777,000
8,802,000 | 0
6,967,600 | 9,225,100 | 0 | 0 | 5
1 | | Yes | | Q00266
B4E1S2 | S-adenosylmethionine synthase isoform type-1
Annexin;Annexin A4 | MAT1A
ANXA4 | 34,266,000
34,107,000 | 0 | 34,266,000
23,248,000 | 0
7,248,900 | 0 | 0 | 0
3,610,400 | 3
2 | | Yes
Yes | | E7EN95
Q15149-7 | Filamin-B
Plectin | FLNB
PLEC | 33,248,000
32,622,000 | 0 | 0 | 0 | 0 | 33,248,000
32,622,000 | 0 | 4
5 | | Yes | | Q5T750
P29401 | Skin-specific protein 32
Transketolase | XP32
TKT | 32,441,000
32,236,000 | 14,229,000 | 12,308,000
25,916,000 | 0 | 5,905,100 | 0
6,320,100 | 0 | 1 | | Yes
Yes | | R4GN49
Q14574-2 | Protein S100-A2
Desmocollin-3 | S100A2
DSC3 | 32,039,000
31,820,000 | 0 | 0 | 11,287,000 | 0
9,170,400 | 32,039,000 | 11,362,000 | 2 2 | | Yes
Yes | | P07900
K7ESE1 | Heat shock protein HSP 90-alpha | HSP90AA1
KRT17 | 31,748,000
31,444,000 | 0 | 0 | 18,987,000 | 0 0 | 12,762,000
31.444.000 | 0 | 7 | | | | H7BZJ3 | Keratin, type I cytoskeletal 17
Protein disulfide-isomerase A3 | PDIA3 | 31,218,000 | 10,969,000 | Ö | ō | ō | 12,027,000 | 8,221,900 | 2 | | Yes | | A0A2R8YGX3
A0A1X7SBZ2 | Tropomyosin alpha-4 chain
Probable ATP-dependent RNA helicase DDX17 | TPM4
DDX17 | 30,416,000
30,189,000 | 0
11,040,000 | 0
12,105,000 | 0 | 0 | 30,416,000
7,044,500 | 0 | 4
1 | | Yes
Yes | | P68133
P31151 | Actin, alpha skeletal muscle; Actin, aortic smooth muscle
Protein S100-A7 | ACTA1
S100A7 | 28,542,000
28,377,000 | 0
16,068,000 | 0 | 22,625,000
0 | 0
3,923,400 | 5,916,600
5,362,900 | 0
3,022,700 | 11
1 | | Yes
Yes | | O75874
P63104 | Isocitrate dehydrogenase [NADP] cytoplasmic
14-3-3 protein zeta/delta | IDH1
YWHAZ | 27,456,000
26,529,000 | 0 | 27,456,000
0 | 0
3,983,100 | 0 | 0
11,736,000 | 0
10,810,000 | 3 | | Yes
Yes | | A0A7I2V3U0
C9JEH7 | Aconitate hydratase, mitochondrial
40S ribosomal protein S4, X isoform | ACO2
RPS4Y1 | 26,341,000
26,072,000 | 26,072,000 | 7,668,600
0 | 3,421,200
0 | 0 | 7,748,000
0 | 7,503,500
0 | 2 3 | | Yes
Yes | | D6RHJ7
P21980 | Dihydropteridine reductase Protein-olutamine gamma-olutamytransferase 2 | QDPR
TGM2 | 25,964,000
25,527,000 | 0 | 22,627,000
25,527,000 | 0 | 0 | 3,337,100
0 | 0 | 2 | | Yes | Yes | I3L1P8
E9PP21 | Mitochondrial 2-oxoglutarate/malate carrier protein Cysteine and glycine-rich protein 1 | SLC25A11
CSRP1 | 25,396,000
25,181,000 | 0 | 19,963,000 | 9,416,800
5,218,000 | 0 | 5,550,200
0 | 10,429,000 | 1 | | Yes | | P26641 | Elongation factor 1-gamma | EEF1G | 25,062,000 | 8,120,000 | 0 | 0 | 0 | 16,942,000 | 0 | 2 | | Yes | | Q99497
B4DK69 | Protein deglycase DJ-1 Aldo-keto reductase family 1 member C2 | PARK7
AKR1C2 | 24,469,000
23,775,000 | 0 | 24,469,000
23,775,000 | 0 | 0 | 0 | 0 | 2 3 | | Yes | | H3BTX9
P17096 | Acyl-coenzyme A synthetase ACSM2B, mitochondrial
High mobility group protein HMG-I/HMG-Y | ACSM2B
HMGA1 | 23,403,000
23,239,000 | 0 | 23,403,000
0 | 0 | 0 | 0 | 0
23,239,000 | 2
1 | | Yes
Yes | | O43548
A0A6E1W9L1 | Protein-glutamine gamma-glutamyltransferase 5 Zinc finger and BTB domain-containing protein 3 | TGM5
ZBTB3 | 22,931,000
22,345,000 | 0
5,533,200 | 0 | 5,106,200
7,473,000 | 3,459,400
0 | 5,197,500
9,338,700 | 9,168,100
0 | 1
2 | | Yes
Yes | | P07099
A0A7I2YQ74 | Epoxide hydrolase 1
UTPglucose-1-phosphate uridylyltransferase | EPHX1
UGP2 | 21,730,000
21,651,000 | 0 | 21,730,000
21,651,000 | 0 | 0 | 0 | 0 | 2 3 | | Yes
Yes | | P34896-3
P51857-2 | Serine hydroxymethyltransferase, cytosolic
3-oxo-5-beta-steroid 4-dehydrogenase | SHMT1
AKR1D1 | 21,544,000
21,175,000 | 0 | 21,544,000
21,175,000 | 0 | 0 | 0 | 0 | 2 | | Yes
Yes | | H0YCY6
F8VPF3 | Bifunctional ATP-dependent dihydroxyacetone kinase; ATP-dependent
Myosin light polypeptide 6;Myosin light chain 6B | TKFC
MYL6 | 20,829,000
20,561,000 | 0 | 20,829,000 | 0 | 0 | 0
20.561.000 | 0 | 3 | | Yes | | P01019 | Angiotensinogen; Angiotensin-1; Angiotensin-2; Angiotensin-3; Angiotensin-4 | AGT | 20,374,000 | ő | Ö | Ö | ō | 20,374,000 | ő | 2 | | Yes | | P25325-2 | 3-mercaptopyruvate sulfurtransferase; Sulfurtransferase | MPST | 19,789,000 | 0 | 19,789,000 | | 0 | 0 | | | |------------|-----|----------------------|---|-------------------------|--------------------------|------------|-----------------|------------|-----------|-----------------|------------|---| | Yes
Yes | | A0A3B3ISY1 | 3-mercaptopyruvate suiturtransterase; Suiturtransterase Tissue factor pathway inhibitor 2 | MPS1
TEPI2 | 19,789,000 | 8,176,900 | 19,789,000 | 0 | 8,803,000 | 2,706,500 | 0 | 2 | | Yes | | Q16698-2 | 2,4-dienoyl-CoA reductase, mitochondrial | DECR1 | 19,661,000 | 0,170,300 | 19,661,000 | 0 | 0,000,000 | 2,700,300 | 0 | 2 | | Yes | | C9JV37 | Prothrombin;Activation peptide fragment 1 | F2 | 19,349,000 | ő | 0 | ő | ŏ | 19,349,000 | ő | 1 | | Yes | | A0A6Q8PFC6 | Glycine amidinotransferase, mitochondrial | GATM | 18,900,000 | 0 | 18,900,000 | 0 | Ö | 0,010,000 | 0 | 1 | | Yes | | A0A075B6H9 | Immunoglobulin lambda variable 4-69 | IGLV4-69 | 18,184,000 | 18,184,000 | 0,300,000 | 0 | 0 | 0 | 0 | i | | Yes | | V9GYG0 | ADP/ATP translocase 3;ADP/ATP translocase 3, N-terminally processed | SI C25A4 | 17.956.000 | 0 | 0 | 6 886 600 | 4,931,600 | Ö | 6,137,900 | 1 | | Yes | | A0A1W2PP35 | Heterogeneous nuclear ribonucleoprotein U | HNRNPU | 17,783,000 | ő | 0 | 17,783,000 | 0 | Ö | 0,107,000 | 3 | | Yes | | E5RGW4 | Nucleophosmin | NPM1 | 17,763,000 | Ö | n | 0 | Ö | 17,763,000 | Ö | 1 | | Yes | | J3QRN2 | Beta-2-alvcoprotein 1 | APOH | 17,755,000 | ő | 8,891,500 | Ö | Ö | 0 | 8,863,300 | 1 | | | | E9PRN7
 3 beta-hydroxysteroid dehydrogenase/Delta 5>4-isomerase type 2 | HSD3B1 | 17,661,000 | Ö | 0,001,000 | 4,061,200 | 6,881,400 | ő | 6,718,400 | 1 | | Yes | | P52758 | Ribonuclease UK114 | HRSP12 | 16.603.000 | ő | 16,603,000 | 0 | 0,001,100 | ő | 0,710,100 | 1 | | Yes | | Q15084-3 | Protein disulfide-isomerase A6 | PDIA6 | 16,371,000 | ō | 10,683,000 | ō | ō | 5,687,900 | ō | 1 | | Yes | | Q5TF55 | Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial | ALDH4A1 | 16.343.000 | ō | 16,343,000 | ō | ō | 0 | ō | 1 | | Yes | | H0Y4K8 | Fibronectin;Anastellin;Ugl-Y1;Ugl-Y2;Ugl-Y3 | FN1 | 16,129,000 | 2,290,000 | 0 | 7,354,100 | 0 | 0 | 6,485,400 | 1 | | Yes | | A0A494C1T2 | C-1-tetrahydrofolate synthase, cytoplasmic | MTHFD1 | 15,674,000 | 0 | 15,674,000 | 0 | 0 | 0 | 0 | 3 | | | | E7EPM6 | Long-chain-fatty-acidCoA ligase 1 | ACSL1 | 15,503,000 | 0 | 15,503,000 | 0 | 0 | 0 | 0 | 2 | | Yes | | H0YJF9 | Dihydrolipoyllysine-residue succinyltransferase/2-oxoglutarate dehydrogen | DLST | 14,869,000 | 0 | 0 | 11,035,000 | 0 | 3,833,400 | 0 | 2 | | Yes | | Q14134-2 | Tripartite motif-containing protein 29 | TRIM29 | 14,797,000 | 0 | 0 | 0 | 0 | 14,797,000 | 0 | 2 | | Yes | | P18206-2 | Vinculin | VCL | 14,766,000 | 0 | 0 | 0 | 0 | 0 | 14,766,000 | 1 | | | Yes | D6R9P3 | Heterogeneous nuclear ribonucleoprotein A/B | HNRNPAB | 14,544,000 | 0 | 0 | 14,544,000 | 0 | 0 | 0 | 3 | | Yes | | P10696 | Alkaline phosphatase, placental-like; Alkaline phosphatase, placental type | ALPPL2 | 14,464,000 | 14,464,000 | 0 | 0 | 0 | 0 | 0 | 1 | | Yes | | H3BRG4 | Cytochrome b-c1 complex subunit 2, mitochondrial | UQCRC2 | 14,346,000 | 0 | 14,346,000 | 0 | 0 | 0 | 0 | 2 | | Yes | | C9JRL4 | Malate dehydrogenase; Malate dehydrogenase, cytoplasmic | MDH1 | 14,124,000 | 0 | 14,124,000 | 0 | 0 | 0 | 0 | 1 | | Yes | | P62258 | 14-3-3 protein epsilon | YWHAE | 14,037,000 | 0 | 5,850,000 | 0 | 0 | 0 | 8,187,500 | 2 | | Yes | | D6RFG5 | Annexin;Annexin A3 | ANXA3 | 13,723,000 | 0 | 0 | 0 | 0 | 13,723,000 | 0 | 1 | | Yes | | O60701-3 | UDP-glucose 6-dehydrogenase | UGDH | 13,415,000 | 0 | 13,415,000 | 0 | 0 | 0 | 0 | 2 | | Yes | | B0YIW2 | Apolipoprotein C-III | APOC3 | 13,244,000 | 0 | 0 | 0 | 0 | 13,244,000 | 0 | 1 | | Yes | | A0A0G2JQH2 | 40S ribosomal protein S18 | RPS18 | 13,172,000 | 0 | 0 | 0 | 0 | 13,172,000 | 0 | 1 | | Yes | | P49189 | 4-trimethylaminobutyraldehyde dehydrogenase | ALDH9A1 | 13,161,000 | 0 | 13,161,000 | 0 | 0 | 0 | 0 | 1 | | Yes | | P11277-3 | Spectrin beta chain, erythrocytic | SPTB | 13,077,000 | 0 | 13,077,000 | 0 | 0 | 0 | 0 | 3 | | Yes | | Q9HC84 | Mucin-5B | MUC5B | 12,990,000 | 0 | 12,990,000 | 0 | 0 | 0 | 0 | 2 | | Yes | | P46783 | 40S ribosomal protein S10;Putative 40S ribosomal protein S10-like | RPS10 | 12,790,000 | 0 | 6,330,400 | 0 | 0 | 6,459,400 | 0 | 1 | | Yes | | P04080 | Cystatin-B | CSTB | 12,717,000 | 7,164,000 | 0 | 5,552,700 | 0 | 0 | 0 | 1 | | Yes | | F6RFD5 | Destrin | DSTN | 12,619,000 | 0 | 12,619,000 | 0 | 0 | 0 | 0 | 1 | | Yes | | P25786 | Proteasome subunit alpha type-1;Proteasome subunit alpha type | PSMA1 | 12,242,000 | 0 | 8,949,000 | 3,292,900 | 0 | 0 | 0 | 2 | | Yes | | P16157-14 | Ankyrin-1 | ANK1 | 12,173,000 | 0 | 12,173,000 | 0 | 0 | 0 | 0 | 2 | | Yes
Yes | | A0A087WT59
E9PK47 | Transthyretin | TTR
PYGI | 11,910,000
11,862,000 | 0 | 0
11,862,000 | 0 | 0 | 11,910,000
0 | 0 | 2 | | Yes | | | Alpha-1,4 glucan phosphorylase;Glycogen phosphorylase, liver form | | | | | | | | | | | ., | | P02808 | Statherin | STATH | 11,823,000 | 11,823,000 | 0 | 0 | 0 | 0 | 0 | 1 | | Yes | | P08246 | Neutrophil elastase | ELANE | 11,630,000 | 0 | 11,630,000 | 0 | 0 | 0 | 0 | 1 | | | | P52907 | F-actin-capping protein subunit alpha-1 | CAPZA1 | 11,591,000 | 0 | 0 | 0 | 0 | 11,591,000 | 0 | 1 | | Yes | | C9JA05
Q9UG54 | Immunoglobulin J chain Mitogen-activated protein kinase kinase kinase 7 | JCHAIN
DKFZp586F0420 | 11,558,000
11.510.000 | 11,510,000 | 0 | 0 | 0 | 11,558,000 | 0 | 1 | | Yes | | P45954-2 | Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial | ACADSB | 11,392,000 | 11,510,000 | 11,392,000 | 0 | 0 | 0 | 0 | 1 | | Yes | | P45954-2
B5MD38 | Trifunctional enzyme subunit beta, mitochondrial:3-ketoacyl-CoA thiolase | HADHB | 11,392,000 | 0 | 11,392,000 | 0 | 0 | 0 | 0 | 1 | | Yes | | P25815 | Protein S100-P | S100P | 11,215,000 | 0 | 11,320,000 | 0 | 0 | 0 | 11,215,000 | 1 | | Yes | | P02549-2 | Spectrin alpha chain, erythrocytic 1 | SPTA1 | 10.654.000 | 0 | 10 654 000 | 0 | 0 | 0 | 11,213,000 | 2 | | Yes | | H0YAG8 | Alcohol dehydrogenase class-3 | ADH5 | 10,551,000 | 0 | 10,551,000 | 0 | 0 | 0 | ő | 1 | | 163 | | A0A087WW87 | Ig kappa chain V-II region FR;Ig kappa chain V-II region Cum | IGKV2-40 | 10,538,000 | 0 | 0,001,000 | 0 | 0 | 10,538,000 | ő | 1 | | Yes | | B1AKI5 | Muscleblind-like protein 3;Muscleblind-like protein 2 | MBNL3 | 10,394,000 | ō | 10,394,000 | 0 | ō | 0 | Ö | 2 | | Yes | | B1AKQ8 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 | GNB1 | 10,354,000 | 0 | 10,354,000 | 0 | 0 | 0 | 10,354,000 | 1 | | Yes | | A0A0J9YXZ5 | Ras GTPase-activating-like protein IQGAP1 | IQGAP1 | 10,334,000 | 0 | 0 | 0 | 0 | 10,328,000 | 0 0,004 | 2 | | Yes | | P13716-2 | Delta-aminolevulinic acid dehvdratase | ALAD | 10,259,000 | 0 | 10,259,000 | 0 | ō | 0 | ő | 2 | | Yes | | Q13404-8 | Ubiquitin-conjugating enzyme E2 variant 1 | UBF2V1 | 9.964.900 | ő | 9.964.900 | Ö | Ö | Ö | Ö | 1 | | Yes | | M0R0Y6 | Heterogeneous nuclear ribonucleoprotein M | HNRNPM | 9,627,300 | ő | 0,001,000 | ő | ő | 9,627,300 | ő | 1 | | | | A0A7I2V699 | Nucleolin | NCL | 9.473.600 | 0 | 0 | ō | 0 | 9.473.600 | 0 | 1 | | | | P05387 | 60S acidic ribosomal protein P2 | RPLP2 | 9,359,400 | 3,670,500 | ō | ō | ō | 5.688.900 | ō | 2 | | Yes | | Q06520 | Bile salt sulfotransferase | SULT2A1 | 9,347,800 | 0 | 9,347,800 | 0 | 0 | 0 | 0 | 1 | | Yes | | P21399 | Cytoplasmic aconitate hydratase | ACO1 | 9,273,300 | 0 | 9,273,300 | 0 | 0 | 0 | 0 | 1 | | | | P27824-3 | Calnexin | CANX | 9,232,100 | 0 | 0 | 0 | 0 | 9,232,100 | 0 | 2 | | Yes | | A0A0C4DGA2 | Enoyl-CoA delta isomerase 2, mitochondrial | ECI2 | 9,217,600 | 0 | 9,217,600 | 0 | 0 | 0 | 0 | 1 | | | | A0A140TA58 | Keratin-associated protein 9-9 | KRTAP9-9 | 9,046,100 | 0 | 9,046,100 | 0 | 0 | 0 | 0 | 2 | | Yes | | J3KRG2 | Gasdermin-A | GSDMA | 8,582,300 | 0 | 3,803,000 | 0 | 0 | 0 | 4,779,300 | 2 | | Yes | | F5GZP6 | Liprin-beta-1 | PPFIBP1 | 8,376,800 | 8,376,800 | 0 | 0 | 0 | 0 | 0 | 1 | | Yes | | P32926 | Desmoglein-3 | DSG3 | 8,254,400 | 0 | 0 | 0 | 0 | 8,254,400 | 0 | 2 | | Yes | | A0A0G2JMB2 | Ig alpha-2 chain C region | IGHA2 | 7,976,600 | 0 | 7,976,600 | 0 | 0 | 0 | 0 | 5 | | Yes | | M0QY85 | Tubulin beta-4A chain; Tubulin beta-4B chain | TUBB4A | 7,933,700 | 0 | 7,933,700 | 0 | 0 | 0 | 0 | 2 | | Yes | | Q14117 | Dihydropyrimidinase | DPYS | 7,893,100 | 0 | 7,893,100 | 0 | 0 | 0 | 0 | 3 | | | | E9PE82 | Short-chain specific acyl-CoA dehydrogenase, mitochondrial | ACADS | 7,313,700 | 0 | 7,313,700 | 0 | 0 | 0 | 0 | 1 | | | | F2Z2W8 | Selenium-binding protein 1 | SELENBP1 | 6,229,500 | 0 | 6,229,500 | 0 | 0 | 0 | 0 | 2 | | Yes | | Q13011 | Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial | ECH1 | 5,760,800 | 0 | 5,760,800 | 0 | 0 | 0 | 0 | 1 | | | | Q9UBG3 | Cornulin | CRNN | 5,651,400 | 0 | 0 | 5,651,400 | 0 | 0 | 0 | 1 | | | | Q08257-2 | Quinone oxidoreductase | CRYZ | 5,461,300 | 0 | 5,461,300 | 0 | 0 | 0 | 0 | 1 | | Yes | | P28838-2 | Cytosol aminopeptidase | LAP3 | 5,135,200 | 0 | 5,135,200 | 0 | 0 | 0 | 0 | 1 | | Yes | | A8MUD9 | 60S ribosomal protein L7 | RPL7 | 4,984,000 | 4,984,000 | 0 | 0 | 0 | 0 | 0 | 1 | | ., | | E9PEB5 | Far upstream element-binding protein 1 | FUBP1 | 4,190,600 | 0 | 0 | 4,190,600 | 0 | 0 | 0 | 2 | | Yes | | P09651 | Heterogeneous nuclear ribonucleoprotein A1 | HNRNPA1 | 3,752,800 | 3,752,800 | 0 | 0 | 0 | 0 | 0 | 2 | | ., | | P22314-2 | Ubiquitin-like modifier-activating enzyme 1 | UBA1 | 3,748,100 | 0 | 3,748,100 | 0 | 0 | 0 | 0 | 1 | | Yes | | Q14032 | Bile acid-CoA:amino acid N-acyltransferase | BAAT | 3,451,500 | 0 | 3,451,500 | 0 | 0 | 0 | 0 | 1 | | Yes | | G3V5K1
H7C4C8 | Protein transport protein Sec23A
T-complex protein 1 subunit theta | SEC23A
CCT8 | 2,912,600
2.848.600 | 0 | 0
2.848.600 | 0 | 0 | 2,912,600 | 0 | 1 | | | | E9PBS1 | Multifunctional protein ADE2;Phosphoribosylaminoimidazole carboxylase | PAICS | 2,615,600 | 0 | 2,848,600 | 0 | 0 | 0 | 0 | 1 | | | | ESFESI | mutaturotoriai protein ADEZ,F1105p11011005ylattiitioittiuaZ0le CalD0XylaSe | FAIGS | 2,010,000 | U | 2,010,000 | U | U | U | 0 | | Table 4 Proteins identified in PICALM immunoprecipitations. Placental extracts U1, R4, Q1, Q4, O1, and N3 were immunoprecipitated in one experiment. | Flacelital extracts 01 | , R4, Q1, Q4, O1, and N3 were immunoprecipitated in o | пе ехреппени. | | Intensity | Intonoity | Intensity | Intonoitu | Intonoity | Intonoity | | |------------------------
---|----------------------|----------------------------------|---------------------------|--------------------------------|----------------------------|--------------------------------|----------------------------|--------------------------------|----------| | Majority protein ID | Protein | Gene | Total Intensity | Intensity
PICALM
U1 | Intensity
PICALM
R4 | Intensity
PICALM
Q1 | Intensity
PICALM
Q4 | Intensity
PICALM
O1 | Intensity
PICALM
N3 | Peptides | | P01857 | Ig gamma-1 chain C region | IGHG1 | | 197,890,000 | 13,091,000,000 | 789,180,000 | 14,626,000,000 | 12,977,000,000 | 6,715,700,000 | 23 | | Q13492
P50995-2 | Phosphatidylinositol-binding clathrin assembly prote
Annexin A11 | PICALM
ANXA11 | 18,858,000,000
15,851,000,000 | | 5,271,000,000
4,529,400,000 | 657,650,000
433,220,000 | 3,743,800,000
3,795,300,000 | | 4,217,400,000
3,682,800,000 | 35
37 | | P20073-2 | Annexin A7 | ANXA7 | 9,130,600,000 | 666,020,000 | 2,765,200,000 | 238,940,000 | 1,535,100,000 | 2,049,900,000 | 1,875,500,000 | 32 | | A0A286YES1 | Ig gamma-3 chain C region | IGHG3 | 4,336,300,000
3,056,100,000 | 33,112,000
0 | 1,106,600,000 | 53,173,000
0 | 927,810,000 | 812,970,000
0 | 1,402,600,000 | 20
1 | | A0A7I2V378
E7EVS6 | Laminin subunit beta-1 Actin, cytoplasmic 1, N-termina | LAMB1
ACTB | 2,600,000,000 | 74,816,000 | 3,056,100,000
1,747,800,000 | 140,870,000 | 230,680,000 | 217,870,000 | 187,980,000 | 19 | | P01834 | Ig kappa chain C region | IGKC | 2,165,500,000 | 19,359,000 | 221,050,000 | 1,391,900,000 | 195,150,000 | 232,100,000 | 105,920,000 | 9 | | A0A286YFJ8
P0DOY3 | Ig gamma-4 chain C region | IGHG4
IGLC3 | 1,609,600,000 | 2 691 000 | 218,830,000
60,706,000 | 22,468,000
741,050,000 | 138,990,000
302,850,000 | 428,050,000 | 801,270,000 | 17
9 | | A0A286YEY1 | Immunoglobulin lambda constant 3 Ig alpha-1 chain C region | IGHA1 | 1,591,000,000
1,335,500,000 | 2,681,900
23,359,000 | 584,930,000 | 130,660,000 | 252,550,000 | 240,510,000
139,020,000 | 243,250,000
204,990,000 | 14 | | Q9Y6R7 | IgGFc-binding protein | FCGBP | 1,098,700,000 | 9,162,000 | 128,730,000 | 9,654,400 | 38,684,000 | 824,150,000 | 88,293,000 | 30 | | P01624
P31943 | Ig kappa chain V-III region POM
Heterogeneous nuclear ribonucleoprotein H;Heteroc | IGKV3D-15
HNRNPH1 | 1,060,200,000
1,047,700,000 | 0
10,293,000 | 124,770,000
217,040,000 | 613,850,000
24,254,000 | 116,590,000
289,540,000 | 205,020,000
295,340,000 | 0
211,190,000 | 2
11 | | P08670 | Vimentin | VIM | 951,490,000 | 6,378,400 | 298,510,000 | 5,089,400 | 72,211,000 | 358,520,000 | 210,780,000 | 26 | | H0YEF7 | Phosphatidylinositol-binding clathrin assembly prote | PICALM | 874,480,000 | 16,602,000 | 212,520,000 | 57,324,000 | 467,540,000 | 68,277,000 | 52,211,000 | 14 | | E9PQV5
A0A4W8ZXM2 | Coiled-coil domain-containing protein 37
Immunoglobulin heavy variable 3-72 | CCDC37
IGHV3-72 | 870,490,000
808,240,000 | 0
44,918,000 | 0
282,930,000 | 870,490,000
12,296,000 | 0
137,660,000 | 0
204,230,000 | 0
126,190,000 | 1 | | P05783 | Keratin, type I cytoskeletal 18 | KRT18 | 760,020,000 | 44,510,000 | 231,740,000 | 8,635,500 | 185,390,000 | 187,570,000 | 146,680,000 | 17 | | P07355 | Annexin A2;Annexin;Putative annexin A2-like protei | ANXA2 | 742,370,000 | 6,496,700 | 256,760,000 | 55,166,000 | 54,726,000 | 196,500,000 | 172,720,000 | 15 | | P01871
P31942-2 | Ig mu chain C region
Heterogeneous nuclear ribonucleoprotein H3 | IGHM
HNRNPH3 | 722,270,000
681,640,000 | 105,950,000 | 12,770,000
133,900,000 | 0
68,508,000 | 95,422,000
133,680,000 | 155,950,000
231,950,000 | 352,180,000
113,610,000 | 18
9 | | Q8NDC0 | MAPK-interacting and spindle-stabilizing protein-like | MAPK1IP1L | 497,400,000 | 15,599,000 | 39,220,000 | 243,740,000 | 59,063,000 | 32,791,000 | 106,990,000 | 1 | | P51512-2 | Matrix metalloproteinase-16 | MMP16 | 429,540,000 | 0 | 178,440,000 | 27,390,000 | 0 | 223,720,000 | 0 | 1 | | H0Y8G5
E7ETU5 | Heterogeneous nuclear ribonucleoprotein D0
RNA-binding motif, single-stranded-interacting prote | HNRNPD
RBMS1 | 409,120,000
391,920,000 | 0
5,970,500 | 31,290,000
68,667,000 | 27,715,000
17,784,000 | 95,052,000
143,760,000 | 151,740,000
44,979,000 | 103,320,000
110,760,000 | 5
7 | | Q8WZ42 | Titin | TTN | 387,820,000 | 0 | 0 | 0 | 75,928,000 | 210,050,000 | 101,840,000 | 1 | | P02675 | Fibrinogen beta chain; Fibrinopeptide B; Fibrinogen b | FGB | 348,580,000 | 0 | 343,520,000 | 2,249,600 | 0 | 0 | 2,806,500 | 16 | | A0A0D9SF16
O14979-3 | Methyl-CpG-binding domain protein 5 Heterogeneous nuclear ribonucleoprotein D-like | MBD5
HNRNPDL | 346,080,000
334,140,000 | 0
4,097,000 | 84,425,000 | 0
6,682,100 | 346,080,000
92,722,000 | 0
38,095,000 | 108,120,000 | 1
6 | | P98082 | Disabled homolog 2 | DAB2 | 308,620,000 | 30,904,000 | 53,571,000 | 22,044,000 | 29,573,000 | 79,395,000 | 93,129,000 | 8 | | A0A286YEY4 | Ig gamma-2 chain C region | IGHG2 | 295,690,000 | 3,630,700 | 140,820,000 | 13,340,000
58,392,000 | 30,486,000 | 32,731,000 | 74,683,000
43,798,000 | 15 | | P68871
P11021 | Hemoglobin subunit beta;LVV-hemorphin-7;Spinorp 78 kDa glucose-regulated protein | HBB
HSPA5 | 289,630,000
278,720,000 | 17,601,000
66,634,000 | 25,216,000
8,224,700 | 00,392,000 | 73,808,000
44,577,000 | 70,816,000
12,509,000 | 146,770,000 | 4
14 | | P04083 | Annexin A1;Annexin | ANXA1 | 264,550,000 | 7,343,100 | 128,430,000 | 38,085,000 | 12,426,000 | 24,473,000 | 53,792,000 | 13 | | P01594
O43866 | lg kappa variable 1-33
CD5 antigen-like | IGKV1-33
CD5L | 258,450,000
258,210,000 | 2,181,900 | 6,309,800
64,662,000 | 167,650,000
0 | 34,900,000
27,301,000 | 29,177,000
135,430,000 | 18,233,000
30,812,000 | 2
5 | | F8VV32 | Lysozyme;Lysozyme C | LYZ | 201,490,000 | 13,865,000 | 04,002,000 | 33,772,000 | 58,974,000 | 48,689,000 | 46,193,000 | 3 | | P21980-2 | Protein-glutamine gamma-glutamyltransferase 2 | TGM2 | 182,780,000 | 21,051,000 | 6,206,000 | 155,520,000 | 0 | 0 | 0 | 4 | | P01615
Q5T749 | Immunoglobulin kappa varibable 2D-28 Keratinocyte proline-rich protein | IGKV2D-28
KPRP | 157,840,000
156,670,000 | 0 | 0
14,536,000 | 56,727,000
42,583,000 | 2,124,500
12,523,000 | 1,244,100
41,980,000 | 97,746,000
45,045,000 | 1
8 | | Q5T7N2 | LINE-1 type transposase domain-containing protein | L1TD1 | 147,570,000 | 0 | 33,515,000 | 51,668,000 | 0 | 41,900,000 | 62,386,000 | 2 | | A0A6Q8PGK1 | Heat shock protein beta-1 | HSPB1 | 140,170,000 | 5,102,400 | 5,175,100 | 116,740,000 | 0 | 9,140,400 | 4,009,100 | 4 | | Q02413
F8VVB9 | Desmoglein-1
Tubulin alpha-1B chain;Tubulin alpha-1A chain;Tub | DSG1
TUBA1B | 139,520,000
130,470,000 | 4,467,600
4,960,800 | 13,159,000
53,076,000 | 21,449,000
11,800,000 | 21,775,000
10,998,000 | 52,035,000
17,150,000 | 26,635,000
32,482,000 | 9
4 | | A0A6Q8PFJ0 | Prelamin-A/C;Lamin-A/C | LMNA | 126,810,000 | 51,770,000 | 36,048,000 | 0 | 9,173,200 | 5,398,800 | 24,420,000 | 7 | | P69905 | Hemoglobin subunit alpha | HBA1 | 120,580,000 | 8,819,100 | 32,928,000 | 0 | 19,697,000 | 31,037,000 | 28,103,000 | 3 | | P02671
A0A0B4J231 | Fibrinogen alpha chain; Fibrinopeptide A; Fibrinogen
Immunoglobulin lambda-like polypeptide 5; Ig lambd | FGA
IGLL5 | 119,010,000
113,780,000 | 5,765,800
0 | 89,186,000
823,960 | 13,712,000 | 0
51,884,000 | 1,589,500
45,566,000 | 8,753,800
15,503,000 | 6
7 | | Q9HAU0-6 | Pleckstrin homology domain-6 | PLEKHA6 | 100,890,000 | 0 | 9,826,200 | 91,063,000 | 0 1,004,000 | 40,000,000 | 0,000,000 | 1 | | Q92945 | Far upstream element-binding protein 2 | KHSRP | 96,813,000 | 25,823,000 | 0 | 0 | 5,257,900 | 16,437,000 | 49,295,000 | 8 | | R4GNB1 | Acyl-CoA
synthetase family member 4 | AASDH | 94,959,000 | 0 | 6,802,400 | 6,567,300 | 14,507,000 | 47,725,000 | 19,358,000 | 1 | | C9JEU5
P04406 | Fibrinogen gamma chain
Glyceraldehyde-3-phosphate dehydrogenase | FGG
GAPDH | 90,470,000
89,398,000 | 63,046,000
4,504,400 | 15,905,000
74,117,000 | 3,593,000 | 10,380,000
1,898,700 | 5,284,800 | 1,139,700
0 | 7
6 | | K7ERX7 | ATP synthase subunit alpha, mitochondrial | ATP5A1 | 87,648,000 | 0 | 49,222,000 | 0 | 0 | 20,992,000 | 17,434,000 | 5 | | E9PPG9 | mRNA export factor | RAE1 | 87,447,000 | 0 | 0 | 0 | 58,237,000 | 2,416,200 | 26,794,000 | 4 | | P30101
K7EQ02 | Protein disulfide-isomerase A3
DAZ-associated protein 1 | PDIA3
DAZAP1 | 86,682,000
83,974,000 | 0 | 34,607,000
11,234,000 | 0 | 0
42,826,000 | 17,446,000
23,140,000 | 34,628,000
6,774,000 | 8
2 | | Q01469 | Fatty acid-binding protein, epidermal | FABP5 | 79,112,000 | 0 | 8,010,100 | 12,771,000 | 28,053,000 | 0 | 30,278,000 | 1 | | Q01085 | Nucleolysin TIAR; Nucleolysin TIA-1 isoform p40 | TIAL1 | 77,006,000 | 0 | 15,592,000 | 0 | 14,334,000 | 18,441,000 | 28,639,000 | 4 | | P21397-2
A6NHN2 | Amine oxidase [flavin-containing] A;Amine oxidase Roquin-2 | MAOA
RC3H2 | 76,723,000
74,367,000 | 0 | 33,332,000 | 0
50,159,000 | 16,437,000 | 0
8,880,000 | 26,954,000
15,328,000 | 4
1 | | P14866 | Heterogeneous nuclear ribonucleoprotein L | HNRNPL | 68,836,000 | 0 | 0 | 0 | 0 | 0 | 68,836,000 | 7 | | Q5JPU3 | Pyruvate dehydrogenase E1 component subunit alp | PDHA1 | 66,908,000 | 0 | 12,367,000 | 0 | 31,262,000 | 13,254,000 | 10,024,000 | 3 | | Q8IUC1
Q5JP53 | Keratin-associated protein 11-1 Tubulin beta chain | KRTAP11-1
TUBB | 65,493,000
64.164.000 | 0
3.856.400 | 18,492,000
37.532.000 | 28,950,000
2.310,200 | 7.223.200 | 18,051,000
4,449,300 | 0
8.792.800 | 3 | | C9J2I0 | Arf-GAP domain and FG repeat-containing protein 1 | AGFG1 | 59,976,000 | 4,759,100 | 12,457,000 | 0 | 0 | 18,719,000 | 24,041,000 | 1 | | P19474
D6R9P3 | E3 ubiquitin-protein ligase TRIM21
Heterogeneous nuclear ribonucleoprotein A/B | TRIM21
HNRNPAB | 58,811,000
58,548,000 | 0 | 6,681,800
7,571,700 | 0
2,186,500 | 9,640,700 | 29,267,000
28,004,000 | 22,862,000
11,145,000 | 5
4 | | Q5T1M5 | FK506-binding protein 15 | FKBP15 | 58,396,000 | 11,484,000 | 7,571,700 | 2,180,300 | 14,598,000 | 28,004,000 | 32,314,000 | 4 | | E9PGY2 | Dynein assembly factor 5, axonemal | DNAAF5 | 56,016,000 | 0 | 0 | 0 | 20,626,000 | 25,326,000 | 10,064,000 | 1 | | P63261
Q9NZT1 | Actin, cytoplasmic 2;Actin, cytoplasmic 2, N-termina
Calmodulin-like protein 5 | ACTG1
CALML5 | 55,103,000
54,136,000 | 0 | 29,965,000
7,928,200 | 6,910,800
10,694,000 | 6,077,800 | 5,127,100
27,905,000 | 7,022,400
7,608,500 | 19
1 | | C9JZN1 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) s | GNB2 | 53,184,000 | 0 | 0 | 45,048,000 | 8,135,900 | 0 | 0 | 4 | | A0A7I2YQK6 | 60 kDa heat shock protein, mitochondrial | HSPD1 | 50,218,000 | 1,514,400 | 15,195,000 | 0 | 15,571,000 | 6,895,200 | 11,042,000 | 3 | | P31040-2
A0A7I2V2R3 | Succinate dehydrogenase [ubiquinone] flavoprotein
Heterogeneous nuclear ribonucleoprotein A3 | SDHA
HNRNPA3 | 49,094,000
48,903,000 | 0 | 23,561,000
15,655,000 | 0 | 3,205,300
7,296,200 | 15,958,000
11,237,000 | 6,369,600
14,714,000 | 5
2 | | Q8IWB6-3 | Inactive serine/threonine-protein kinase TEX14 | TEX14 | 48,249,000 | 0 | 0 | ő | 0 | 21,743,000 | 26,507,000 | 1 | | P68371 | Tubulin beta-4B chain;Tubulin beta-4A chain | TUBB4B | 48,032,000 | 0 | 39,150,000 | 0 | 4,137,600 | 0 | 4,744,800 | 3 | | H0YFX9
Q8IUC0 | Histone H2A;Histone H2A type 1-J;Histone H2A type
Keratin-associated protein 13-1;Keratin-associated 13-1;Keratin-asso | H2AFJ
KRTAP13-1 | 45,901,000
44,512,000 | 12,453,000
0 | 7,861,100
7,315,500 | 20,288,000
7,365,500 | 0 | 0
29,831,000 | 5,298,900
0 | 1
1 | | A0A087WVQ6 | Clathrin heavy chain; Clathrin heavy chain 1 | CLTC | 44,504,000 | 21,103,000 | 0 | 0 | 0 | 0 | 23,400,000 | 3 | | P63267 | Actin, gamma-enteric smooth muscle;Actin, alpha s | ACTG2 | 44,025,000 | 4 600 500 | 23,112,000
27,448,000 | 0 | 0 | 8,310,000
11,128,000 | 12,603,000 | 12 | | H7BZJ3
A0A0B4J1V1 | Protein disulfide-isomerase A3
Ig heavy chain V-III region JON;Ig heavy chain V-III | PDIA3
IGHV3-21 | 43,257,000
43,147,000 | 4,680,500
0 | 9,064,600 | 2,411,600 | 0 | 22,858,000 | 0
8,812,900 | 3
2 | | H7C582 | Integrator complex subunit 1 | INTS1 | 42,661,000 | 0 | 0 | 42,661,000 | 0 | 0 | 0 | 1 | | Q9BYR6 | Keratin-associated protein 3-3 | KRTAP3-3 | 40,458,000 | 0 | 40,458,000
0 | 0
5 577 900 | 21.067.000 | 0 442 200 | 2 792 200 | 2 | | Q13151
H0Y6B2 | Heterogeneous nuclear ribonucleoprotein A0
Sushi domain-containing protein 1 | HNRNPA0
SUSD1 | 39,870,000
38,095,000 | 0 | 0 | 5,577,800
22,678,000 | 21,067,000
8,950,800 | 9,442,300
6,466,400 | 3,783,300
0 | 1
1 | | A0A1B0GVP4 | Ligand-dependent nuclear receptor corepressor | LCORL | 36,335,000 | 0 | 16,645,000 | 0 | 9,411,000 | 0 | 10,278,000 | 1 | | P14923 | Junction plakoglobin | JUP | 35,503,000 | 0 | 0 | 4,915,000 | 19 201 000 | 21,240,000 | 9,347,600 | 6 | | P01023
A0A7I2V3H3 | Alpha-2-macroglobulin Putative elongation factor 1-alpha-like 3;Elongation | A2M
EEF1A1 | 35,281,000
34,691,000 | 0 | 0
20,615,000 | 0 | 18,291,000
0 | 0
6,899,500 | 16,990,000
7,176,500 | 2 | | I3L0W5 | 14-3-3 protein epsilon | YWHAE | 34,151,000 | 0 | 4,124,200 | 16,649,000 | 3,202,500 | 4,882,900 | 5,292,400 | 1 | | P02787 | Serotransferrin | TF | 33,379,000 | 5,509,000 | 0 | 4,698,000 | 8,538,800 | 1,682,500 | 12,951,000 | 3 | | Q08554-2
E5RGE1 | Desmocollin-1
14-3-3 protein zeta/delta | DSC1
YWHAZ | 31,458,000
31,118,000 | 0 | 0 | 2,709,100
31,118,000 | 0 | 22,304,000 | 6,444,900
0 | 2 | | P06576 | ATP synthase subunit beta, mitochondrial;ATP synt | ATP5B | 31,113,000 | 0 | 31,113,000 | 0 | 0 | 0 | 0 | 3 | | P17931
C9JA05 | Galectin-3;Galectin
Immunoglobulin J chain | LGALS3
JCHAIN | 30,883,000
29,005,000 | 0
6,597,900 | 0
8,495,000 | 30,883,000
8,405,600 | 0 | 0 | 5,506,600 | 3
1 | | 000,000 | sogiobulii o onum | JOHAN | 25,005,000 | 0,001,000 | 0,400,000 | 0,400,000 | U | U | 5,500,000 | • | | A0A0G2JRN3 | Alpha-1-antitrypsin;Short peptide from AAT | SERPINA1 | 28,649,000 | 1,644,400 | 2,510,900 | 10,667,000 | 8,084,300 | 1,831,300 | 3,911,300 | 2 | |--------------------------|---|---------------------|--------------------------|----------------|-----------------|------------|----------------|-------------------------|------------------------|--------| | P31025 | Lipocalin-1;Putative lipocalin 1-like protein 1 | LCN1 | 28,552,000 | 0 | 0 | 2,845,200 | 0 | 6,027,100 | 19,679,000 | 2 | | P07237 | Protein disulfide-isomerase | P4HB | 28,383,000 | 0 | 18,574,000 | 0 | 0 | 4,970,100 | 4,837,900 | 3 | | H0Y5H6
Q96CBB | Ubiquitin-associated protein 2-like
Integrator complex subunit 12 | UBAP2L
INTS12 | 25,709,000
25,627,000 | 0 | 0 | 0 | 0 | 8,179,400
25,627,000 | 17,530,000
0 | 1
1 | | S4R460 | Ig heavy chain V-III region BRO region DOB | IGHV3OR16-9 | 24,932,000 | 0 | 13,396,000 | 0 | 0 | 6,415,600 | 5,120,200 | 3 | | Q5JTQ6 | Alpha-catulin | CTNNAL1 | 23,896,000 | 0 | 0 | 17,301,000 | 0 | 6,594,900 | 0,120,200 | 1 | | P07910 | Heterogeneous nuclear ribonucleoproteins C1/C2 | HNRNPC | 23,699,000 | 0 | 15,502,000 | 0 | 8,197,000 | 0,004,000 | 0 | 2 | | E9PEB5 | Far upstream element-binding protein 1 | FUBP1 | 23,687,000 | 0 | 0 0,002 | 0 | 0,107,000 | 20,589,000 | 3.098.200 | 3 | | Q07065 | Cytoskeleton-associated protein 4 | CKAP4 | 23,211,000 | 0 | 10,484,000 | Ō | 0 | 7,232,200 | 5,495,600 | 5 | | Q9UBG3 | Cornulin | CRNN | 23,063,000 | 0 | 0 | 23,063,000 | 0 | 0 | 0 | 3 | | A0A0C4DH31 | Ig heavy chain V-I region V35 | IGHV1-18 | 22,114,000 | 0 | 7,494,400 | 0 | 0 | 8,305,200 | 6,314,800 | 2 | | P04843 | Dolichyl-diphosphooligosaccharideprotein glycosyl | RPN1 | 21,647,000 | 0 | 6,872,300 | 0 | 2,481,300 | 3,898,300 | 8,395,600 | 3 | | A0A0G2JIW1 | Heat shock 70 kDa protein 1A;Heat shock 70 kDa pı | HSPA1A | 21,113,000 | 1,946,300 | 16,283,000 | 0 | 0 | 2,883,300 | 0 | 4 | | P11142-2 | Heat shock cognate 71 kDa protein | HSPA8 | 20,977,000 | 14,054,000 | 0 | 1,367,200 | 1,373,400 | 4,182,300 | 0 | 6 | | Q15365 | Poly(rC)-binding protein 1;Poly(rC)-binding protein 3 | PCBP1 | 19,851,000 | 0 | 8,243,700 | 0 | 0 | 7,620,100 | 3,987,300 | 4 | | P29401 | Transketolase | TKT | 19,791,000 | 2,617,800 | 17,173,000 | 0 | 0 | 0 | 0 | 3 | | P11166 | Solute carrier family 2, facilitated glucose transporte | SLC2A1 | 19,512,000 | 0 | 19,512,000 | 0 | 0 | 0 | 0 | 1 | | M0R3F1 | Heterogeneous nuclear ribonucleoprotein U-like pro | HNRNPUL1 | 19,055,000 | 0
8,500,000 | 0
10,370,000 | 0 | 0 | 0 | 19,055,000 | 4 | | P69892
A0A7I2V4I6 | Hemoglobin subunit gamma-2;Hemoglobin subunit (
Heterogeneous nuclear ribonucleoproteins A2/B1 | HBG2
HNRNPA2B1 | 18,869,000
18,704,000 | 0,500,000 | 10,370,000 | 0 | 0 | 12,162,000 | 6,541,300 | 4 | | A0A712V410
A0A5F9ZH78 | Arginase-1 | ARG1 | 17,366,000 | 0 | 4,850,200 | 0 | 0 | 5,206,700 | 7,309,200 | 2 | | J3KPS3 | Fructose-bisphosphate aldolase;Fructose-bisphosph | ALDOA | 16,868,000 | 0 | 16,868,000 | 0 | 0 | 0,200,700 | 0 0 | 3 | | A0A7I2YQY2 | Heterogeneous nuclear ribonucleoprotein A1;Hetero | HNRNPA1 | 16,360,000 | 2,149,600 | 2,573,000 | 0 | 7,993,500 | 3,644,300 | 0 | 1 | | Q9BYQ3 | Keratin-associated protein 9-3 | KRTAP9-3 | 16,191,000 | 0 | 16,191,000 | 0 | 0 | 0 | 0 | 2 | | Q9BS26 | Endoplasmic reticulum resident protein 44 | ERP44 | 16,007,000 | 0 | 7,136,300 | 0 | 0 | 7,435,300 | 1,435,800 | 3 | | P15924-2 | Desmoplakin | DSP | 15,924,000 | 0 | 0 | 6,126,800 |
0 | 9,797,400 | 0 | 5 | | P05109 | Protein S100-A8; Protein S100-A8, N-terminally proc | S100A8 | 15,760,000 | 828,670 | 4,227,300 | 10,704,000 | 0 | 0 | 0 | 1 | | E9PMZ8 | T-lymphoma invasion and metastasis-inducing prote | TIAM2 | 15,463,000 | 0 | 0 | 15,463,000 | 0 | 0 | 0 | 1 | | P01833 | Polymeric immunoglobulin receptor;Secretory comp | PIGR | 15,458,000 | 0 | 11,036,000 | 0 | 0 | 3,208,000 | 1,214,700 | 3 | | H3BQZ7 | Heterogeneous nuclear ribonucleoprotein U-like pro | | 15,173,000 | 1,669,300 | 0 | 0 | 0 | 0 | 13,503,000 | 1 | | P55795 | Heterogeneous nuclear ribonucleoprotein H2 | HNRNPH2 | 14,987,000 | 0 | 4,489,200 | 0 | 1,825,300 | 5,079,900 | 3,592,900 | 5 | | A0A0G2JPP1 | Keratin-associated protein 4-8 | KRTAP4-8 | 14,521,000 | 0 | 14,521,000 | 0 | 0 | 0 | 0 | 1 | | E9PHT9 | Annexin;Annexin A5 | ANXA5 | 12,946,000 | 0 | 0 | 12,946,000 | 0 | 0 | 0 | 2 | | A0A6Q8PF87 | Apoptosis-inducing factor 1, mitochondrial | AIFM1 | 12,539,000 | 0 | 12,539,000 | 0 | 0 | 0 | 0 | 1 | | M0R1R1 | Serine/threonine-protein kinase PAK 4 | PAK4 | 12,509,000 | 0 | 0 | 0 | 0 | 0 | 12,509,000 | 1 | | P04040 | Catalase | CAT | 12,392,000 | 0 | 3,717,800 | 1,498,500 | 0 | 3,932,900 | 3,243,300 | 1 | | A0A140TA58 | Keratin-associated protein 9-9;Keratin-associated pr | KRTAP9-9 | 12,125,000 | 0 | 12,125,000 | 0 | 0 | 0 | 0 | 2 | | A0A0A0MS98 | Band 3 anion transport protein | SLC4A1 | 12,063,000 | 2,108,100
0 | 0 | 0 | 3,363,800
0 | 0 | 6,591,400 | 1 | | P0DP03
P81605 | Ig heavy chain V-III region CAM;Ig heavy chain V-II Dermcidin;Survival-promoting peptide;DCD-1 | IGHV3-23
DCD | 11,962,000
11,727,000 | 0 | 0 | 7,387,600 | 0 | 7,237,200
4.338,900 | 4,724,800
0 | 1
2 | | H0YFA4 | Cysteine-rich protein 2 | CRIP2 | 11,648,000 | 0 | 0 | 7,587,800 | 4,060,200 | 4,336,900 | 0 | 2 | | A0A3B3ITD8 | Nuclear pore complex protein Nup98-Nup96;Nuclea | NUP98 | 11,301,000 | 0 | 0 | 0 000,700 | 11,301,000 | 0 | 0 | 2 | | P14625 | Endoplasmin | HSP90B1 | 11,207,000 | 11,207,000 | 0 | 0 | 0 | 0 | 0 | 4 | | Q96PK6 | RNA-binding protein 14 | RBM14 | 11,150,000 | 0 | 0 | 0 | 7,074,900 | 0 | 4,075,400 | 1 | | E7ENL6 | Collagen alpha-3(VI) chain | COL6A3 | 10,671,000 | 10,671,000 | 0 | 0 | 0 | 0 | 0 | 3 | | F8WBE5 | Transferrin receptor protein 1;Transferrin receptor p | TFRC | 10,642,000 | 3,853,100 | 0 | 0 | 0 | 0 | 6,788,600 | 1 | | A0A0G2JMB2 | Ig alpha-2 chain C region | IGHA2 | 10,360,000 | 0 | 5,177,500 | 0 | 0 | 2,870,900 | 2,311,700 | 9 | | A0A7I2YQJ0 | Transitional endoplasmic reticulum ATPase | VCP | 10,078,000 | 10,078,000 | 0 | 0 | 0 | 0 | 0 | 2 | | B3KVK2 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) s | GNB1 | 9,941,900 | 0 | 0 | 6,870,800 | 0 | 3,071,100 | 0 | 1 | | Q9BYR3 | Keratin-associated protein 4-4 | KRTAP4-4 | 9,925,900 | 0 | 9,925,900 | 0 | 0 | 0 | 0 | 1 | | P52597 | Heterogeneous nuclear ribonucleoprotein F;Heterog | HNRNPF | 9,850,000 | 0 | 3,857,200 | 0 | 0 | 0 | 5,992,800 | 3 | | P01024 | Complement C3;Complement C3 beta chain;C3-bet | C3 | 9,848,400 | 0 | 9,848,400
0 | 0 | 0 | 0 | 0 | 2 | | P80723-2
F8W1T6 | Brain acid soluble protein 1
RNA-binding motif, single-stranded-interacting prote | BASP1
RBMS2 | 9,527,100
9,438,700 | 0 | 0 | 0 | 0 | 0 | 9,527,100
9,438,700 | 2
4 | | P31944 | Caspase-14;Caspase-14 subunit p17, mature form; | CASP14 | 9,239,700 | 0 | 0 | 5,161,200 | 0 | 0 | 4,078,600 | 1 | | P0DP08 | Ig heavy chain V-II region NEWM;Ig heavy chain V- | IGHV4-4 | 9,180,400 | 0 | 0 | 5,161,200 | 0 | 5,589,100 | 3,591,300 | 1 | | H3BU13 | Pyruvate kinase;Pyruvate kinase PKM | PKM | 9,106,300 | 0 | 9,106,300 | 0 | 0 | 0,509,100 | 0,551,500 | 1 | | F8WEU2 | ATP-dependent 6-phosphofructokinase, liver type | PFKL | 9,083,300 | 9,083,300 | 0,100,000 | 0 | 0 | 0 | 0 | 1 | | A0A0C4DH25 | Immunoglobulin kappa variable 3D-20 | IGKV3D-20 | 8,934,800 | 0 | 0 | 0 | Ō | 0 | 8,934,800 | 1 | | P52907 | F-actin-capping protein subunit alpha-1 | CAPZA1 | 8,912,600 | 0 | 8,912,600 | 0 | 0 | 0 | 0 | 1 | | I3L1P8 | Mitochondrial 2-oxoglutarate/malate carrier protein | SLC25A11 | 8,767,800 | 0 | 0 | 8,767,800 | 0 | 0 | 0 | 1 | | B4E3S0 | Coronin;Coronin-1C | CORO1C | 8,702,200 | 0 | 4,567,500 | 0 | 0 | 4,134,700 | 0 | 1 | | F8W6D9 | Sentrin-specific protease 6 | SENP6 | 8,679,600 | 0 | 0 | 0 | 0 | 0 | 8,679,600 | 2 | | P36957-2 | Dihydrolipoyllysine-residue succinyltransferase com | DLST | 8,276,700 | 0 | 5,934,900 | 0 | 0 | 0 | 2,341,800 | 1 | | P31930 | Cytochrome b-c1 complex subunit 1, mitochondrial | UQCRC1 | 8,234,200 | 0 | 3,957,100 | 0 | 0 | 0 | 4,277,000 | 2 | | P02808 | Statherin | STATH | 8,064,100 | 0 | 0 | 8,064,100 | 0 | 0 | 0 | 1 | | P16403 | Histone H1.2; Histone H1.3 | HIST1H1C | 7,889,100 | 0 | 2,483,600 | 5,405,500 | 0 | 0 | 0 | 3
1 | | K7EMF8
C9JP00 | Very long-chain specific acyl-CoA dehydrogenase, r | ACADVL
MBNL1 | 7,844,000 | 0 | 7,844,000
0 | 0 | 0 | | | | | A0A6I8PIN8 | Muscleblind-like protein 1 | CAPZB | 7,830,800
7,662,300 | 0 | 0 | 6,785,600 | 0 | 2,369,000
876,710 | 5,461,800
0 | 1
1 | | O95205 | F-actin-capping protein subunit beta
Muscleblind-like protein 2 | MBLL | 7,485,300 | 0 | 0 | 0,785,000 | 0 | 1,647,200 | 5,838,000 | 1 | | A0A590UK99 | Deleted in malignant brain tumors 1 protein | DMBT1 | 7,481,500 | 1,749,100 | ő | 0 | 3,277,000 | 0 | 2,455,300 | 1 | | P01766 | Ig heavy chain V-III region BRO | IGHV3-13 | 6,767,800 | 0 | 0 | 0 | 0,211,000 | 4,376,000 | 2,391,900 | 2 | | J3KSH9 | Integrin beta-4 | ITGB4 | 6,700,000 | 0 | 0 | 0 | 0 | 0 | 6,700,000 | 1 | | P55268 | Laminin subunit beta-2 | LAMB2 | 6,456,200 | 6,456,200 | 0 | 0 | 0 | 0 | 0 | 2 | | P47929 | Galectin-7 | LGALS7 | 6,362,600 | 0 | 0 | 1,822,500 | 0 | 0 | 4,540,100 | 1 | | E9PFG7 | 2-oxoglutarate dehydrogenase, mitochondrial | OGDH | 6,288,400 | 6,288,400 | 0 | 0 | 0 | 0 | 0 | 1 | | E5RK69 | Annexin;Annexin A6 | ANXA6 | 6,072,900 | 0 | 0 | 0 | 0 | 0 | 6,072,900 | 2 | | E7EQB2 | Lactotransferrin;Lactoferricin-H;Kaliocin-1;Lactoferri | LTF | 6,032,800 | 0 | 3,762,400 | 2,270,400 | 0 | 0 | 0 | 3 | | E9PRN7 | 3 beta-hydroxysteroid dehydrogenase/Delta 5>4-is | HSD3B1 | 5,960,500 | 0 | 5,960,500 | 0 | 0 | 0 | 0 | 1 | | P17661 | Desmin
Collagen alpha-1(VI) chain | DES | 5,939,400 | 0 | 5,939,400
0 | 0 | 0 | 0 | 0 | 5
2 | | A0A087X0S5
P0DP09 | Immunoglobulin kappa variable 1-13 | COL6A1
IGKV1D-13 | 5,903,600
5,730,000 | 5,903,600
0 | 0 | 5,730,000 | 0 | 0 | 0 | 1 | | P62805 | Histone H4 | HIST1H4A | 5,728,200 | 0 | 2,222,200 | 5,730,000 | 0 | 3,506,000 | 0 | 2 | | Q8WVV4 | Protein POF1B | POF1B | 5,534,300 | 0 | 0 | 0 | 0 | 5,534,300 | 0 | 1 | | A0A1W2PP22 | Heterogeneous nuclear ribonucleoprotein U | HNRNPU | 5,391,800 | Ö | ő | 0 | Ö | 0,004,000 | 5,391,800 | 1 | | Q9BW30 | Tubulin polymerization-promoting protein family me | TPPP3 | 5,092,600 | 5,092,600 | Ö | Ö | Ö | 0 | 0 | 1 | | P08572 | Collagen alpha-2(IV) chain; Canstatin | COL4A2 | 5,034,400 | 5,034,400 | 0 | 0 | 0 | 0 | 0 | 1 | | A0A075B6K5 | Ig lambda chain V-III region LOI | IGLV3-9 | 5,025,200 | 0 | 0 | 2,660,600 | 0 | 0 | 2,364,600 | 1 | | H0YJL6 | Ena/VASP-like protein | EVL | 4,998,300 | 0 | 0 | 4,998,300 | 0 | 0 | 0 | 1 | | P59666 | Neutrophil defensin 3;HP 3-56;Neutrophil defensin 2 | DEFA3 | 4,545,800 | 0 | 0 | 0 | 0 | 4,545,800 | 0 | 1 | | Q9NQP5 | Coagulation factor XIII A chain | F13A1 | 4,473,400 | 4,473,400 | 0 | 0 | 0 | 0 | 0 | 2 | | E9PS23 | Cofilin-1 | CFL1 | 4,289,600 | 0 | 2,251,300 | 0 | 2,038,300 | 0 | 0 | 2 | | B4DU11 | Estradiol 17-beta-dehydrogenase 1 | HSD17B1 | 4,274,500 | 0 | 2,367,500 | 1,907,000 | 0 | 0 | 0 | 1 | | C9J9S3 | Serine/threonine-protein phosphatase;Serine/threon | PPP1CB | 4,214,000 | 0 | 0 | 1,916,400 | 0 | 0 | 2,297,500 | 1 | | C9JHS9 | Vigilin | HDLBP | 4,198,300 | 0 | 0 | 0 | 1,536,900
0 | 0 | 2,661,400 | 1 | | P05187
F8WEW2 | Alkaline phosphatase, placental type;Alkaline phosp
Actin-related protein 3 | ALPP
ACTR3 | 4,169,700
4,132,700 | 0 | 0
4,132,700 | 0 | 0 | 0 | 4,169,700
0 | 2
1 | | Q9ULV0 | Unconventional myosin-Vb | MYO5B | 4,132,700 | 2,220,100 | 4,132,700 | 0 | 1,853,000 | 0 | 0 | 2 | | J3QSA3 | Ubiquitin-40S ribosomal protein S27a;Ubiquitin;40S | UBB | 4,045,100 | 1,288,700 | 0 | 0 | 1,655,000 | 0 | 2,756,400 | 1 | | B8ZZ51 | Malate dehydrogenase, cytoplasmic | MDH1 | 4,029,700 | 1,200,700 | 0 | 4,029,700 | 0 | 0 | 2,730,400 | 1 | | E9PQ34 | Serpin H1 | SERPINH1 | 4,018,600 | Ö | 4,018,600 | 0 | Ö | 0 | Ö | 1 | | I3L245 | Nuclear pore complex protein Nup88 | NUP88 | 3,921,000 | 0 | 0 | 0 | 0 | 0 | 3,921,000 | 1 | | Q13263-2 | Transcription intermediary factor 1-beta | TRIM28 | 3,569,200 | 3,569,200 | 0 | 0 | 0 | 0 | 0 | 1 | | Q9HD89 | | RETN | 3,487,400 | 0 | 0 | 2,254,600 | 0 | 1,232,800 | 0 | 1 | | | Resistin | | | | | | | | | | | Q9GZM7-3 | Resistin Tubulointerstitial nephritis antigen-like | TINAGL1 | 3,481,600 | 0 | 3,481,600 | 0 | 0 | 0 | 0 | 1 | | P27824-3 | Outroude | CANX | 0.444.400 | • | | | | | 0.444.400 | | |------------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---| | | Calnexin | | 3,444,400 | 0 | 0 | 0 | 0 | 0 | 3,444,400 | 1 | | A0A3B3ISA6 | Complement C4-A;Complement C4 beta chain;Com | C4B | 3,381,500 | 0 | 0 | 0 | 0 | 0 | 3,381,500 | 1 | | A6NCI4-3 | von Willebrand factor A domain-containing protein 3 | VWA3A | 3,185,200 | 0 | 0 | 0 | 3,185,200 | 0 | 0 | 1 | | Q8WV48-5 | Coiled-coil domain-containing protein 107 | CCDC107 | 3,057,000 | 0 | 0 | 3,057,000 | 0 | 0 | 0 | 1 | | Q00013-2 | 55 kDa erythrocyte membrane protein | MPP1 | 2,911,300 | 0 | 2,911,300 | 0 | 0 | 0 | 0 | 1 | | Q14677 | Clathrin interactor 1 | CLINT1 | 2,901,400 | 0 | 0 | 0 | 0 | 2,901,400 | 0 | 1 | | A6NHR2 | 39S ribosomal protein L37, mitochondrial | MRPL37 | 2,898,500 | 0 | 0 | 0 | 0 | 2,898,500 | 0 | 1 | | P82663-3 | 8S ribosomal protein S25, mitochondrial | MRPS25 | 2,580,800 | 0 | 0 | 0 | 0 | 0 | 2,580,800
| 1 | | H7C4C8 | T-complex protein 1 subunit theta | CCT8 | 2,560,000 | 0 | 2,560,000 | 0 | 0 | 0 | 0 | 1 | | P16401 | Histone H1.5 | HIST1H1B | 2,527,600 | 0 | 0 | 2,527,600 | 0 | 0 | 0 | 1 | | A0A3B3ITI4 | Stress-70 protein, mitochondrial | HSPA9 | 2,413,000 | 2,413,000 | 0 | 0 | 0 | 0 | 0 | 1 | | Q8TE68 | Epidermal growth factor receptor kinase substrate 8 | EPS8L1 | 2,165,700 | 2,165,700 | 0 | 0 | 0 | 0 | 0 | 1 | | Q8TDL5 | BPI fold-containing family B member 1 | BPIFB1 | 2,146,600 | 0 | 0 | 0 | 0 | 1,170,700 | 975,880 | 1 | | P31146 | Coronin-1A | CORO1A | 2,123,800 | 0 | 0 | 0 | 0 | 2,123,800 | 0 | 1 | | E9PSE0 | MAP kinase-interacting S/T-protein kinase 1 | MKNK1 | 1,976,500 | 0 | 0 | 0 | 1,976,500 | 0 | 0 | 1 | | A0A1X7SBZ2 | Probable ATP-dependent RNA helicase DDX17 | DDX17 | 1.903.300 | 0 | 0 | 0 | 1.903.300 | 0 | 0 | 1 | | M0R1B5 | Acetolactate synthase-like protein | ILVBL | 1.702.000 | 0 | 1,702,000 | 0 | 0 | 0 | 0 | 1 | | M0QX10 | Nuclear pore glycoprotein p62 | NUP62 | 1.380.100 | 0 | 0 | 0 | 0 | 0 | 1.380.100 | 1 | | P09525-2 | Annexin A4 | ANXA4 | 1,341,500 | 0 | 0 | 1,341,500 | 0 | 0 | 0 | 1 | | O15400-2 | Svntaxin-7 | STX7 | 1,329,200 | 1,329,200 | 0 | 0 | 0 | 0 | 0 | 1 | | H3BS21 | Haptoglobin;Haptoglobin alpha chain;Haptoglobin be | HP | 1.311.500 | 0 | 1.311.500 | 0 | 0 | 0 | 0 | 2 | | U3KQK0 | Histone H2B;Histone H2B type 1-L;Histone H2B typ | HIST1H2BN | 1,266,700 | 0 | 1,266,700 | 0 | 0 | 0 | 0 | 1 | | K7EJ44 | Profilin-1 | PFN1 | 1,249,400 | Ō | 0 | ō | Ō | 1,249,400 | Ō | 1 | | K7EK06 | PhenylalaninetRNA ligase alpha subunit | FARSA | 1,246,700 | 0 | 1,246,700 | 0 | 0 | 0 | 0 | 1 | | P10412 | Histone H1.4 | HIST1H1E | 1,033,200 | 0 | 0 | 1,033,200 | 0 | 0 | 0 | 3 | | A0A087WUX6 | Proteasomal ubiquitin receptor ADRM1 | ADRM1 | 993,900 | 0 | 993,900 | 0 | 0 | 0 | 0 | 1 | | B1AUU8 | Epidermal growth factor receptor substrate 15 | EPS15 | 797.470 | 797,470 | 030,500 | 0 | 0 | 0 | 0 | 1 | | O76041 | Nebulette | NEBL | 651,720 | 0 | 0 | 0 | 0 | 0 | 651.720 | 1 | | 070041 | Hobalotto | HEDE | 331,720 | U | U | U | U | U | 001,720 | | | Patient | | | | MDMX
% of Q1 | | | | MEAN | |---------|-------|-------|-------|-----------------|-------|-------|-------|-------| | H1 | | 128.4 | 116.9 | 116.5 | 78.2 | 116.9 | 141.1 | 116.3 | | H2 | | 120.4 | 19.1 | 60.8 | 32.5 | 18.9 | 16.0 | 29.5 | | H3 | | | 8.3 | 9.0 | 26.3 | 17.4 | 4.2 | 13.0 | | I-1 | | 128.8 | 209.0 | 114.6 | 222.2 | 102.8 | 146.1 | 153.9 | | 1-2 | | | | 57.1 | 75.4 | 106.7 | 51.6 | 72.7 | | 1-3 | | 123.6 | 72.5 | 77.1 | 84.1 | 37.8 | 71.7 | 77.8 | | 1-4 | 136.6 | 88.3 | 135.7 | 81.5 | 58.6 | 133.1 | 103.0 | 94.1 | | J-1 | | | | | 118.1 | 130.2 | 119.1 | 122.5 | | J-2 | | | | | 92.9 | 56.5 | 58.9 | 69.5 | | J-3 | | | | | 84.0 | 60.8 | 66.2 | 70.3 | | L1 | | | 46.6 | 61.1 | 72.0 | 35.8 | 41.9 | 51.5 | | L2 | | | | | 46.3 | 55.2 | 31.0 | 44.2 | | L3 | | | | | 72.1 | 69.1 | 47.5 | 62.9 | | L4 | | | | 11.9 | 23.9 | 16.2 | 8.9 | 16.3 | | M1 | | | | 57.2 | 57.5 | 29.7 | 62.4 | 51.7 | | M3 | | | | | | 76.8 | 37.2 | 57.0 | | M4 | | | | 60.1 | 40.8 | 42.1 | 68.7 | 52.9 | | N1 | | 60.1 | 40.8 | 42.1 | 68.7 | 101.6 | 101.6 | 115.5 | | N2 | | 10.2 | 31.0 | 45.5 | 58.0 | 58.2 | 6.6 | 34.9 | | N3 | | | 75.3 | 167.8 | 85.8 | 80.4 | 68.0 | 95.5 | | N4 | | | | 55.9 | 52.5 | 60.4 | 48.7 | 54.4 | | 01 | | | 57.5 | 34.5 | 46.1 | 101.6 | 49.8 | 57.9 | | Ω2 | | | | 78.4 | 82.8 | 34.4 | 85.6 | 70.3 | | 03 | | 77.3 | 58.3 | 22.3 | 42.5 | 11.0 | 8.6 | 36.7 | | 04 | | | 72.9 | 24.9 | 34.5 | 25.4 | 111.4 | 53.8 | | O5 | | | | | 244.4 | 229.0 | 145.1 | 206.1 | | 07 | | | | | 167.2 | 179.6 | 163.3 | 170.0 | | Q1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Q2 | | 199.7 | 169.8 | 211.0 | 205.4 | 156.5 | 144.9 | 181.2 | | Q3 | | 90.9 | 90.1 | 76.0 | 75.8 | 74.2 | 88.5 | 82.6 | | Q4 | | 50.5 | 86.2 | 28.6 | 45.5 | 62.7 | 31.5 | 50.8 | | R3 | | 28.2 | 99.6 | 57.5 | 20.0 | 60.2 | 77.0 | 54.5 | | R4 | | | 126.7 | 116.9 | 93.8 | 58.6 | 109.0 | 101.3 | | R5 | | | | | 33.6 | 79.8 | 48.8 | 54.1 | | S1 | | | | | 207.4 | 128.9 | 151.4 | 162.6 | | S2 | | | | | 202.5 | 107.1 | 110.4 | 140.0 | | T1 | | | | 124.8 | 161.9 | 155.5 | 124.5 | 141.7 | | T2 | | | | | 115.0 | 91.3 | 82.9 | 96.4 | | U1 | | | | | 119.7 | 87.7 | 103.7 | 103.7 | | U2 | | | | | 163.0 | 175.0 | 122.9 | 153.6 | | V1 | | | | | 75.4 | 71.1 | 21.0 | 55.9 | | V2 | | | | | 92.8 | 72.9 | 99.0 | 88.2 | | W1 | | | | | 99.2 | 72.4 | 84.0 | 85.2 | | W2 | | | | | 261.5 | 197.7 | 173.8 | 211.0 | | Patient | | | | % of Q1 | | | | MEAN | |---------|-------|-------|-------|---------|-------|-------|-------|-------| | H1 | | | | | 21.3 | 31.8 | 34.7 | 29.3 | | H2 | | | | | 32.8 | 31.2 | 55.6 | 39.9 | | H3 | | | | 126.3 | 114.0 | 164.0 | 120.6 | 131.2 | | 1-1 | | | | | | 59.9 | 77.3 | 68.6 | | 1-2 | | | | | | 64.9 | 78.8 | 71.8 | | 1-3 | | | | | 31.5 | 28.4 | 10.5 | 23.4 | | 1-4 | | | 15.7 | 14.2 | 2.0 | 7.1 | 2.9 | 8.4 | | J-1 | 85.4 | 122.8 | 105.8 | 72.0 | 126.2 | 127.1 | 103.0 | 106.0 | | J-2 | | | | 30.9 | 21.9 | 21.6 | 41.0 | 28.8 | | J-3 | | | 93.6 | 118.5 | 113.6 | 166.7 | 101.5 | 118.8 | | L1 | | | | 95.2 | 122.6 | 227.4 | 127.2 | 143.1 | | L2 | | | | | 60.2 | 58.9 | 91.8 | 70.3 | | L3 | | | | 100.2 | 102.2 | 142.1 | 94.5 | 109.7 | | L4 | | | | | 77.4 | 92.1 | 115.4 | 95.0 | | M1 | | | | 167.9 | 156.1 | 131.4 | 159.8 | 153.8 | | M3 | | | | | 4.6 | 4.3 | 4.2 | 4.4 | | M4 | | | | | 106.1 | 78.3 | 104.0 | 96.1 | | N1 | | | | | 42.5 | 34.5 | 80.1 | 52.4 | | N2 | | | | 50.7 | 49.6 | 87.1 | 62.5 | 62.5 | | N3 | | | | | 72.7 | 69.7 | 77.3 | 73.2 | | N4 | | | | 45.2 | 42.4 | 43.5 | 51.3 | 45.6 | | 01 | | | | 41.5 | 43.8 | 35.3 | 11.4 | 33.0 | | 02 | | | | 96.6 | 42.9 | 109.5 | 117.3 | 91.6 | | 03 | | | | 53.7 | 66.5 | 45.6 | 151.3 | 79.3 | | 04 | | | | 157.1 | 63.8 | 54.9 | 188.3 | 116.0 | | 05 | | | | | | 153.7 | 134.3 | 144.0 | | 07 | | | | | | 142.0 | 216.5 | 179.2 | | Q1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | Q2 | | | 166.3 | 186.0 | 176.6 | 138.0 | 140.5 | 161.5 | | Q3 | | | | | 115.3 | 138.5 | 138.3 | 130.7 | | Q4 | | | | | | 198.8 | 188.6 | 193.7 | | R3 | | | | | 95.8 | 208.0 | 244.3 | 182.7 | | R4 | | | | | 83.7 | 64.9 | 42.0 | 63.5 | | R5 | | | | | | 205.3 | 274.9 | 240.1 | | S1 | | | | 150.9 | 115.3 | 97.3 | 186.9 | 137.6 | | S2 | | | | 192.9 | 181.9 | 233.0 | 216.2 | 206.0 | | T1 | | | | | | 173.3 | 169.2 | 171.3 | | T2 | | | | 226.5 | 181.1 | 130.8 | 219.4 | 189.5 | | U1 | | | | | 104.2 | 165.3 | 217.6 | 162.3 | | U2 | | | | | 119.8 | 122.6 | 218.0 | 153.5 | | V1 | | | | | 147.0 | 207.3 | 288.0 | 214.1 | | V2 | | | | | 225.3 | 215.0 | 251.0 | 230.4 | | W1 | | | | 129.3 | 200.6 | 263.6 | 152.0 | 186.4 | | W2 | | l | | l | 125.9 | 125.7 | 184.5 | 145.4 | | | | | | T-R | | | | |---------|-------|-------|-------|-------|-------|-------|-------| | Patient | | | %0 | f V1 | | | MEAN | | H | | | | 31.9 | 32.6 | 34.9 | 33.1 | | H2 | | | | 44.6 | 47.5 | 54.3 | 48.8 | | H3 | | | 52.7 | 53.5 | 66.5 | 64.1 | 59.2 | | 1-1 | | | | 45.9 | 44.5 | 43.4 | 44.6 | | 1-2 | 56.0 | 64.8 | 43.0 | 40.5 | 51.5 | 35.1 | 48.5 | | I-3 | | | 43.3 | 42.7 | 29.3 | 32.2 | 36.9 | | 4 | | | | 24.3 | 24.4 | 18.2 | 22.3 | | J-1 | | | 78.0 | 66.2 | 80.9 | 83.8 | 77.2 | | J-2 | | | | 64.8 | 55.1 | 44.8 | 54.9 | | 3.3 | | 74.2 | 64.0 | 62.4 | 73.1 | 87.1 | 72.2 | | L1 | | | | | 85.6 | 77.4 | 81.5 | | L2 | | | 84.2 | 80.5 | 86.5 | 93.2 | 86.1 | | L3 | | | 77.8 | 72.1 | 61.6 | 81.6 | 73.3 | | L4 | | | 79.0 | 70.5 | 82.2 | 82.3 | 78.5 | | M1 | | | | 43.2 | 37.9 | 41.8 | 41.0 | | M3 | | | 22.0 | 22.3 | 21.1 | 18.9 | 21.1 | | M4 | | | | 57.8 | 42.3 | 45.7 | 48.6 | | N1 | | | 73.6 | 61.4 | 84.1 | 88.0 | 76.8 | | N2 | | | | 75.7 | 80.6 | 78.6 | 78.3 | | N3 | | | | 102.2 | 95.9 | 108.0 | 102.0 | | N4 | | | 56.3 | 55.7 | 76.5 | 55.9 | 61.1 | | 01 | | | 40.0 | 61.6 | 46.1 | 43.1 | 47.7 | | 02 | | | | 81.7 | 85.7 | 90.1 | 85.8 | | 03 | | | 67.0 | 77.0 | 90.8 | 93.7 | 82.1 | | 04 | | 80.5 | 81.2 | 84.9 | 93.8 | 97.9 | 87.7 | | 05 | | | 100.2 | 85.9 | 89.7 | 95.0 | 92.7 | | 07 | | | | 67.1 | 71.1 | 79.1 | 72.4 | | Q1 | | | 83.6 | 76.2 | 85.0 | 99.4 | 86.1 | | Q2 | | | 93.4 | 102.4 | 103.9 | 119.0 | 104.7 | | Q3 | 69.1 | 65.4 | 91.4 | 67.6 | 71.4 | 74.1 | 73.2 | | Q4 | | | | 77.3 | 70.4 | 82.6 | 76.8 | | R3 | | | | 117.8 | 101.2 | 107.9 | 109.0 | | R4 | | | 87.2 | 75.4 | 84.6 | 97.8 | 86.2 | | R5 | | | 80.3 | 79.4 | 83.4 | 122.1 | 91.3 | | S1 | | | 108.7 | 99.1 | 116.1 | 118.3 | 110.6 | | S2 | | 102.9 | 89.2 | 116.9 | 119.2 | 116.5 | 108.9 | | T1 | | 120.1 | 104.1 | 113.7 | 129.4 | 119.7 | 117.4 | | T2 | | | 118.7 | 112.9 | 127.8 | 122.0 | 120.4 | | U1 | | 84.5 | 66.8 | 75.1 | 126.9 | 103.6 | 91.4 | | U2 | | | 107.0 | 101.2 | 117.9 | 112.0 | 109.5 | | V1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | V2 | | 111.0 | 100.6 | 104.7 | 117.9 | 114.4 | 109.7 | | W1 | | | 102.0 | 113.8 | 121.5 | 118.2 | 113.9 | | W2 | | 92.1 | 107.5 | 101.6 | 115.0 | 96.9 | 102.6 | | .,,, | | V2.1 | 107.0 | 101.0 | | J-3.5 | .02.0 | | Patient
H1 | | | %0 | | | | | |---------------|-------|-------|-------|-------|-------|-------|-------| | | | | ,,,, | • • • | | | MEAN | | | | | | | 27.0 | 46.7 | 36.9 | | H2 | | | | 51.5 | 62.7 | 70.4 | 61.5 | | H3 | | | | | 73.0 | 73.8 | 73.4 | | 1-1 | | | | 77.8 | 61.7 | 72.6 | 70.7 | | 1-2 | | | | | 51.4 | 56.5 | 53.9 | | I-3 | | | | | 58.5 | 69.7 | 64.1 | | 1-4 | | | | | 56.4 | 67.2 | 61.8 | | J-1 | | | 41.2 | 43.3 | 54.9 | 67.6 | 51.7 | | J-2 | | | | | 55.3 | 42.6 | 48.9 | | j. | | | | 56.8 | 61.7 | 75.2 | 64.5 | | L1 | | | 43.6 | 57.5 | 63.6 | 67.0 | 57.9 | | L2 | | | | 80.4 | 76.0 | 91.4 | 82.6 | | L3 | | | | 87.9 | 87.8 | 98.6 | 91.5 | | L4 | | | | 87.2 | 68.3 | 75.9 | 77.1 | | M1 | | | | 76.4 | 90.0 | 87.7 | 84.7 | | M3 | | | | 118.5 | 80.7 | 108.1 | 102.4 | | M4 | | | 43.9 | 60.7 | 66.4 | 63.1 | 58.5 | | N1 | | | | 67.4 | 79.6 | 76.5 | 74.5 | | N2 | | | 65.5 | 58.4 | 72.5 | 81.7 | 69.5 | | N3 | | | | 71.8 | 70.9 | 85.2 | 75.9 | | N4 | | 30.3 | 16.9 | 46.6 | 46.1 | 31.8 |
34.3 | | 01 | | | | 83.8 | 60.3 | 76.4 | 73.5 | | 02 | | | | 75.0 | 72.3 | 77.4 | 74.9 | | 03 | | | | 74.5 | 72.2 | 79.3 | 75.3 | | 04 | | | | 69.9 | 51.4 | 70.2 | 63.8 | | O5 | | 49.8 | 93.2 | 68.2 | 85.9 | 73.6 | 74.2 | | 07 | | | | 83.8 | 73.3 | 88.3 | 81.8 | | Q1 | | | 98.8 | 62.7 | 98.3 | 79.8 | 84.9 | | Q2 | | 91.1 | 77.3 | 102.2 | 99.7 | 100.8 | 94.2 | | Q3 | | | | 71.5 | 62.4 | 66.2 | 66.7 | | Q4 | 68.5 | 60.6 | 96.9 | 78.0 | 73.7 | 82.9 | 76.7 | | R3 | | 33.1 | 64.9 | 74.7 | 51.4 | 74.6 | 59.7 | | R4 | | | 98.1 | 81.9 | 92.3 | 103.7 | 94.0 | | R5 | | | 66.6 | 42.8 | 72.9 | 68.6 | 62.7 | | S1 | | | | 95.2 | 105.6 | 93.2 | 98.0 | | S2 | | | | 78.4 | 86.0 | 99.7 | 88.0 | | T1 | | 129.5 | 91.3 | 102.2 | 77.7 | 100.1 | 100.2 | | T2 | | 69.6 | 73.3 | 93.1 | 84.7 | 95.1 | 83.2 | | U1 | | | 63.1 | 51.1 | 77.3 | 65.0 | 64.1 | | U2 | | | | 78.1 | 79.5 | 87.6 | 81.7 | | V1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | V2 | | | | 93.0 | 98.1 | 107.1 | 99.4 | | W1 | | | 105.0 | 94.9 | 91.2 | 92.2 | 95.8 | | W2 | | 111.0 | 62.2 | 103.1 | 99.2 | 75.4 | 90.2 | Regression coefficients from univariable analysis of MDMX protein band intensity (relative to internal reference individual Q1) | (relative to internal reference marvidual | <u>Q 1 j</u> | | |---|------------------------------------|--------------------| | Covariate | Regression
Coefficient (95% CI) | P-value | | Age | 1.94 (-0.79, 4.67) | 0.17 | | Gravidity | 9.66 (3.59, 15.70) | 3x10 ⁻³ | | Gestational Age | -1.79 (-12.40, 8.86) | 0.74 | | Body Mass Index in Labor and Delivery | | | | Suite | 0.97 (-0.18, 2.13) | 0.11 | | Race | | | | White | (REF) | | | Black | 22.20 (-14.85, 59.26) | 0.24 | | Asian | -32.49 (-133.62, 68.64) | 0.53 | | Unknown | -3.74 (-77.21, 69.73) | 0.92 | | Hispanic | -0.66 (-37.72, 36.39) | 0.97 | | Preeclampsia | | | | No | (REF) | | | Yes | -44.13 (-71.63, -16.64) | 3x10 ⁻³ | | Diabetes | | | | No | (REF) | | | Type II | 47.63 (14.27, 90.00) | 8x10 ⁻³ | | GDM | 47.91 (5.51, 90.32) | 0.03 | | Mode of Delivery | | | | SVD | (REF) | | | CD prior to onset of Labor | 56.16 (24.13, 88.18) | 1x10 ⁻³ | | CD after onset of Labor | 34.80 (-4.46, 74.07) | 0.09 | | VBAC | 5.55 (-85.70, 96.79) | 0.91 | | Neonate Sex | | | | Female | (REF) | | | Male | 5.04 (-24.35, 34.43) | 0.74 | | Neonatal Weight (g) | 0.03 (0.01, 0.06) | 3x10 ⁻³ | | | | | Table 7 Regression coefficients from univariable analysis of PICALM protein band intensity (relative to internal reference individual Q1) | ntensity (relative to internal reference individual Q1) | | | | | |---|------------------------------------|--------------------|--|--| | Covariate | Regression
Coefficient (95% CI) | P-value | | | | Age | 3.68 (0.28, 7.08) | 0.04 | | | | Gravidity | 7.64 (-0.68, 15.95) | 0.08 | | | | Gestational Age | 6.88 (-6.62, 20.37) | 0.32 | | | | Body Mass Index in Labor and Delivery | | | | | | Suite | 2.06 (0.66, 3.45) | 6x10 ⁻³ | | | | Race | | | | | | White | (REF) | | | | | Black | 17.33 (-24.11, 60.77) | 0.44 | | | | Asian | 17.49 (-101.07, 136.05) | 0.77 | | | | Unknown | -75.81 (-161.94, 10.32) | 0.09 | | | | Hispanic | -46.39 (-89.82, -2.95) | 0.04 | | | | Preeclampsia | | | | | | No | (REF) | | | | | Yes | -35.60 (-73.25, 2.04) | 0.07 | | | | Diabetes | | | | | | No | (REF) | | | | | Type II | 23.28 (-23.57, 70.13) | 0.34 | | | | GDM | 38.05 (-21.50, 97.60) | 0.22 | | | | Mode of Delivery | | | | | | SVD | (REF) | | | | | CD prior to onset of Labor | 59.96 (19.24, 100.68) | 6x10 ⁻³ | | | | CD after onset of Labor | 5.69 (-44.23, 55.62) | 0.82 | | | | VBAC | -50.27 (-166.29, 65.75) | 0.40 | | | | Neonate Sex | | | | | | Female | (REF) | | | | | Male | 19.10 (-18.16, 56.37) | 0.32 | | | | Neonatal Weight (g) | 0.03 (7x10 ⁻⁷ , 0.06) | 0.06 | | | Table 8 Regression coefficients from univariable analysis of OT-R protein band intensity (relative to internal reference individual T1) | (relative to internal reference individual 1 | 1) | | |--|-------------------------------------|---------| | Covariate | Regression
Coefficient (95% CI) | P-value | | Age | 1.56 (0.13, 2.99) | 0.04 | | Gravidity | 1.02 (-2.60, 4.64) | 0.58 | | Gestational Age | 1.73 (-4.00, 7.45) | 0.56 | | Body Mass Index in Labor and Delivery | | | | Suite | 0.55 (-0.07, 1.17) | 0.09 | | Race | | | | White | REF | REF | | Black | -10.77 (-30.15, 8.61) | 0.28 | | Asian | -6.04 (-58.92, 46.85) | 0.82 | | Unknown | -27.94 (-66.36, 10.49) | 0.16 | | Hispanic | -19.53 (-38.90, -0.15) | 0.06 | | Preeclampsia | | | | No | REF | REF | | Yes | -15.28 (-31.12, 0.54) | 0.07 | | Diabetes | | | | No | REF | REF | | Type 2 | 24.16 (5.47, 42.85) | 0.02 | | GDM | 15.32 (-8.44, 39.07) | 0.21 | | Mode of Delivery | | | | SVD | REF | REF | | CD prior to onset of Labor | 21.82 (4.09, 39.55) | 0.02 | | CD after onset of Labor | 0.55 (-21.19, 22.29) | 0.96 | | VBAC | -19.308 (-69.60, 31.44) | 0.46 | | Neonatal Sex | | | | Female | REF | REF | | Male | 8.56 (-7.11, 24.23) | 0.29 | | Neonatal Weight (g) | 0.01 (8.36x10 ⁻⁴ , 0.03) | 0.04 | Table 9 Regression coefficients from univariable analysis of V1aR protein band intensity (relative to internal reference individual T1) | (relative to internal reference individual i | 1/ | | |--|--|--------------------| | Covariate | Regression
Coefficient (95% CI) | P-value | | Age | 0.63 (-0.30, 1.56) | 0.19 | | Gravidity | 1.84 (-0.38, 4.07) | 0.11 | | Gestational Age | -0.72 (-4.34, 2.90) | 0.70 | | Body Mass Index in Labor and Delivery | | | | Suite | 0.20 (-0.20, 0.60) | 0.34 | | Race | | | | White | REF | REF | | Black | 7.77 (-4.51, 20.04) | 0.22 | | Asian | -15.55 (-49.05, 17.94) | 0.37 | | Unknown | -13.74 (-38.07, 10.60) | 0.28 | | Hispanic | -0.24 (-12.52, 12.03) | 0.97 | | Preeclampsia | | | | No | REF | REF | | Yes | -5.17 (-15.46, 5.12) | 0.33 | | Diabetes | | | | No | REF | REF | | Type 2 | 11.84 (-0.34, 24.03) | 0.06 | | GDM | 7.67 (-7.82, 23.16) | 0.34 | | Mode of Delivery | | | | SVD | REF | REF | | CD prior to onset of Labor | 20.36 (10.58, 30.13) | 6x10 ⁻³ | | CD after onset of Labor | -1.05 (-13.04, 10.93) | 0.86 | | VBAC | -9.60 (-18.26, 37.44) | 0.50 | | Neonatal Sex | | | | Female | REF | REF | | Male | -4.53 (-14.46, 5.40) | 0.38 | | Neonatal Weight (g) | 5x10 ⁻³ (-3.00x 10 ⁻³ , 0.013) | 0.23 | Table 10 Regression coefficients from multivariable analysis of MDMX protein band intensity (relative to internal reference individual Q1) | interiors, (resistance to interiors in artificial 4.1) | | | | |--|------------------------------------|--------------------|--| | Covariate | Regression
Coefficient (95% CI) | P-value | | | Gravidity | 7.19 (1.24, 13.14) | 0.02 | | | Preeclampsia | | | | | No | (REF) | | | | Yes | -40.61 (-66.18, -15.04) | 3x10 ⁻³ | | | Diabetes | | | | | No | (REF) | | | | Type II | 20.10 (-16.80, 57.00) | 0.29 | | | GDM | 31.20 (-8.81, 71.22) | 0.14 | | | Mode of Delivery | | | | | SVD | (REF) | | | | CD prior to onset of Labor | 9.05 (-26.72, 44.83) | 0.62 | | | CD after onset of Labor | 27.22 (-8.08, 62.52) | 0.14 | | | VBAC | -15.92 (-93.98, 62.13) | 0.69 | | | Neonatal Weight (g) | 0.01 (-0.01, 0.04) | 0.37 | | Regression coefficients from multivariable analysis of PICALM protein band intensity (relative to internal reference individual Q1) | | · · | | |---------------------------------------|------------------------------------|---------| | Covariate | Regression
Coefficient (95% CI) | P-value | | Age | 1.73 (-1.64, 5.09) | 0.32 | | Body Mass Index in Labor and Delivery | | | | Suite | 1.35 (-0.07, 2.77) | 0.07 | | Mode of Delivery | | | | SVD | (REF) | | | CD prior to onset of Labor | 40.00 (-3.85, 83.85) | 0.08 | | CD after onset of Labor | 0.82 (-48.29, 49.93) | 0.97 | | VBAC | -37.87 (-151.23, 75.48) | 0.52 | Regression coefficients from multivariable analysis of OT-R protein band intensity (relative to internal reference individual T1) | | · · · · · , | | |----------------------------|--------------------------------------|---------| | Covariate | Regression
Coefficient (95% CI) | P-value | | Age | 0.71 (-0.83, 2.35) | 0.39 | | Diabetes | | | | No | REF | REF | | Type 2 | 14.0 (-11.14, 37.70) | 0.27 | | GDM | 5.64 (-21.43, 32.00) | 0.68 | | | · | | | Mode of Delivery | | | | SVD | REF | REF | | CD prior to onset of Labor | 13.25 (-7.83, 34.33) | 0.23 | | CD after onset of Labor | -1.04 (-23.92, 21.84) | 0.93 | | VBAC | -0.17 (-68.44, 34.32) | 0.52 | | Neonatal Weight (g) | 4.05x 10 ⁻⁴ (-0.02, 0.02) | 0.96 | Regression coefficients from bootstrapped replicates of univariable analysis of MDMX protein band intensity (relative to internal reference individual Q1) | MUMIX protein band intens | MDMX protein band intensity (relative to internal reference individual Q1) | | | | | |----------------------------|--|-----------------------------------|--|--|--| | | (95% quantiles of point | Percentage of replicates | | | | | Covariate | estimate from bootstrapped | <0.05 (95% quantiles of P- | | | | | | replicates) | value) | | | | | Age | (0.43, 2.90) | 1.7% (0.05, 0.77) | | | | | Gravidity | (6.82, 12.15) | 95.5% (8x10 ⁻⁴ , 0.06) | | | | | Gestational Age | (-6.88, 1.78) | 0% (0.25, 0.97) | | | | | Body Mass Index in Labor | | | | | | | and Delivery Suite | (0.60, 1.50) | 12.6% (0.03, 0.34) | | | | | Race | | | | | | | White | (REF) | | | | | | Black | (5.10, 39.4) | 0.9% (0.07, 0.80) | | | | | Asian | (-53.55, -6.43) | 0% (0.33, 0.91) | | | | | Unknown | (-30.86, 17.09) | 0% (0.46, 0.99) | | | | | Hispanic | (-19.69, 13.18) | 0% (0.32, 0.99) | | | | | Preeclampsia | | | | | | | No | (REF) | | | | | | Yes | (-54.91, -28.15) | 91.2% (9x10 ⁻⁴ , 0.08) | | | | | Diabetes | |
| | | | | No | (REF) | | | | | | Type II | (24.47, 60.41) | 60% (2x10 ⁻³ , 0.23) | | | | | GDM | (24.83, 67.47) | 44.8% (7x10 ⁻³ ,0.30) | | | | | Mode of Delivery | | | | | | | SVD | (REF) | | | | | | CD prior to onset of Labor | (38.96, 67.36) | 98.6% (5x10 ⁻⁴ , 0.04) | | | | | CD after onset of Labor | (17.16, 55.75) | 15.5% (0.18, 0.46) | | | | | VBAC | (-25.22, 55.19) | 0% (0.28, 0.99) | | | | | Neonate Sex | (=\) | | | | | | Female | (REF) | 00/ (0.00.00) | | | | | Male | (-10.62, 15.81) | 0% (0.32, 0.99) | | | | | Neonatal Weight (g) | (0.02, 0.05) | 85.8% (3x10 ⁻⁴ , 0.14) | | | | Regression coefficients from bootstrapped replicates of univariable analysis of PICALM protein band intensity (relative to internal reference individual Q1) | i loatin protein band intens | ity (relative to internal rele | rence marvidual &1) | |------------------------------|--------------------------------|-----------------------------------| | | (95% quantiles of point | Percentage of replicates | | Covariate | estimate from | <0.05 (95% quantiles of P- | | | bootstrapped replicates) | value) | | Age | (2.19, 5.17) | 41% (7.1x10 ⁻³ , 0.27) | | Gravidity | (3.42, 11.80) | 22% (0.01, 0.46) | | Gestational Age | (1.82, 11.72) | 0.1% (0.11, 0.82) | | Body Mass Index in Labor | | | | and Delivery Suite | (1.41, 2.66) | 90% (8x10 ⁻⁴ , 0.09) | | Race | | | | White | (REF) | | | Black | (-7.10, 40.07) | 0% (0.12, 0.97) | | Asian | (-40.69,111.00) | 0% (0.9, 0.99) | | Unknown | (-96.07, -53.30) | 2% (0.05, 0.28) | | Hispanic | (-64.85, -29.39) | 40% (0.01, 0.24) | | Preeclampsia | | | | No | (REF) | | | Yes | (-52.30, -18.88) | 20.3% (0.01, 0.37) | | Diabetes | | | | No | (REF) | | | Type II | (2.82, 45.52) | 0.6% (0.08, 0.91) | | GDM | (23.35, 56.54) | 0.6% (0.08, 0.51) | | Mode of Delivery | | | | SVD | (REF) | | | CD prior to onset of Labor | (41.39, 79.89) | 88.5% (9x10 ⁻⁴ , 0.08) | | CD after onset of Labor | (-17.08, 31.02) | 0% (0.26, 0.99) | | VBAC | (-82.60, -27.18) | 0% (0.22, 0.67) | | Neonate Sex | | | | Female | (REF) | | | Male | (3.42, 35.19) | 0.3% (0.10, 0.84) | | Neonatal Weight (g) | (0.01, 0.05) | 35.1% (3x10-3, 0.40) | Regression coefficients from bootstrapped replicates of univariable analysis of OT-R protein band intensity (relative to internal reference individual T1) | OT-R protein band intensity (r | OT-R protein band intensity (relative to internal reference individual 11) | | | | |--------------------------------|--|----------------------------|--|--| | | (95% quantiles of point | Percentage of replicates | | | | Covariate | estimate from | <0.05 (95% quantiles of P- | | | | | bootstrapped replicates) | value) | | | | Age | (1.17, 2.01) | 54.7% (0.01, 0.14) | | | | Gravidity | (0.15, 2.08) | 0% (0.29, 0.93) | | | | Gestational Age | (-0.00, 3.40) | 0% (0.26, 0.96) | | | | Body Mass Index in Labor | | | | | | and Delivery Suite | (0.34, 0.77) | 15% (0.02, 0.30) | | | | Race | | | | | | White | REF | REF | | | | Black | (-17.36, -3.71) | 0% (0.09, 0.74) | | | | Asian | (-13.48, 1.09) | 0% (0.62, 0.99) | | | | Unknown | (-33.74, -21.97) | 0% (0.10, 0.30) | | | | Hispanic | (-24.88, -14.18) | 32% (0.02, 0.18) | | | | Preeclampsia | | | | | | No | REF | REF | | | | Yes | (-20.16, -10.62) | 24% (0.02, 0.22) | | | | Diabetes | | | | | | No | REF | REF | | | | Type 2 | (17.21, 31.63) | 84% (0.00, 0.10) | | | | GDM | (8.96, 22.63) | 1% (0.07, 0.48) | | | | | | | | | | Mode of Delivery | | | | | | SVD | REF | REF | | | | CD prior to onset of Labor | (16.54, 27.71) | 83% (0.01, 0.09) | | | | CD after onset of Labor | (-5.28, 6.19) | 0% (0.57, 0.99) | | | | VBAC | (-29.34, -2.46) | 0% (0.27, 0.93) | | | | Neonatal Sex | | | | | | Female | REF | REF | | | | Male | (4.20, 13.13) | 0% (0.11, 0.62) | | | | Neonatal Weight (g) | (0.01, 0.02) | 49% (0.01, 0.17) | | | Regression coefficients from bootstrapped replicates of univariable analysis of V1aR protein band intensity (relative to internal reference individual T1) | viak protein band intensity (relative to internal reference individual 11) | | | | |--|--|---|--| | | (95% quantiles of point | Percentage of replicates | | | Covariate | estimate from | <0.05 (95% quantiles of P- | | | | bootstrapped replicates) | value) | | | Age | (0.17, 1.12) | 6% (0.03, 0.74) | | | Gravidity | (0.48, 3.04) | 14% (0.02, 0.71) | | | Gestational Age | (-2.20, 0.98) | 0% (0.30, 0.98) | | | Body Mass Index in Labor | | | | | and Delivery Suite | (-0.03, 0.43) | 2% (0.07, 0.93) | | | Race | | | | | White | REF | REF | | | Black | (1.07, 14.58) | 3% (0.04, 0.88) | | | Asian | (-32.74, -3.26) | 0% (0.09, 0.87) | | | Unknown | (-24.28, -1.85) | 0% (0.09, 0.89) | | | Hispanic | (-7.10, 7.06) | 0% (0.26, 0.99) | | | Preeclampsia | | | | | No | REF | REF | | | Yes | (-11.01, 0.40) | 2% (0.07, 0.94) | | | Diabetes | | | | | No | REF | REF | | | Type 2 | (5.78, 19.09) | 23% (9x10 ⁻³ , 0.41) | | | GDM | (-4.01, 18.40) | 4% (0.04, 0.95) | | | | | | | | Mode of Delivery | | | | | SVD | REF | REF | | | CD prior to onset of Labor | (14.50, 26.60) | 100% (4x10 ⁻⁵ , 2x10 ⁻²) | | | CD after onset of Labor | (-7.93, 5.70) | 0% (0.26, 0.99) | | | VBAC | (-7.09, 23.62) | 0% (0.16, 0.97) | | | Neonatal Sex | | | | | Female | REF | REF | | | Male | (-9.92, 0.86) | 0% (0.11, 0.93) | | | Neonatal Weight (g) | (1.0x 10 ⁻³ , 9.0x 10 ⁻³) | 2% (0.05, 0.82) | | Regression coefficients from bootstrapped replicates of multivariable analysis of MDMX protein band intensity (relative to internal reference individual Q1) | indinix protein band intensity (relative to internal reference marviadal & 1) | | | | |---|--------------------------|---------------------------------|--| | | (95% quantiles of point | Percentage of replicates | | | Covariate | estimate from | <0.05 (95% quantiles of P- | | | | bootstrapped replicates) | value) | | | Gravidity | (4.17, 9.81) | 44% (0.01, 0.28) | | | Preeclampsia | | | | | No | REF | | | | Yes | (-54.42, -22.05) | 80% (1x10 ⁻³ , 0.17) | | | Diabetes | | | | | No | (REF) | | | | Type II | (-7.15, 35.26) | 1% (0.10, 0.97) | | | GDM | (7.02, 50.01) | 5% (0.04, 0.78) | | | Mode of Delivery | | | | | SVD | (REF) | | | | CD prior to onset of Labor | (-7.87, 27.66) | 0% (0.22, 0.98) | | | CD after onset of Labor | (7.62, 49.52) | 8% (0.03, 0.69) | | | VBAC | (-45.98, 36.55) | 0% (0.32, 0.86) | | | Neonatal Weight (g) | (-0.002, 0.03) | 2% (0.07, 0.96) | | Regression coefficients from bootstrapped replicates of multivariable analysis of PICALM protein band intensity (relative to internal reference individual Q1) | | (95% quantiles of point Percentage of replicates | | |----------------------------|--|----------------------------| | Covariate | estimate from | <0.05 (95% quantiles of P- | | | bootstrapped replicates) | value) | | Age | (0.09, 3.35) | 1% (0.07, 0.93) | | Body Mass Index in Labor | | | | and Delivery Suite | (0.55, 2.11) | 26% (0.008, 0.54) | | Mode of Delivery | | | | SVD | REF | | | CD prior to onset of Labor | (17.36, 62.80) | 20% (0.02, 0.48) | | CD after onset of Labor | (-23.42, 26.23) | 0% (0.31, 0.99) | | VBAC | (-70.1712.72) | 0% (0.29, 0.84) | Regression coefficients from bootstrapped replicates of multivariable analysis of OT-R protein band intensity (relative to internal reference individual T1) | <u> </u> | | <u> </u> | |----------------------------|---|----------------------------| | | (95% quantiles of point | Percentage of replicates | | Covariate | estimate from | <0.05 (95% quantiles of P- | | | bootstrapped replicates) | value) | | Age | (0.27, 1.17) | 0% (0.17, 0.76) | | Diabetes | | | | No | REF | REF | | Type 2 | (6.09, 21.30) | 0% (0.10, 0.65) | | GDM | (-1.66, 14.21) | 0% (0.32, 0.99) | | | | | | Mode of Delivery | | | | SVD | REF | REF | | CD prior to onset of Labor | (7.33, 19.97) | 0% (0.09, 0.51) | | CD after onset of Labor | (-6.97, 4.89) | 0% (0.55, 0.99) | | VBAC | (-27.20, -0.44) | 0% (0.32, 0.98) | | Neonatal Weight (g) | (-4x 10 ⁻³ , 5x 10 ⁻³) | 0% (0.52, 0.99) | Table 20 Autoantigens listed by Neiman et al. among the proteins in VEGFR2, MDMX, and PICALM immunoprecipitations (IP). | | Uniprot | Gene | Protein name | Autoimmune disease | |-----------|--|---|---|--| | VEGFR2 IP | P01023 | A2M | Alpha-2-macroglobulin (Alpha-2-M) | Sjögren's syndrome | | | E7EVS6 | ACTB | Actin, cytoplasmic 1 (Beta-actin) | Autoimmune hemolytic anemia | | | P07355 | ANXA2 | Annexin A2 (Annexin II) (Annexin-2) | Antiphospholipid syndrome | | | P08758 | ANXA5 | Annexin A5 (Anchorin CII) | Antiphospholipid syndrome | | | P11182 | DBT | Lipoamide acyltransferase BCOADC-E2 | Primary biliary cholangitis | | | P17661 | DES | Desmin | Sjögren's syndrome | | | P10515 | DLAT | PDC-E2 | Primary biliary cirrhosis | | | Q02413 | DSG1 | Desmoglein-1 | Pemphigus foliaceus | | | P19474 | TRIM21 | E3 ubiquitin-protein ligase TRIM21 | Sjögren's syndrome; Systemic Lupus Erythematosus | | | Q8WZ42 | TTN | Titin | Myasthenia gravis | | | P08670 | VIM | Vimentin | Rheumatoid arthritis | | MDMX IP | P01023 | A2M | Alpha-2-macroglobulin (Alpha-2-M) | Sjögren's syndrome | | | P68133 | ACTA1 | Actin, alpha skeletal muscle | Autoimmune hemolytic anemia; myashenia
gravis | | | P07355 | ANXA2 | Annexin A2 (Annexin II) (Annexin-2) | Antiphospholipid syndrome | | | P08758 | ANXA5 | Annexin 5 | Antiphospholipid syndrome | | | P11182 | DBT | Lipoamide acyltransferase BCOADC-E2 | Primary biliary cirrhosis | | | Q6P0N6 | DST | Dystonin | Bollous pemphigoid | | | P06733 | ENO1 | α-Enolase | Multiple sclerosis | | | P35579 | MYH9 | Myosin-9 | Multiple sclerosis | | | P08559 | PDHA1 | Pyruvate dehydrogenase E1-A type 1 | Primary biliary cholangitis | | | P21980 | TGM2 | Isopeptidase TGM2 | Celiac's disease | | | Q08188 | TGM3 | Transglutaminase-3 | Dermatitis herpetiformis | | | P29401 | TKT | Transketolase | Multiple sclerosis | | | P19474 | TRIM21 | E3 ubiquitin-protein ligase TRIM21 | Sjögren's syndrome; Systemic Lupus Erythematosus | | | P18206 | VCL | Vinculin | Myasthenia gravis | | PICALM IP | P01023 | A2M | Alpha-2-macroglobulin (Alpha-2-M) | Sjögren's syndrome | | | E7EVS6 | ACTB | Actin, cytoplasmic 1 (Beta-actin) | Autoimmune hemolytic anemia | | | P63261 | ACTG1 | Actin, cytoplasmic 2/γ-actin | Autoimmune hemolytic anemia; myashenia gravis | | | P63267 | ACTG2 | Alpha-actin-2 | Autoimmune hemolytic anemia; myashenia gravis | | | P07355 | ANXA2 | Annexin A2 (Annexin II) (Annexin-2) | Antiphospholipid syndrome | | | P08758 | ANXA5 | Annexin A5 (Anchorin CII) | Antiphospholipid syndrome | | | P17661 | DES | Desmin | Sjögren's syndrome | | | P36957 | DLST | 2-oxoglutarate dehydrogenase E2 | Pernicuous anemia | | | Q08554 | DSC1 | Desmocollin-1 | IgA pemphigus | | | Q02413 | DSG1 | Desmoglein-1 | Pemphigus foliaceus | | | Q02413 | | | i ciripingus ioliaceus | | | Q9Y285 | | • | Schizophrenia | | | | | Phenylalanyl-tRNA synthetase α-subunit | · · · · · · · · · · · · · · · · · · · | | | Q9Y285 | FARSA
OGDH | Phenylalanyl-tRNA synthetase α-subunit
2-oxoglutarate dehydrogenase E1 | Schizophrenia
Pernicuous anemia | | | Q9Y285
Q02218 | FARSA
OGDH | Phenylalanyl-tRNA synthetase α-subunit | Schizophrenia | | | Q9Y285
Q02218
Q5JPU3 | FARSA
OGDH
PDHA1 | Phenylalanyl-tRNA synthetase α-subunit
2-oxoglutarate dehydrogenase E1
Pyruvate dehydrogenase E1-A type 1 | Schizophrenia
Pernicuous anemia
Primary biliary cholangitis | | | Q9Y285
Q02218
Q5JPU3
P21980 | FARSA
OGDH
PDHA1
TGM2
TKT | Phenylalanyl-tRNA synthetase α-subunit
2-oxoglutarate dehydrogenase E1
Pyruvate dehydrogenase E1-A type 1
Isopeptidase TGM2
Transketolase | Schizophrenia Pernicuous anemia Primary biliary cholangitis Celiac's disease Multiple sclerosis | | | Q9Y285
Q02218
Q5JPU3
P21980
P29401 | FARSA
OGDH
PDHA1
TGM2
TKT
TRIM21 | Phenylalanyl-tRNA synthetase α-subunit
2-oxoglutarate dehydrogenase E1
Pyruvate dehydrogenase E1-A type 1
Isopeptidase TGM2
Transketolase
E3 ubiquitin-protein ligase TRIM21 | Schizophrenia Pernicuous anemia Primary biliary cholangitis Celiac's disease Multiple sclerosis Sjögren's syndrome; Systemic Lupus Erythematosus | | | Q9Y285
Q02218
Q5JPU3
P21980
P29401
P19474 | FARSA
OGDH
PDHA1
TGM2
TKT
TRIM21 | Phenylalanyl-tRNA synthetase α-subunit
2-oxoglutarate dehydrogenase E1
Pyruvate dehydrogenase E1-A type 1
Isopeptidase TGM2
Transketolase | Schizophrenia Pernicuous anemia Primary biliary cholangitis Celiac's disease Multiple sclerosis | **Table 21**Patient demographics | Clinical characteristics | Study subjects (n=44) | % of n | |-----------------------------|-----------------------|--------| | Maternal Age | | | | 18-34 | 40 | 91% | | ≥35 | 4 | 9% | | BMI | | | | Underweight (<18.5) | 0 | 0% | | Normal (18.5-24.9) | 3 | 7% | | Overweight (25-29.9) | 9 | 20% | | Obesity I (30-34.9) | 12 | 27% | | Obesity II (35-35.9) | 5 | 11% | | Extreme Obesity (≥40) | 15 | 34% | | Parity | | | | Nulliparous | 11 | 25% | | Multiparous | 33 | 75% | | Gestational Age at Delivery | | | | < 37 weeks | 4 | 9% | | ≥ 37 weeks | 40 | 91% | | Race | | | | White | 17 | 39% | | African American | 12 | 27% | | Hispanic | 12 | 27% | | Other | 3 | 7% | | Diabetes | 14 | 32% | | Type 1 | 0 | 0% | | Type 2 | 9 | 20% | | Gestational | 5 | 11% | | Chronic Hypertension | 6 | 14% | | Normotensive | 28 | 64% | | Preeclampsia | 16 | 36% | | Preeclampsia and Diabetes | 4 | 9% |