Proteomic studies of human placentas reveal partnerships associated with
 preeclampsia, diabetes, gravidity, and labor

3

4 Shannon J. Ho<sup>1,10</sup>, Dale Chaput<sup>2,10</sup>, Rachel G. Sinkey<sup>1</sup>, Amanda H. Garces<sup>3</sup>, Erika P.

5 New<sup>1</sup>, Maja Okuka<sup>1</sup>, Peng Sang<sup>4</sup>, Sefa Arlier<sup>1</sup>, Nihan Semerci<sup>1</sup>, Thora S. Steffensen<sup>5</sup>,

6 Thomas J. Rutherford<sup>1,6</sup>, Angel E. Alsina<sup>7</sup>, Jianfeng Cai<sup>4</sup>, Matthew L. Anderson<sup>1,6</sup>,

7 Ronald R. Magness<sup>1</sup>, Vladimir N. Uversky<sup>8</sup>, Derek A. T. Cummings<sup>9</sup> & John C. M.

8 Tsibris<sup>1,8</sup> <sup>⊠</sup>

<sup>1</sup>Department of Obstetrics and Gynecology, University of South Florida, Tampa, Florida,
 USA. <sup>2</sup>Department of Cell Biology, Microbiology and Molecular Biology, University of South

Florida, Tampa, Florida, USA. <sup>3</sup>Lisa Muma Weitz Microscopy Laboratory, University of
South Florida, USA. <sup>4</sup>Department of Chemistry, University of South Florida, Tampa,
Florida, USA. <sup>5</sup>Department of Pathology, Tampa General Hospital, Tampa, Florida, USA.
<sup>6</sup>Cancer Center, Tampa General Hospital, Tampa, Florida, USA. <sup>7</sup>Transplant Surgery
Center, Tampa General Hospital, Tampa, Florida, USA. <sup>8</sup>Department of Molecular
Medicine, University of South Florida, Tampa, Florida, USA. <sup>9</sup>Department of Biology and
Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA. <sup>10</sup>These authors

- 18 contributed equally. <sup>™</sup>e-mail: tsibris@usf.edu
- 19

20

21

23 Abstract

24

25 VEGFR2 is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX and PICALM. The 26 27 oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed 28 29 VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), the 30 tissue-resident macrophages. MDMX, PICALM, and V1aR were on EC plasma 31 membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, 32 33 prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained 34 35 by univariable and multivariable regression analyses associating preeclampsia with 36 lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX. 37 PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before labor. We found select associations between higher 38 39 MDMX, PICALM, OT-R and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations between PICALM-OT-R (p<2.7x10<sup>-8</sup>), PICALM-V1aR 40 (p<0.006), and OT-R-V1aR (p<0.001). These results offer for exploration new 41 42 partnerships in metabolic networks, tissue-resident immunity, and labor, notably 43 for HC that predominantly express MDMX.

44

The placenta is a transient organ that performs the functions of major organs of the fetus, such as lungs, liver, and kidney<sup>1</sup>, supplies the fetus and in particular the fetal brain with oxygen and nutrients, and facilitates waste disposal and provides immune protection<sup>2,3</sup>. The genomes of placenta and fetus are identical except in cases of confined placental mosaicism. The vascular endothelial growth factor A (VEGF-A) is a key regulator of vasculogenesis, angiogenesis and placental growth that acts mainly through VEGFR1 and VEGFR2, two tyrosine kinase single-pass transmembrane receptors<sup>4-6</sup>.

53 Preeclampsia is a serious complication of human pregnancy occurring in 5-7% of 54 all gestations with newly-onset hypertension and proteinuria as its primary clinical 55 characteristics<sup>2,7</sup>. Preeclampsia is a multisystemic syndrome of different subtypes 56 associated with serious health problems to mother and child even after pregnancy<sup>8</sup>. Lipid 57 bilayer-enclosed extracellular vehicles (EV) transport extracellular nucleic acids, proteins, lipids, and metabolites<sup>9-12</sup>. Cancer cells deploy EV to activate VEGF signaling in 58 59 endothelial cells<sup>12</sup>. Exosomes are EV measuring 20–150 nm in diameter. Placental-60 derived exosomes released in the maternal circulation are associated with pregnancy 61 disorders and parturition<sup>11</sup>.

62 Tissue-based maps of the human proteome of many organs, including placentas, have been published,<sup>13-16</sup> but great challenges remain to discover which among the 63 64 hundreds of detected proteins regulate key metabolic networks, specifically, during normal 65 and complicated pregnancies and labor. To obtain such information, we chose to 66 immunoprecipitate VEGFR2, an ideal target as an extensively documented regulator of 67 placental angiogenesis. To deploy a wide net for the membrane partners of VEGFR2, we 68 analyzed the pellets obtained after high-speed centrifugation of chorionic villi 69 homogenates. Uterine blood in the maternal intervillous space exchanges substances with 70 fetal blood at the villous tree. Although the villi are physically separated from uterine 71 blood<sup>1,3</sup>, the pellets contain cells and EV from it. To preserve protein complexes, we 72 extracted the pellets with ASB-14 (amidosulfobetaine-14), an efficient non-denaturing 73 detergent. The extracts were immunoprecipitated with the bait antibody (Ab) charged on 74 magnetic beads knowing that extraction of membrane proteins from their native 75 environment could alter their structure and protein links. Mass spectrometry identified 76 proteins immunoprecipitated with VEGFR2, especially its newly discovered placental

partners, the multifunctional MDMX (Double minute 4 protein) and PICALM(Phosphatidylinositol-binding clathrin assembly protein).

79 MDMX, also known as MDM4 and HDMX, is a zinc-binding protein and a p53 80 inhibitor acting in coordination with MDM2, a zinc-dependent E3 ubiguitin ligase<sup>17</sup>. MDMX 81 and MDM2 have numerous p53-independent activities. In preeclampsia, p53 is 82 upregulated in villous trophoblasts<sup>18</sup>. PICALM is a nuclear and plasma membrane protein 83 that interacts with phosphatidylinositol to recruit clathrin and adaptor protein-2, initiates 84 endocytosis of clathrin-coated vesicles, internalizes ligand-receptor complexes, and participates in iron and cholesterol homeostasis<sup>19,20</sup>. PICALM is a genetic risk factor for 85 86 late-onset Alzheimer's disease that participates in amyloid-β transcytosis and processing 87 of amyloid precursor protein (APP). Human placentas express APP and APP-processing 88 enzymes which are increased in preeclampsia<sup>21</sup>. Oxytocin is a hydrophilic neuropeptide 89 and Pitocin, a synthetic oxytocin, is prescribed in the USA to induce labor and decrease 90 postpartum hemorrhage. The oxytocin receptor (OT-R, OXTR) is a magnesium-dependent 91 G protein-coupled receptor<sup>22</sup> that activates a phosphatidylinositol-calcium second 92 messenger system<sup>23</sup>. OT-R participates in numerous activities ranging from parturition to 93 lactation and mother-child bonding<sup>22,23</sup>. OT-R functions as a homodimer and in heterocomplexes with vasopressin receptors V1aR (AVPR1A)<sup>24</sup>, V2R, and other 94 95 receptors. V1aR is the most abundant among vasoactive receptors in human arteries<sup>25</sup>.

96 Here, among the newly detected partners of VEGFR2 we focused on MDMX and 97 PICLAM based on their documented biochemical functions, and their partners OT-R and 98 V1aR. Finding OT-R in exosome-size clusters in the fetal lumen led to the hypothesis that 99 placental OT-R is carried to the fetus in exosomes, potential transporters of future 100 therapeutic agents. MDMX, PICALM, OT-R, and V1aR protein levels, estimated by 101 western blots and relative to an internal control sample, were associated with clinical 102 characteristics of the 44 patients we studied. Potential insights on the molecular 103 mechanisms of placental MDMX and PICALM were gained, respectively, from the cancer 104 and Alzheimer's disease literature.

105

106 Results

107 **Immunoprecipitations (IP).** Key prerequisite for this study was that VEGFR2 protein 108 complexes withstood tissue freezing and extraction by ASB-14. Since Blue-Native 109 electrophoresis (BN) resolves protein mixtures under non-denaturing conditions, we 110 fractionated placental extracts by BN followed by VEGFR2 immunostaining which 111 revealed streaks extending up to 800 kDa. VEGFR2 monomers appear at 220 kDa in 112 western blots. Apparently, ASB-14 stabilized the extracted protein complexes of VEGFR2. 113 Several proteins described in this study were efficiently extracted by ASB-14 (see 114 Methods). New VEGFR2 partners, MDMX and PICALM, were also selected for IP.

115 Fig. 1 shows western blots of the fractions eluted from the magnetic beads and 116 used to select the fraction for mass spectrometric analysis. Representative fractions are 117 identified by the patient's assigned letter-number code shown on Table 1. Magnetic beads 118 retained all of the applied VEGFR2 (A) as none was detected in the flow-through fraction, 119 but the MDMX and PICALM antibodies charged on the beads retained only a fraction of 120 their target protein as shown, respectively, in **E** and **F**. All target proteins were greatly 121 enriched in the eluted fraction-E relative to the applied placental extract, fraction-X. OT-R 122 co-immunoprecipitated with MDMX (G, right side) and with PICALM (G, left side), but not 123 with VEGFR2 (D). V1aR co-immunoprecipitated with MDMX (H, left side) and with 124 PICALM (H, right side), but not with VEGFR2 (C). Eluted MDMX appeared smaller in the 125 VEGFR2 IP (B) and MDMX IP (E), whereas PICALM (F), OT-R (G) and V1aR (H) 126 appeared larger. The size of eluted VEGFR2 was the same as in the extracts (A).

- 127
- 128
- 129
- 130
- 131
- 132
- ...
- 133



134

135 Fig. 1. Protein elution profiles in VEGFR2, MDMX and PICALM IP. Detergent-extracted 136 villous sample X was incubated with magnetic bead suspension charged with the target 137 Ab (see Methods). E denotes eluted protein fractions. Western blots detected the target proteins eluted in the uniformly performed IP experiments. A. VEGFR2 in VEGFR2-IP. B. 138 MDMX in VEGFR2-IP. C. V1aR in VEGFR2-IP. D. OT-R in VEGFR2-IP. E. MDMX in 139 MDMX-IP. F. PICALM in PICALM-IP. G. Left-side, OT-R in samples from PICALM-IP, and 140 right-side OT-R in samples from MDMX-IP. H. Left-side, V1aR in samples from MDMX-IP, 141 142 and right-side samples from PICALM-IP. Panel C shows the membrane in B reprobed for 143 V1aR without stripping.

144

146 **Proteomic analysis.** Results of the immunoprecipitations of VEGFR2 (samples O4, O5, 147 07, U1), MDMX (samples 01, 04, 06, Q1, Q4, R4), and PICALM (samples N3, 01, R4, 148 Q1, Q4, U1) are listed in Tables 2-4. The peptide coverage was not consistent among the 149 placental extracts in each immunoprecipitation group due to different clinical 150 characteristics of the patients whose tissues we tested, and potential differences in post-151 translational modifications, such as acetylation, and ubiquitination. Soluble proteins in 152 villous homogenates having an affinity for membrane proteins would be retained on the 153 pellets obtained after centrifugation at 100,000g for 1h.

154 Select proteins that co-immunoprecipitated with VEGFR2 (Table 2). VEGFR2 was 155 retained on the beads by an Ab raised to the cytoplasmic tail of VEGFR2 exposing 156 extracted proteins to its extracellular, VEGF-binding, domain (see Methods). Therefore, 157 most VEGFR2 partners must have interacted, even after VEGFR2 internalization, with its 158 extracellular rather than its intracellular tyrosine kinase domain, and in binary associations 159 while fewer would bind via some intermediate protein partners. In principle, VEGFR2, 160 MDMX, and PICALM isoforms post-translationally modified at the target sequence of the 161 immunoprecipitating antibodies, are unlikely to be retained on the beads. Our experimental 162 design provided only an estimate of peptide levels in each placental sample. Very basic 163 proteins, such as VEGF-A (pl=9.2), were not detected due to excessive trypsin digestion 164 of these mostly intrinsically disordered proteins prior to mass spectrometric analysis. For 165 example, more than 65% of the VEGF-A residues are expected to be disordered. 166 Nevertheless, western blot analysis showed that VEGF-A co-immunoprecipitated in 167 VEGFR2 IP, and that OT-R (pl=9.6) and V1aR (pl=9.5) co-immunoprecipitated in MDMX 168 and PICALM IP. p53 and MDM2 were detected in IP eluates only by western blots. Under 169 our protocol, proteins larger than 220 kDa were, most likely, identified by peptides from 170 their smaller forms in the placenta.

The E3 ubiquitin ligase TRIM21 (tripartite motif-containing protein 21) coimmunoprecipitated with VEGFR2 and in MDMX and PICALM IP (Tables 2-4). TRIM21, a member of the large TRIM family, contains a zinc-binding as well as other motifs. TRIM21 is found in the cytosol and nucleus and is unique among all proteins as the highest-affinity Fc receptor in humans<sup>26</sup>. TRIM21 does not distinguish free from bound antibodies. Another VEGFR2 partner was PDC-E2 (*DLAT*), the E2 component of pyruvate dehydrogenase

(Table 2). The association of PDC-E2 with VEGFR2 probably occurs in the nuclei<sup>27</sup> and 177 178 mitochondria, as discussed later, and is shown in the vasculature of the villi (video). Other 179 VEGFR2 partners were complement components (Table 2) revealing complement 180 activation known to occur in placental dysfunctions<sup>28</sup>. Immunoglobulin heavy constant 181 alpha 1 (*IGHA1*), an autoantibody antigen and signature protein of plasma cells<sup>29</sup>, was 182 among the large amounts of immunoglobulins detected that are carried by placental 183 endothelial cells<sup>30</sup> and maternal blood cells. A smaller than 220 kDa form of the giant 184 protein titin was also detected in VEGFR2 and PICALM IP (Tables 2, 4).

185

186 Select proteins that co-immunoprecipitated with MDMX and PICALM (Tables 3, 4). 187 VEGFR2 was not detected in MDMX and PICALM IP, probably because of the limited 188 binding capacity of the MDMX and PICALM antibody charged on the beads. Among the 189 proteins that co-immunoprecipitated with MDMX were PICALM, annexins, arginase-1, RNA-binding protein HNPNPA2B1<sup>31</sup> and others that immunoprecipitated also in VEGFR2 190 191 and PICALM IP (Tables 2, 4). Protein-glutamine gamma-glutamyltransferase 2 (TGM2). 192 which co-immunoprecipitated with MDMX and PICALM (Tables 3, 4), catalyzes protein 193 cross-linking, is considered a bridge between inflammation and hypertension, and is 194 upregulated in preeclampsia<sup>32</sup>. We indicated in Table 3 the few proteins common in 195 VEGFR2, MDMX and PICALM immunoprecipitations, and many more that co-196 immunoprecipitated only with MDMX, likely members of the HC proteome. After an initial 197 statistical analysis associated MDMX with the mode of delivery, we were prompted to study the OT-R, which is activated in the myometrium causing uterine contractions<sup>22</sup>, and 198 199 its partner V1aR, after validating two commercial antibodies (Figure 10).

200

Immunohistochemistry and whole mount immunofluorescence. VEGFR2 strongly stained the endothelium of the villous capillaries (Fig. 2A). TRIM21 staining is seen in the cytoplasm of villous trophoblasts and stronger staining in intervillous maternal leukocytes (Fig. 2B, arrows). MDMX is predominantly expressed (Fig. 2, C and D) on Hofbauer cells (HC)<sup>33-37</sup> that are targets of Zika and other viruses<sup>38</sup>. Strong MDMX staining was limited to the cytoplasm of HC, easily identified within the villous stroma, some within stromal channels (Fig. 2C). CD163<sup>33,39</sup>, a marker for placental macrophages<sup>40</sup>, stained the

cytoplasm of the HC (Fig. 2D). PICALM showed strong staining of trophoblasts and
syncytiotrophoblasts (Fig. 2E) and on higher power images (Fig. 2F) positive cytoplasmic
staining of the villous capillary endothelial cells was also seen.



211

212 Fig. 2. Immunohistochemical staining of placental sections. A. VEGFR2 213 immunostaining is strongly positive in villous endothelial cells (patient Q3). B. TRIM21 is uniformly positive in villous trophoblast (patient N4). Very strong staining is seen of 214 215 maternal leukocytes (arrows). C. MDMX is strongly positive in the cytoplasm of HC and 216 moderately positive in endothelial cells (patient W2). D. CD163 is strongly positive in the 217 cytoplasm of the HC (patient U1). E. PICALM is strongly positive in the trophoblast (patient 218 R4). F. PICALM positivity seen in the villous endothelial cells and fetal blood leukocytes 219 (patient R4). Magnifications in A-F were 10x, 20x and 40x.

220

The co-localization of VEGFR2 (red) and PDC-E2 (green) in endothelial cells of the villous vasculature of a normotensive patient is shown on the video obtained from reconstructed stacked images of whole mount immunofluorescence. Nuclei were stained blue with DAPI.

224

225 **Immunogold electron microscopy (IGEM).** VEGFR2 was localized along segments of 226 endoplasmic reticulum, and in mitochondria (Fig. 3). MDMX was localized diffusely within 227 the cytoplasm of an HC and was seen clustering in the nucleus and cytosol. Clusters ran 228 along the nuclear membrane and appeared associated with mitochondrial and 229 endoplasmic reticulum membranes (Fig. 4). PICALM was localized to endothelial cell 230 junctions, along endothelial cell plasma membrane, in cytoplasmic projection into the 231 lumen and adjacent stroma and fetal blood (Fig. 5). OT-R was detected in endoplasmic 232 reticulum and cytoplasmic "peninsulas" of endothelial cells extending into the lumen and 233 on clusters (Fig. 6). V1aR was localized to endothelial cell membrane, nucleus, and 234 stroma. V1aR was also seen on a fetal RBC (Fig. 7). Details are seen in Figures 3-7.



#### 235

Fig. 3. Detection of VEGFR2 by IGEM in chorionic villi of placenta Ho-73 236 237 (preeclamptic). A. Top left micrograph shows a villous capillary. P: pericyte, E: RBC, SC: 238 stromal cells. Bottom image details area outlined on the top micrograph and shows 239 endothelial cell (EC) cytoplasm, pericyte (P), tight junction (\*), collagen fibers in villous 240 stroma (VS), and capillary lumen (L). Image at right: Enlargement of area outlined on the 241 bottom left shows VEGFR2 in mitochondria (arrows). B. Micrograph on top left shows 242 villous capillary, stroma (S), luminal RBC (E), and Hofbauer cell (HC). Enlargement of 243 rectangle at bottom shows prominent nucleolus, mitochondria, and endoplasmic reticulum 244 of HC. Micrographs on the right show enlargement of areas outlined on the bottom left

245 micrograph that detail clusters of VEGFR2 (arrows) in the cytosol (C), along segments of 246 endoplasmic reticulum (ER), and mitochondria (M). Enlargement of image at bottom right 247 shows diffuse localization of VEGFR2 clusters throughout the nucleoplasm (arrows). C. 248 Top left micrograph: Villus stroma depicting a fibroblast (Fb), and a pericyte (P) associated 249 with fetal capillary in partial profile, RBC (E), and EC cytoplasm. Bottom left is enlargement 250 of area outlined on the top graph and shows fibroblast cytosol, mitochondria (M), and 251 villous stroma (S). To the right, enlargement of two areas show VEGFR2 in cytoplasm and 252 in partial profiles of mitochondrial matrix (white arrow heads). **D.** A TEM micrograph after 253 osmication provided a better outline of mitochondria in an EC, compared to A, B and C 254 panels. E. Fetal capillaries with luminal RBC (E) are shown in the top left image, IS: 255 intervillous space; mE: maternal RBC. Bottom: enlargement of outlined area shows a fetal 256 macrophage in greater detail; a syncytiotrophoblast (SCT) is also present. Right 257 micrograph: enlargement of area in bottom left micrograph, points to VEGFR2 labelling in 258 an incomplete profile of a mitochondrion. Dashed arrows outline the outer double 259 membrane of the labeled and unlabeled mitochondria. The gold particle diameter is 6 nm.



260

Fig. 4. Detection of MDMX by IGEM in chorionic villi of placentas Ho-71 (normotensive) and Ho-73 (preeclamptic). A. Left micrograph: Nucleus (N) of endothelial cell (EC) from Ho-73. Arrow heads point to small MDMX clusters, parallel to the inner aspect of the EC plasma membrane. Area outlined, top left: EC junction; P: pericyte process; E: RBC in capillary lumen, S: stroma. This area is enlarged on the top right graph and shows MDMX clusters along the junction (Ju), and endoplasmic reticulum 267 (ER). Bottom right: enlargement of outlined area shows diffuse pattern of MDMX clusters 268 throughout the nucleoplasm. B. Top left micrograph shows an outline of apoptotic 269 macrophage in the lumen of fetal capillary (cap) from Ho-71. P: pericyte, F: partial profile 270 of fibroblast (F) and HC partially marked by a white outline. Enlargement on the top right 271 image shows diffuse MDMX localization in the vacuolated cytoplasm of luminal 272 macrophage. Image at bottom left is enlargement of area outlined in white and shows 273 MDMX clustering in the nucleus (N) and cytosol of the HC. Clusters, averaging 50-100 nm 274 in diameter, run along the nuclear membrane and appear to be associated with mitochondrial and endoplasmic reticulum membranes. Bottom right: enlarged area shows 275 276 MDMX clusters of approximately 100 nm. The gold particle diameter is 6 nm.





285 nucleoplasm near chromatin, on EC cytoplasmic membrane (white arrows) and in luminal 286 space (black arrow). C. Top micrograph: HC in stroma of Ho-73. E: RBC in capillary. At 287 bottom: enlargement shows PICALM in HC nucleus (arrows). D. Top micrograph: HC cell 288 in the stroma of placenta Ho-71. Bottom image: enlargement shows PICALM in 289 nucleoplasm in association with chromatin. E. PICALM is shown (arrows) at the junction 290 (Ju), and plasma membrane of EC and in adjacent stroma (S) of fetal capillary from Ho-291 73. F. PICALM is shown (arrows) in cytoplasm and plasma membrane of EC of capillary 292 from Ho-71, and in basal lamina (BL), stroma (S) and capillary lumen. The gold particle 293 diameter is 10 nm.



295

296

Fig. 6. Detection of Oxytocin Receptor (OT-R) in chorionic villi of placentas of 297 normotensive Ho-71, and preeclamptic Ho-73 patients. A. Top IGEM micrograph: 298 299 Villus capillary from Ho-71. P: pericyte adjacent to the endothelial cell (EC); L: lumen. White arrow shows cluster of PICALM on P. Bottom: enlargement shows OT-R in 300 301 endoplasmic reticulum (ER) and cytoplasm projections of EC into the lumen. (arrows). B. 302 Top micrograph: Partial view of villus capillary from Ho73, E: RBC; S: stroma. Bottom 303 graph shows EC junction (J) and OT-R clusters on J, EC cytoplasm, and lumen (arrow). 304 **C.** OT-R is seen in the nucleus of an EC from Ho-73. The gold particle diameter is 10 nm.



305

306 Fig. 7. Detection of Vasopressin Receptor V1aR in chorionic villus of placenta Ho-307 72 (diabetic). A. Composite IGEM image shows nucleus of HC in stroma on the left and enlargements of three demarcated regions of its nucleus on the right. V1aR clusters, 20-308 309 100 nm, in the nucleus are indicated by arrows. **B.** Top micrograph shows EC aspect of a villus capillary. Bottom image is enlargement that shows V1aR on EC membrane, nucleus, 310 311 and stroma (arrows). C. Top micrograph shows aspect of EC of villus capillary; an RBC is 312 seen in the lumen. Bottom image is enlargement that shows several 20-100 nm clusters 313 of V1aR on surface of the RBC (arrows). The gold particle diameter is 10 nm.



314

315 Fig. 8. Transmission electron microscopy of osmicated chorionic villus from 316 placenta Ho-73 (preeclamptic). A. An  $exosome^9$  is shown in the lumen with the 317 characteristic lipid bilayer adjacent to RBC (E). B. A dense particle with a lipid bilayer, 318 perhaps an exomere<sup>12</sup>, is shown in the lumen next to an RBC (E). Scale in A and B is 50 319 µm.

#### 320

321 Statistical analysis of protein levels in placental extracts. To estimate the protein 322 levels of MDMX, PICALM, OT-R and V1aR, we analyzed by western blots 25 µg protein 323 from each of the 44 placental extracts (Table 1). The intensity of the native-protein band, 324 shown at the top of the representative western blots in Fig. 9, is relative to an internal 325 control sample (Q1 or V1) taken as 100% (Table 5). Violin plots show the analysis of the 326 mean protein levels (Fig. 9) among different clinical conditions. Precluded from the 327 statistical analysis were VEGFR2, since its protein levels did not differ significantly among 328 the 44 placentas analyzed in this study, and TRIM21 due to extensive degradation of its 329 native 50-kDa form in our placental extracts.



331

Fig. 9. Representative western blots (A) of MDMX, PICALM, OT-R, and V1aR, and violin plots of their relative protein levels associated with diabetes, gravidity, labor, neonatal weight, preeclampsia, BMI, or maternal age, as indicated in B-E. Western blots show the molecular mass (kDa) and the placental extracts identified by a letternumber code shown in Table 1. Internal control for MDMX and PICALM was sample Q1, and sample V1 for OT-R and V1aR.

Next, we performed univariable and multivariable analyses, shown in Tables 6-12, to test whether the mean protein levels of MDMX, PICALM, OT-R and V1aR, represented by western blot band intensity of placental extracts and relative to an internal reference sample Q1 or T1, varied as a function of maternal age, gravidity, gestational age, body mass index, race, preeclampsia, diabetic status, delivery mode, neonatal sex, and neonatal weight. Preeclamptic patients were compared to non-preeclamptic, and diabetic to non-diabetic patients.

345 Univariable analysis of protein levels. Protein expression units are the percent values
346 relative to an internal control sample taken as 100% (Table 5).

347 MDMX protein levels were associated with diabetes with an increase of 47.63 units 348 (95% CI 14.27, 90.00) among those with Type II diabetes and 47.91 (95% CI 5.51, 90.32) 349 among those with gestational diabetes mellitus (GDM) compared to those without 350 diabetes, and gravidity with an increase of 9.66 (95% CI 3.59, 15.70) with each unit 351 increase in gravidity, neonatal weight (an increase of 0.03 (95% CI 0.01, 0.06) for each 352 increase in grams), and preeclampsia (-44.13 (95% CI -71.63, -16.64). Regarding the 353 mode of delivery, cesarean delivery, CD, prior to the onset of labor was associated with 354 an increase of 56.16 (95% CI 24.13, 88.18) compared to those with SVD. See Table 6 for 355 full results. Recently, CD163 expression in Hofbauer cells was associated with BMI, 356 gravidity, and fetal birthweight<sup>41</sup>.

357 Increased PICALM levels were associated with maternal age with an increase of 358 3.68 (95% CI 0.28, 7.08) in intensity for each year increase, and body mass index with an 359 increase of 2.06 (95% CI 0.66, 3.45) for each unit increase. Regarding the mode of 360 delivery, CD prior to the onset of labor had an increase of 59.96 (19.24, 100.68) compared 361 to those with SVD. See Table 7 for full results.

OT-R protein levels were associated with maternal age, an increase of 1.56 (95% CI 0.13, 2.99) for each year of age, and diabetes with an increase of 24.16 (95% CI 5.47, 42.85) among those with Type II diabetes compared to those without diabetes. Neonatal weight was associated with an increase of 0.01 (95% CI 8.36x10<sup>-4</sup>, 0.03) for each increase in grams. See Table 8 for full results.

367 V1aR protein levels were statistically significantly associated with mode of delivery,
368 CD prior to onset of labor 20.36 (95% CI 10.58, 30.13) compared to SVD. See Table 9 for

full results. No associations were found for race, neonatal sex, or gestational age between35-42 weeks for any outcome.

371

Multivariable analysis of protein levels. A multivariable model considered simultaneously all variables that were statistically significant in univariable analysis. MDMX protein levels showed a statistically significantly association with gravidity 7.19 (95% CI 1.24, 13.14), and preeclampsia -40.61 (95% CI -66.18, -15.04) as shown on Table 10. There were no significant associations for PICALM or OT-R as shown in Tables 11-12. The best fit model for V1aR included only an intercept (no covariate).

To account for the spread in the replicate measurements of MDMX, PICALM, OTand V1aR (Table 5), we carried out the bootstrapping analysis shown in Tables 14-19. The statistical results were robust to bootstrapped resampling (n=1000) of data points included in the analyses.

We also looked at the correlation of MDMX, PICALM, OT-R and V1aR protein levels with each other and found significant correlations between PICALM and OT-R (0.72 95% CI 0.54, 0.84, p<2.7x10<sup>-8</sup>), PICALM and V1aR (0.41 95% CI 0.12, 0.63, p<0.006), and OT-R and V1aR (0.47 95% CI 0.20, 0.67, p<0.001). MDMX was not correlated with PICALM, OT-R or V1aR.

387

### 388 Discussion

389 Mass spectrometry placed VEGFR2, MDMX and PICALM and their partners in the 390 molecular landscape of chorionic villi of placentas at term. The co-immunoprecipitated 391 proteins represent the most prevalent and stable complexes. IGEM provided a detailed 392 map of VEGFR2, MDMX, PICALM, OT-R and V1aR in the villi, and hints about protein 393 traffic, specifically, of placental exosomes transporting OT-R to the fetus. In future studies, 394 IGEM can show if two proteins are within 10-20 Å of each other, with secondary antibodies 395 labeled with gold particles of different size<sup>42</sup>, such as 6 nm and 12 nm, even though larger 396 particles may occasionally eclipse the smaller ones.

A comprehensive statistical analysis of 44 placental extracts associated MDMX,
 PICALM, OT-R and V1aR protein levels with labor at term and a number of clinical
 parameters and gestational complications. Further studies may assign their binary protein

interactions into networks of signaling partnerships among patient groups with normal gestation and gestational complications.<sup>43</sup> The predominant expression of MDMX on fetal macrophages (HC)<sup>37</sup> and the association of MDMX levels in the villi with most of the clinical characteristics we tested, suggest that MDMX has a central role in comorbidities, that originate from deficient trophoblast proliferation,<sup>44</sup> and are linked to pre-existing conditions and environmental exposures.<sup>45</sup>

406

407 **MDMX immunoprecipitations.** We were puzzled that the immunoprecipitated MDMX had 408 a molecular mass of 50 kDa, instead of 75 kDa in the placental extracts (Fig. 1, B and E). A possible explanation was offered by the discovery<sup>46</sup> that MDMX interacts with TRPM7. 409 410 a bi-functional cation channel protein fused with a kinase domain. TRPM7 is a master 411 regulator of the cellular balance of divalent cations, that mediates the uptake of Zn<sup>2+</sup>, Mg<sup>2+</sup> and Ca<sup>2+</sup>,<sup>47</sup> and senses oxidative stress to release Zn<sup>2+</sup> from intracellular vesicles<sup>48</sup>. 412 413 TRPM7 regulates MDMX levels by modulating Zn<sup>2+</sup> concentration, and induces the 414 formation of faster moving forms of MDMX on SDS-PAGE gels<sup>46</sup>. These forms depend on 415 the channel function of TRPM7 and proteasomal degradation. We hypothesize that 416 placental TRPM7, which is downregulated in preeclampsia,<sup>49</sup> interacted with MDMX during the overnight incubation with the immunoprecipitation beads stripping MDMX of Zn<sup>2+</sup>. 417 418 Proteasomal degradation was prevented by including MG-132 in our tissue-extraction and 419 IP buffer. We missed detecting TRPM7 because it did not enter the top section of the 4-420 12% Bis-Tris NuPAGE gels we used to fractionate the IP proteins with and submit the 25-421 220 kDa strips for proteomic analysis (see Methods). TRPM7 has a theoretical mass of 422 213 kDa and pl 8.1, but on SDS-PAGE gels it is shown at 230 kDa and was reported at 423 245 kDa in BN electrophoresis.

424

425 **Autoantibody antigens and TRIM21.** Although our patients did not show symptoms of 426 autoimmune diseases, a few of the immunoprecipitated proteins listed on Table 20 were 427 also among the autoantigens detected by Neiman *et al.* in healthy adults<sup>50</sup>, such as the 428 extensively studied autoantigens TRIM21/Ro(SS-A) and PDC-E2, also an autoantigen in 429 primary biliary cholangitis and other autoimmune diseases. PDC-E2 would be held on the 430 beads as a partner of VEGFR2. TRIM21 is also extracted from intervillous maternal

431 leucocytes based on their staining with TRIM21 (Fig. 2B). Maternal autoantigen-432 autoantibody complexes, with an affinity for proteins in the villous membrane fraction, 433 would be trapped on the beads by Fc-receptor TRIM21 based on its high affinity for IgG<sup>26</sup>. 434 Since TRIM21 has broad species specificity, it could bind to the sheep anti-rabbit Ab on 435 the Dynabeads and the IP-bait, the anti-rabbit Ab the beads were charged with. If TRIM21 436 clusters on the beads remain catalytically active, they could, in principle, retain VEGFR2, 437 MDMX and PICALM, as substrates of ubiquitin ligases, along with other proteins, many 438 not *in vivo* TRIM21 substrates, detected by mass spectrometry. Consequently, TRIM21 439 can confound immunoprecipitations, performed according to our protocol, by retaining 440 proteins unrelated to the bait-Ab. Based on the extensive TRIM21 literature, placental TRIM21 could participate in metabolic pathways as an E3 ubiquitin ligase,<sup>51,52</sup> and as Fc 441 442 receptor defending against infections.

443

444 **Immunohistochemistry and immunogold electron microscopy.** The distribution of 445 VEGFR2, MDMX and PICALM in the villi was shown by IHC (Fig. 2) and by IGEM which 446 also showed the distribution of OT-R and V1aR (Figures 3-7). VEGFR2 was detected in 447 the nucleus, as previously reported<sup>27,53</sup>, and in mitochondria, a novel observation to the 448 best of our knowledge (Fig. 3, panels A, B and C). Translocation in the other direction, 449 mitochondria to the nucleus, was shown for the entire pyruvate dehydrogenase complex to supply acetyl-CoA for histone acetylation<sup>54</sup>. VEGFR2 is distributed through relay 450 451 networks in lipid rafts and endosomal trafficking<sup>55</sup> and SUMOylation holds VEGFR2 at the 452 traffic control Golgi apparatus<sup>56</sup>. Gradients in receptor concentration may exist along the 453 placental vascular tree, as was shown for the purinergic P2Y<sub>2</sub> receptor (pl=9.7)<sup>57</sup>. 454 Distortion of receptor gradients in preeclampsia and diabetes could affect protein traffic 455 and even expose proteins to degradation. Regarding the latter, it may be pertinent to 456 consider the mechanism of action of estrogen receptor antagonists that decreased the 457 estrogen receptor intra-nuclear mobility and subsequently induced its turnover<sup>58</sup>.

458 MDMX appeared in nuclear clusters (Fig. 4, A and B). PICALM was detected in 459 nuclei (Fig. 5, B and C). The very basic OT-R and V1aR were also detected (Figures 6 460 and 7). Surprisingly, clusters of V1aR became clearly visible on a fetal RBC after 461 increasing gamma (Fig. 7, C). Since vasopressin receptors participate in erythropoiesis<sup>59</sup>

their presence on RBC was not very surprising. We hypothesize that in addition to nontraditional functions, such as critical immune sensors,<sup>60</sup> RBC transport V1aR to the endothelial cells of the villi<sup>25</sup>.

465 PICALM and OT-R were detected on endothelial cell projections into the fetal lumen 466 (Figures 5A, 6A) where OT-R clusters were also observed (Fig. 6, A and B) matching the 467 dimensions of microvesicles-exosomes<sup>10,11</sup>. Although we cannot prove that OT-R clusters 468 are inside exosomes with the characteristic bi-lipid membranes, as seen in standard EM 469 cellular morphology, we propose that fetal exosomes carry to the fetus the OT-R and other 470 proteins produced in the placenta. A limitation of IGEM, from the exosome perspective, is 471 that bi-lipid layers are greatly impaired during the processing of tissues because OsO<sub>4</sub> is 472 omitted in a post-fixation step used to increase the visualization of such membranes. OsO4 473 reacts strongly with lipid complexes, and while it enhances contrast for standard EM cell 474 morphological imaging, it can oxidize many antigen epitopes in IGEM. Fig. 8 shows 475 representative intraluminal vesicles<sup>9</sup> seen in the fetal capillary of the placenta sample that 476 was processed with the OsO<sub>4</sub> post-fixational step included. Membranes are more clearly 477 defined here, compared to the IGEM sample, representing exosomes or microvesicles<sup>9</sup> in 478 the fetal lumen (Fig. 8, A and B). We noticed similarities between our IGEM Figures 5 and 479 6 and transmission electron microscopy images in a study at two polluted cities in Mexico 480 showing that environmental nanoparticles of Fe, Ti, Cu, Hg and Sn accumulated in HC 481 and endothelial cells of chorionic villi sampled at term<sup>61</sup>.

482

483 Statistical analysis of protein levels and clinical presentations. Our search for the 484 function of the newly detected placental membrane proteins MDMX, PICALM, and of OT-485 R and V1aR, was accelerated by a statistical analysis of their protein levels, which 486 revealed numerous associations with clinical characteristics of the 44 patients. MDMX, 487 located predominantly in HC (Fig. 2C), took center stage based on its association with 488 most of the clinical characteristics we tested. Although many of our statistical associations 489 from 44 placentas are highly unlikely to be observed by chance, our conclusions could 490 change by testing a larger number of placenta samples and integrating, after further 491 research, protein isoforms and post-translational modifications of the newly detected 492 proteins. But to what extent did proteins from intervillous blood, reflecting also the maternal

immune system,<sup>45</sup> contribute to the observed clinical associations? An initial answer was
 provided for MDMX by the statistical analyses showing that tissue-resident HC contributed
 most extensively since they predominantly express MDMX (Fig. 2).

496

497 **Diabetes.** In diabetic patients, higher MDMX levels (Table 6) seem to correspond to the 498 higher number of cells stained with CD163<sup>62</sup>, a marker of HC<sup>39</sup>. It is not known if MDMX 499 upregulation and higher HC numbers mark a metabolic shift towards diabetes. A diabetic 500 atherosclerosis rat model showed upregulation of MDMX mRNA and protein levels<sup>63</sup>. 501 MDMX was shown in cell cultures to serve as a nutrient sensor by inhibiting mTORC1<sup>64</sup>. HC could facilitate nutrient transportation in the villous stroma<sup>34</sup> linking placental MDMX to 502 503 nutrient levels and metabolic networks. OT-R levels are higher in Type 2 diabetes (Table 504 8), and there is an association of OXTR variants with insulin sensitivity and Type 2 diabetes<sup>65</sup>. 505

506

507 **Preeclampsia.** Villous trophoblasts in pregnancies complicated by preeclampsia had 508 higher p53 and lower MDM2 levels <sup>18</sup>. Although MDMX was not measured, we believe it 509 would have been decreased also. Lower MDMX levels (Tables 6, 10) could reflect the decreased numbers of HC in preeclampsia<sup>40,41</sup>. What can cause the decrease of HC? In 510 cancer, abnormal vascularity disrupts the penetration of immune cells,<sup>66</sup> and their function 511 512 is hindered by the tumor microenvironment<sup>67,68</sup>. Here, defective placental vascularity and 513 increased placental stiffness<sup>69</sup>, both changing the architecture of the villi, could have an 514 adverse effect on HC levels. In preeclampsia, placental stiffness could be increased by 515 higher levels of tissue transglutaminase/TGM2 (Tables 3, 4) which catalyzes protein 516 crosslinking<sup>32</sup>. MDMX could be involved in the reprogramming of fetal macrophages (HC) 517 during preeclampsia and other gestational complications and labor. Drawing from the 518 breast cancer literature<sup>70</sup>, downregulation of placental MDMX in preeclampsia could be linked to estrogen receptor- $\alpha^{71}$  and lower estrogen levels<sup>72,73</sup>. 519

520 In preeclampsia large quantities of magnesium sulfate are prescribed to prevent 521 seizures. A potentially relevant study of a blood-brain barrier (BBB) model of primary 522 endothelial cells from human brain<sup>74</sup>, showed that TRPM7 mediated the entry of 523 extracellular Mg<sup>2+</sup> into cells and that high Mg<sup>2+</sup> levels speeded up the clearance of A $\beta$  to

524 the blood side via BBB transcytosis and upregulation of PICALM and LRP-1 that is also 525 expressed in HC<sup>75</sup>. It was shown recently that TRPM7 kinase activity induces amyloid- $\beta$ 526 degradation and clearance<sup>76</sup>. Among other mechanisms, the accumulation of placental 527 A $\beta^{21}$  could be related to TRPM7 and limiting PICALM-dependent transcytosis.

528

529 Gravidity. Univariable and multivariable regression analysis found a significant 530 association of gravidity with MDMX levels (Tables 6, 10). Gravidity was recently associated 531 with HC levels determined by CD163 immunostaining<sup>41</sup>. While multigravida women have 532 shorter telomeres and increased DNA methylation age,<sup>77</sup> a role of p53 and MDMX on 533 telomere length is not established in normal human tissues, to the best of our knowledge. 534 DNA methylation age is associated with MDMX and prenatal smoke exposure<sup>78</sup>. The 535 gravidity-MDMX association, which registers in the villi, could reflect the cost of multiple pregnancies to the mother<sup>79</sup>. 536

537

**PICALM, OT-R and V1aR.** The association of placental PICALM levels with BMI (Table
7) is intriguing because the placenta functions in the absence of adipocytes. A potential
precedent for such association was provided by a study on gastric bypass surgery where
PICALM mRNA levels in the blood were decreased after a significant drop of BMI<sup>80</sup>.
Furthermore, among the Alzheimer's risk nucleotide polymorphisms (SNP), a PICALM
SNP is associated with obesity<sup>81</sup>.

544 The strong correlation of protein levels of PICALM with OT-R (p<2.7x10<sup>-8</sup>), PICALM 545 with V1aR (p<0.006), and OT-R with V1aR (p<0.001) point to fundamental interactions by 546 yet unknown mechanisms. MDMX was not correlated with PICALM, OT-R or V1aR.

547 Downregulation of OT-R in spontaneous vaginal deliveries (SVD) relative to CD 548 prior to the onset of labor (Table 8), would be consistent with the higher oxytocin levels in 549 SVD than CD. It is not known to what extend extravillous blood cells and exosomes may 550 have supplied OT-R, and V1aR, detected in placental membrane extracts. Nevertheless, 551 IGEM images of the chorionic villi support the hypothesis that the lipid-covered exosomes 552 carry a cargo of the very basic, magnesium-dependent OT-R across the blood-brain 553 barrier to interact also with fetal microglia<sup>82-84</sup>, the resident immune cells of the brain<sup>85</sup>. OT-554 R protein levels in venous and arterial blood from the umbilical cord may reveal differences

555 in bi-directional OT-R traffic in normal, preterm and postterm deliveries. In that case, OT-556 R protein levels and epigenetic modifications<sup>86</sup> may lead to therapeutic interventions with 557 exosomes<sup>87</sup> prepared, ideally, with the transmembrane orientation<sup>12</sup> of OT-R in villous 558 exosomes.

559

560 Labor. The decrease of MDMX in the membrane fraction of chorionic villi in SVD vs. CD 561 prior to the onset of labor (Table 6), could be related to the decrease of immune cells in 562 peripheral maternal blood with approaching labor<sup>88</sup>, and the molecular signature of the 563 "immune clock".<sup>45,89</sup> Lower MDMX levels could also indicate a molecular switch in late 564 gestation, locally, to energy-preserving measures or other mechanisms involving uterine 565 macrophages<sup>90</sup>. MDMX, PICALM, OT-R and V1aR could be components of the fetal and 566 maternal immune system during pregnancy and as the fetus develops immunity in preparation for birth.<sup>91,92</sup> Concomitant downregulation of MDMX, PICALM, OT-R and 567 568 V1aR occurred only in SVD compared to CD prior to the onset of labor (Tables 6-9) 569 signifying a potential convergence of metabolic networks to prepare the uterus for the final 570 act in pregnancy, delivery of the fetus.

571

### 572 Materials and methods

573

574 Human Subjects. All patients signed consent forms prior to their inclusion in the study 575 according to the protocol approved by the Institutional Review Board of the University of 576 South Florida and Tampa General Hospital. Placental samples were obtained from 44 577 patients with singleton pregnancies, aged 19-40 and gestational ages ranging from 35-42 578 weeks based on the dating criteria from the American College of Obstetricians and 579 Gynecologists (ACOG) (https://pubmed.ncbi.nlm.nih.gov/28426621/) for women who 580 delivered vaginally or by cesarean delivery (CD), between 7 AM to 4 PM, based on 581 obstetric indications (Table 1). Patients were excluded if they had active viral infections or 582 fetal growth restriction, defined as estimated fetal weight of <10<sup>th</sup>% per the Hadlock growth 583 curve. Preeclampsia was diagnosed according to the criteria established in 2013 by ACOG 584 (DOI: 10.1097/01.AOG.0000437382.03963.88). Low risk pregnancy was defined by the 585 absence of maternal co-morbidities including chronic hypertension defined as

586 hypertension prior to pregnancy or systolic blood pressure  $\geq$ 140 mm Hg or diastolic blood 587 pressure  $\geq$ 90 mm Hg prior to 20 weeks' gestation, pregestational or gestational diabetes, 588 smoking, renal disease, and autoimmune disease. Patients with preeclampsia with severe 589 features defined by the 2013 ACOG Guidelines received magnesium sulfate for seizure 590 prophylaxis during induction of labor or CD through 24h postpartum. The demographic 591 Table 21 shows that 91% of study participants were 18-34 years old and 75% were 592 multiparous. Most participants (91%) were  $\geq$ 37 weeks' gestation. There was no risk of 593 bias in the selection of placentas which was at random. Sample/patient IDs (e.g., H-1, 594 J-1, etc.) are not known to anyone outside the research group, and are assigned 595 identifiers not using any personally identifiable information.

596

597 **Reagents.** Most of the reagents were purchased from Thermo Fisher Scientific 598 (Waltham, MA, USA), MMP-200 metalloprotease inhibitor III, proteasome inhibitor 599 MG-132, protease inhibitor cocktail III, marimastat, Hammarsten-grade casein, detergent 600 ASB-14, Novagen S-protein HRP conjugate 69047-3, Novex 4-12% BT SDS-PAGE 601 gels, CL-XPosure film, magnetic Dynabeads M-280 charged with sheep anti-rabbit 602 antibodies, Maxisorp Nunc C-bottom 8-well strips, protein assay Pierce BCA 562 nm kit 603 23225 (Pierce, Rockford, IL), and Protein Perfect HRP MW markers 69079-3/ 604 Millipore-Calbiochem (Billerica, MA). Additional reagents are provided in the sections 605 below.

606

Antibodies (Protein target/vendor). VEGFR2 (55B11) no. 2479/Cell Signaling 607 608 (Danvers, MA), MDMX A300-287A/Bethyl Laboratories (Montgomery, TX), 609 PDC-E2 SC-365276/Santa Cruz Biotechnology (Santa Cruz, CA), PICALM 610 Sigma Prestige HPA019053, OT-R ABN1735/Millipore (Temecula, CA), V1aR 611 MBS176788/MyBiosource (San Diego, CA), CD163 MA5-33091/InVitrogen-Thermo 612 Fisher Scientific, TRIM21 Novus NBP1-33548 (Centennial, CO), Alexa-488 (green) 613 and Alexa-64 (red) goat anti-rabbit/mouse conjugated secondary antibodies/Life 614 Technologies (Eugene, OR), immunogold donkey-anti-rabbit secondary antibodies 615 25702 (6 nm) and 25705 (10 nm) (Electron Microscopy Sciences (Hatfield, PA).

616

**Placenta tissue collection, homogenization, and protein extraction with ASB-14** Within 15 min of the delivery of the placenta, samples were obtained from the fetal side of the placental bed at 4-5 cm from the umbilical cord and were placed on dry ice and then

617 stored at -80°C. Tissues were also fixed in formalin for IHC or in paraformaldehyde-tannic 618 acid for IGEM. Frozen tissue samples were finely cut and placed, at 150 mg per mL, in 619 homogenization buffer containing 50 mM sodium phosphate pH 7.6, 50 mM NaCl, 50 µM 620 sodium o-vanadate, 10 mM NaF, 20 µM proteasome inhibitor MG-132, 10 µM marimastat 621 and 6 µL protease inhibitor cocktail-III per mL. After homogenization at 4<sup>o</sup>C by three 15s 622 bursts of a homogenizer with one-minute cooling in between, the homogenates were 623 centrifuged for 1h at 100,000g. On top of the pellets was a thin pink fluffy layer, presumably 624 of RBC membranes, which was included when the pellets were suspended in 625 homogenization buffer containing 1% ASB-14 and then extracted overnight, due to 626 logistical reasons, at 6-8°C by end-over-end rotation. The zwitterionic detergent ASB-14 627 was superior in solubilizing membrane proteins to CHAPSO or n-octyl β-D-maltoside. After 628 centrifugation at 100,000g for 1h, the supernatant solution was used in 629 immunoprecipitations and western blots. We refrained from washing the membrane pellets 630 in order to capture weak protein complexes. Protein levels of the membrane extracts were 631 determined in guadruplicate at two dilutions with the Pierce BCA 562 nm kit. Final yield: 632 10-15 mg of detergent-extracted proteins per g wet tissue. To determine the efficiency of 633 protein extraction by ASB-14, the post-ASB-14 100,000g pellets were solubilized in SDS-634 DTT at 95°C and then probed in western blots. Extraction yield was 100% for VEGFR2, 635 MDMX and PICALM, 86% for PDC-E2 and 64% for TOMM20, a marker for inner 636 mitochondrial membranes.

637

Peptide synthesis to validate the OT-R and V1aR antibodies. Fig. 10 shows OT-R peptides EGNRTAGPPRRNEA (within the OT-R immunogen range given for this antibody), AEAPEGAAAGDGGRVA (outside the OT-R immunogen range) and V1aR immunogen peptide HPLKTLQQPARRSRLMIAA to validate the OT-R Millipore ABN1735 (0.5  $\mu$ g/ $\mu$ L) and V1aR MyBioSourse MBS176788 (0.5  $\mu$ g/ $\mu$ L) antibodies. The peptides were synthesized on 100 mg Rink Amide-MBHA resin (0.65 mmol/g) at room temperature under air using standard solid phase peptide synthesis protocol.



646

Fig. 10. Validation of OT-R and V1aR antibodies. The synthesized peptides and their pl
are shown next to the scans of the coated Nunc C-bottom strips probed with the antibodies
being validated.

650 Validation method for OT-R and V1aR antibodies. Maxisorp Nunc C-bottom strips were 651 coated overnight at 4°C with the indicated amounts of synthetic peptides (Fig. 10) dissolved in sodium carbonate buffer pH 9.693. After blocking, as in western blot 652 653 experiments, the OT-R and V1aR antibodies were added for 2h at room temperature at 654 the indicated dilution followed by the secondary anti-rabbit antibody conjugated with 655 horseradish peroxidase. Detection of bound OT-R or V1aR antibodies was conducted by 656 ECL on films exposed for the indicated times. The OT-R and V1aR antibodies bound only 657 to peptide sequences used to raise them.

658

Immunoprecipitations. Each immunoprecipitation of the 4-6 placental extracts, shown in Table 3-5, was carried out in one batch. Half mL of pellicular support M-280 Dynabeads was washed in homogenization buffer containing 1% ASB-14 and charged separately at room temperature for 2h with 0.9 μg VEGFR2, 15 μg MDMX or 7.5 μg PICALM antibody. Three mg of ASB14-extracted placental membranes from each placenta were mixed separately with the beads, overnight for logistical reasons, at 6-8°C. Most proteins adhering to the beads were removed by washing four times with homogenization buffer

containing 1% ASB-14 and once with detergent-free buffer. Bound proteins were eluted at
95°C with 100 mM Tris-HCl pH 7.6, 4% SDS (w/v) and 100 mM DTT. Eluted proteins were
fractionated on 4-12% Bis-Tris NuPAGE gels. After Coomassie blue staining, gel strips
from 25-220 kDa were submitted for mass spectrometric analysis.

670

671 **Mass spectrometry.** Samples were submitted and analyzed in a double-blinded fashion. 672 Immunoprecipitated proteins were digested with Trypsin/Lys-C overnight at 37° C as 673 described<sup>94</sup>. Each group of immunoprecipitated samples was analyzed with a new trap 674 and HPLC column. Peptides were dried in a vacuum concentrator and resuspended in 675 0.1% formic acid for LC-MS/MS analysis. Peptides were separated with a C18 reversed-676 phase-HPLC column on an Ultimate3000 UHPLC with a 60-min gradient and analyzed on 677 a Q-Exactive Plus using data-dependent acquisition. Raw data files were processed in 678 MaxQuant (www.maxquant.org) and searched against the UniprotKB human protein 679 sequence database. Search parameters included constant modification of cysteine by 680 carbamidomethylation and the variable modification, methionine oxidation. Proteins were 681 identified using the filtering criteria of 1% protein and peptide false discovery rate.

682

683 Western blot analysis. 25 µg of protein from placental extracts were resolved on 4-12% 684 Bis-Tris NuPAGE gels, transferred to PVDF membranes and blocked overnight at room 685 temperature in 1% Hammarsten-grade casein or 5% Difco skimmed milk powder. MDMX, 686 PICALM, OT-R or V1aR primary antibody dilutions ranged from 1:800 to 1:10000. PVDF 687 membranes incubated with ECL reagents were exposed to film for 1-20s. Films were 688 scanned in the transmittance mode (Epson Perfection 3200 Photo, Epson America, Los 689 Alamitos, CA, USA). The intensity of the top band (Fig. 9) was measured with Li-Cor Image 690 Studio Lite software (Lincoln, Nebraska, USA) and chosen from a film exposed at the linear 691 portion of the correlation between band intensity and film exposure time before films were 692 overexposed. In the statistical analyses we used the mean intensity from 3.6 blots, on the 693 average, and relative to an internal control sample Q1 or V1 (Table 5).

694

Immunohistochemistry. 4 μm formalin-fixed paraffin embedded tissue sections were
 processed for IHC and stained with VEGFR2 (1:50), MDMX (1:500) or PICALM (1:1000)

antibodies. Slides were exposed with diaminobenzidine tetrahydrochloride dehydrate as a
 chromogen and counterstained with hematoxylin before permanent mounting.

699

700 **Immunogold electron microscopy.** Tissue samples were promptly fixed in buffered 4% 701 paraformaldehyde and kept overnight at 4°C and then immersed in 0.75% buffered 702 solution of tannic acid for 2h at room temperature. Samples were rinsed in filtered glass-703 distilled water, dehydrated through a series of increasing ethanol concentration, infiltrated, 704 and embedded in LRW acrylic resin. Selected blocks were sectioned at 90-100 nm and 705 mounted on formvar coated copper grids. The immunogold reaction was performed by 706 incubating grids in standard blocking solution for 30 min at room temperature and 707 transferring to either 1:100 MDMX rabbit Ab, 1:400 PICALM rabbit Ab, 1:100 VEGFR2 708 rabbit Ab or 1:600 OT-R or V1aR rabbit Ab for an overnight incubation at 4°C. After 709 washing in PBS, gold-conjugated donkey anti-rabbit Ab 25703 (Electron Microscopy 710 Sciences, Hatfield, PA), was applied at 1:50 dilution for 90 min at room temperature. The 711 diameter of the gold particles (Electron Microscopy Sciences, Hatfield, PA) was 6 nm in 712 VEGFR2 and MDMX and 10 nm in PICALM and OT-R experiments. Excess secondary 713 antibody was removed by washing with glass-distilled water and the grids were further 714 treated with 2% aqueous uranyl acetate added for contrast. In control experiments 715 excluding the primary antibody, 1-2 gold particles were detected throughout the grids. In 716 morphological analysis by transmission electron microscopy, tissues were fixed in 2% 717 OsO4, after 2.5% glutaraldehyde fixation and prior to the dehydration and resin infiltration 718 steps. Images were obtained with a JEM-1400 transmission electron microscope (JEOL, 719 Peabody, MA) and Orius-832 camera (Gatan Inc., Pleasanton, CA).

720

Whole mount immunofluorescence (WMIF). Small samples (2x2x2 mm) of placental tissues ,were fixed in 1 mL 90% methanol for 2*h* at 4°C according to Bushway et al.<sup>95</sup> with modifications. After washing with PBS, the samples were blocked for 2h at 4°C with 1% Hammarsten-grade casein in PBS containing 0.02% Thimerosal. After washing with 0.5% Casein in PBS, antibodies to VEGFR2 and PDC-E2 were added at 1:400 dilution and incubated overnight at 4°C, followed by washing with 0.5% Casein-PBS containing 0.3% Triton-X and incubation with the secondary antibodies at 1:100 dilutions. WMIF slides were

728 observed with a Leica TCS SP5 AOBS laser scanning confocal microscope through a 729 40X/1.3NA Plan Apochromat oil immersion objective lens (Leica Microsystems CMS) 730 GmbH, Germany). 405 Diode, Argon 488 and He-Ne 647 laser lines were applied to excite 731 the samples and tunable emissions were used to minimize crosstalk between 732 fluorochromes. Images were captured with photomultiplier detectors and prepared with the 733 LAS AF software version 2.7 (Leica Microsystems CMS GmbH, Germany). A 3D projected 734 image was created by Z-stack of images taken at 1.0-0.5-micron intervals to create a 735 movie by Imaris version 7.6 (Bitplane AG, Switzerland) (video).

736

737 Statistical analysis. The protein levels of MDMX, PICALM, OT-R and V1aR were 738 analyzed for univariable and multivariable associations by linear regression using the R 739 statistical program (https://www.r-project.org, 4.1.3). Parsimonious multivariable models 740 were selected using Akaike's Information Criteria with a stepwise selection procedure 741 (StepAIC in the MASS package of R) and were run with covariates that were identified as 742 statistically significant in univariable analysis. A p-value of less than 0.05 was considered 743 statistically significant. Violin plots were made by R statistical program, and data Figures 744 and graphs were assembled using Fiji ImageJ, GraphPad Prism 9.4.0, Adobe Illustrator 745 and Windows Office365 software. To test the robustness of results to the specific 746 datapoints included in the analysis, bootstrapped resampling (with replacement) was used 747 to generate 1000 replicate datasets, upon which regression analyses were redone. 748 Results of bootstrapped resampled analyses were summarized and compared to the full 749 dataset to characterize consistency of point estimates and patterns of statistical 750 significance. Pearson correlation coefficients were used to characterize correlation of 751 protein measurements with each other.

752

### 753 Acknowledgements

This study was supported by the Department of Obstetrics and Gynecology at the University of South Florida and research funds from Tampa General Hospital (AEA) and the Teasley Foundation (TJR). The WMIF images were obtained by the Analytic Microscopy Core Facility at the H. Lee Moffitt Cancer Center & Research Institute, an NCI designated Comprehensive Cancer Center (P30-CA076292). We thank Umit A. Kayisli for

advice on IHC, and Santo V. Nicosia and Greg Arsenis for reading the manuscript andcomments.

761

# 762 Author contributions

763 JCMT conceived the study, performed most wet chemistry experiments, and wrote the first 764 draft of the manuscript in consultation with VNU and RRM. SJH, RGS, and EPN recruited 765 patients, collected, and interpreted clinical data in consultation with TSS, TJR, AEA, and 766 MLA. DC performed proteomic analyses. MO assisted in the analysis of western blot data 767 and confocal and WMIF experiments. SA and NS performed IHC experiments. AG 768 performed and interpreted IGEM. PS and JC synthesized OT-R and V1aR peptides. DATC 769 performed analyses and statistical data presentation. All authors critically read and 770 approved the manuscript.

771

# 772 Competing interests

773 DATC declares a grant from Merck for research unrelated to this manuscript. The774 remaining authors declare no competing interests.

775

### 776 Data availability

777 The video of the chorionic villi is deposited at

- 778 https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fzenodo.org%2Frecord%2
- 779 F8160169%3Ftoken%3DeyJhbGciOiJIUzUxMiIsImV4cCI6MTY5MjMwOTU5OSwiaWF0IjoxNjg5
- 780 Njk3NDQzfQ.eyJkYXRhljp7InJIY2lkljo4MTYwMTY5fSwiaWQiOjM10DEzLCJybmQiOiJjMTlkOT
- 781 M2NCJ9.2OSYKMRxBpqO7afBKem\_S8HdQJgmbtnahLFTgJ\_5hoiK3wxcbB2fvuyqEPJ0PeTtF\_r
- 782 9f9Zuocr6LcfXPs2-
- 783 gw&data=05%7C01%7Ctsibris%40usf.edu%7C02564875fb61480dab4f08db87ae6fdb%7C741bf
- 784 7dee2e546df8d6782607df9deaa%7C0%7C0%7C638252955485880125%7CUnknown%7CTWF
- 785 pbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6lk1haWwiLCJXVCI6Mn0%3D%7
- 786 C3000%7C%7C%7C&sdata=iukZjlFOvoliQAdfd566alnMH33jLMz3TV%2BDqPv5Trk%3D&reser
- 787 ved=0.
- All MS raw files and corresponding results files will be deposited to the ProteomeXchange
- 789 Consortium via the PRIDE partner repository.
- 790

| 791        |    |                                                                                                                                                                                                             |
|------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 792        |    | REFERENCES                                                                                                                                                                                                  |
| 793        |    |                                                                                                                                                                                                             |
| 794        | 1  | Burton, G. J. & Fowden, A. L. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond                                                                                                        |
| 795        |    | <i>B Biol Sci</i> <b>370</b> , 20140066 (2015). <u>https://doi.org:10.1098/rstb.2014.0066</u>                                                                                                               |
| 796        | 2  | Burton, G. J., Redman, C. W., Roberts, J. M. & Moffett, A. Pre-eclampsia: pathophysiology and                                                                                                               |
| 797        |    | clinical implications. BMJ 366, I2381 (2019). https://doi.org:10.1136/bmj.I2381                                                                                                                             |
| 798        | 3  | Aplin, J. D., Myers, J. E., Timms, K. & Westwood, M. Tracking placental development in health and                                                                                                           |
| 799        |    | disease. Nat Rev Endocrinol 16, 479-494 (2020). <u>https://doi.org:10.1038/s41574-020-0372-6</u>                                                                                                            |
| 800        | 4  | Shibuya, M. VEGFR and type-V RTK activation and signaling. Cold Spring Harbor perspectives in                                                                                                               |
| 801        |    | biology 5, a009092 (2013). <u>https://doi.org:10.1101/cshperspect.a009092</u>                                                                                                                               |
| 802        | 5  | Peach, C. J. et al. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2.                                                                                                            |
| 803        |    | Int J Mol Sci 19 (2018). https://doi.org:10.3390/ijms19041264                                                                                                                                               |
| 804        | 6  | Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF                                                                                                                   |
| 805        |    | receptor signalling. Nature reviews. Molecular cell biology 17, 611-625 (2016).                                                                                                                             |
| 806        |    | https://doi.org:10.1038/nrm.2016.87                                                                                                                                                                         |
| 807        | 7  | Qu, H. & Khalil, R. A. Vascular mechanisms and molecular targets in hypertensive pregnancy and                                                                                                              |
| 808        |    | preeclampsia. Am J Physiol Heart Circ Physiol <b>319</b> , H661-H681 (2020).                                                                                                                                |
| 809        | •  | https://doi.org:10.1152/ajpheart.00202.2020                                                                                                                                                                 |
| 810        | 8  | Roberts, J. M. <i>et al.</i> Subtypes of Preeclampsia: Recognition and Determining Clinical Usefulness.                                                                                                     |
| 811        | 0  | Hypertension <b>77</b> , 1430-1441 (2021). <u>https://doi.org:10.1161/HYPERTENSIONAHA.120.14781</u>                                                                                                         |
| 812<br>813 | 9  | Mincheva-Nilsson, L. Immunosuppressive Protein Signatures Carried by Syncytiotrophoblast-                                                                                                                   |
| 814        |    | Derived Exosomes and Their Role in Human Pregnancy. Front Immunol <b>12</b> , 717884 (2021).                                                                                                                |
| 815        | 10 | https://doi.org:10.3389/fimmu.2021.717884                                                                                                                                                                   |
| 816        | 10 | Ormazabal, V., Nair, S., Carrion, F., McIntyre, H. D. & Salomon, C. The link between gestational diabetes and cardiovascular diseases: potential role of extracellular vesicles. <i>Cardiovasc Diabetol</i> |
| 817        |    | <b>21</b> , 174 (2022). https://doi.org:10.1186/s12933-022-01597-3                                                                                                                                          |
| 818        | 11 | Morelli, A. E. & Sadovsky, Y. Extracellular vesicles and immune response during pregnancy: A                                                                                                                |
| 819        | 11 | balancing act. <i>Immunol Rev</i> (2022). https://doi.org:10.1111/imr.13074                                                                                                                                 |
| 820        | 12 | Kugeratski, F. G., Santi, A. & Zanivan, S. Extracellular vesicles as central regulators of blood vessel                                                                                                     |
| 821        |    | function in cancer. <i>Science signaling</i> <b>15</b> , eaaz4742 (2022).                                                                                                                                   |
| 822        |    | https://doi.org:10.1126/scisignal.aaz4742                                                                                                                                                                   |
| 823        | 13 | Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science <b>347</b> , 1260419                                                                                                           |
| 824        |    | (2015). https://doi.org:10.1126/science.1260419                                                                                                                                                             |
| 825        | 14 | Wang, D. <i>et al.</i> A deep proteome and transcriptome abundance atlas of 29 healthy human tissues.                                                                                                       |
| 826        |    | Mol Syst Biol 15, e8503 (2019). https://doi.org:10.15252/msb.20188503                                                                                                                                       |
| 827        | 15 | Di Meo, A. et al. Proteomic Profiling of the Human Tissue and Biological Fluid Proteome. J Proteome                                                                                                         |
| 828        |    | Res 20, 444-452 (2021). <u>https://doi.org:10.1021/acs.jproteome.0c00502</u>                                                                                                                                |
| 829        | 16 | Manna, S. et al. A proteomic profile of the healthy human placenta. Clin Proteomics 20, 1 (2023).                                                                                                           |
| 830        |    | https://doi.org:10.1186/s12014-022-09388-4                                                                                                                                                                  |
| 831        | 17 | Klein, A. M., de Queiroz, R. M., Venkatesh, D. & Prives, C. The roles and regulation of MDM2 and                                                                                                            |
| 832        |    | MDMX: it is not just about p53. <i>Genes Dev</i> (2021). <u>https://doi.org:10.1101/gad.347872.120</u>                                                                                                      |
| 833        | 18 | Sharp, A. N. et al. Preeclampsia is associated with alterations in the p53-pathway in villous                                                                                                               |
| 834        |    | trophoblast. PLoS One 9, e87621 (2014). <u>https://doi.org:10.1371/journal.pone.0087621</u>                                                                                                                 |
| 835        | 19 | Tebar, F., Bohlander, S. K. & Sorkin, A. Clathrin assembly lymphoid myeloid leukemia (CALM)                                                                                                                 |
| 836        |    | protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of                                                                                                               |

837 overexpression on clathrin-mediated traffic. *Mol Biol Cell* **10**, 2687-2702 (1999). 838 https://doi.org:10.1091/mbc.10.8.2687

- Ando, K. *et al.* PICALM and Alzheimer's Disease: An Update and Perspectives. *Cells* 11 (2022).
   <u>https://doi.org:10.3390/cells11243994</u>
- 841 21 Buhimschi, I. A. *et al.* Protein misfolding, congophilia, oligomerization, and defective amyloid
  842 processing in preeclampsia. *Science translational medicine* 6, 245ra292 (2014).
  843 <u>https://doi.org:10.1126/scitranslmed.3008808</u>
- 84422Meyerowitz, J. G. *et al.* The oxytocin signaling complex reveals a molecular switch for cation845dependence. Nat Struct Mol Biol (2022). <a href="https://doi.org/10.1038/s41594-022-00728-4">https://doi.org/10.1038/s41594-022-00728-4</a>
- Jurek, B. & Neumann, I. D. The Oxytocin Receptor: From Intracellular Signaling to Behavior. *Physiol Rev* 98, 1805-1908 (2018). <u>https://doi.org:10.1152/physrev.00031.2017</u>
- 84824Dekan, Z. et al. Nature-inspired dimerization as a strategy to modulate neuropeptide849pharmacology exemplified with vasopressin and oxytocin. Chem Sci 12, 4057-4062 (2021).850https://doi.org:10.1039/d0sc05501h
- Liu, X., Luo, D., Zhang, J. & Du, L. Distribution and relative expression of vasoactive receptors on arteries. *Sci Rep* 10, 15383 (2020). <u>https://doi.org:10.1038/s41598-020-72352-5</u>
- 85326Zeng, J. *et al.* Target-induced clustering activates Trim-Away of pathogens and proteins. Nat Struct854Mol Biol 28, 278-289 (2021). <a href="https://doi.org/10.1038/s41594-021-00560-2">https://doi.org/10.1038/s41594-021-00560-2</a>
- 855 27 Domingues, I., Rino, J., Demmers, J. A., de Lanerolle, P. & Santos, S. C. VEGFR2 translocates to the 856 nucleus to regulate its own transcription. PLoS One 6, e25668 (2011). 857 https://doi.org:10.1371/journal.pone.0025668
- 85828Collier, A. Y., Smith, L. A. & Karumanchi, S. A. Review of the immune mechanisms of preeclampsia859and the potential of immune modulating therapy. Hum Immunol 82, 362-370 (2021).860https://doi.org:10.1016/j.humimm.2021.01.004
- Streicher, K. *et al.* The plasma cell signature in autoimmune disease. *Arthritis & rheumatology*(Hoboken, N.J.) 66, 173-184 (2014). <u>https://doi.org:10.1002/art.38194</u>
- 30 Gafencu, A., Heltianu, C., Burlacu, A., Hunziker, W. & Simionescu, M. Investigation of IgG receptors
   864 expressed on the surface of human placental endothelial cells. *Placenta* 24, 664-676 (2003).
   865 <u>https://doi.org:10.1016/s0143-4004(03)00041-9</u>
- 866 31 Hu, L. *et al.* Identification of a novel heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1)
  867 ligand that disrupts HnRNPA2B1/nucleic acid interactions to inhibit the MDMX-p53 axis in gastric
  868 cancer. *Pharmacol Res* 189, 106696 (2023). https://doi.org:10.1016/j.phrs.2023.106696
- 86932Liu, C., Kellems, R. E. & Xia, Y. Inflammation, Autoimmunity, and Hypertension: The Essential Role870ofTissueTransglutaminase.AmJHypertens**30**, 756-764 (2017).871https://doi.org:10.1093/ajh/hpx027
- 872 33 Reyes, L. & Golos, T. G. Hofbauer Cells: Their Role in Healthy and Complicated Pregnancy. *Front Immunol* 9, 2628 (2018). <u>https://doi.org:10.3389/fimmu.2018.02628</u>
- 34 Zulu, M. Z., Martinez, F. O., Gordon, S. & Gray, C. M. The Elusive Role of Placental Macrophages:
  875 The Hofbauer Cell. *J Innate Immun* **11**, 447-456 (2019). <u>https://doi.org:10.1159/000497416</u>
- 87635Semmes, E. C. & Coyne, C. B. Innate immune defenses at the maternal-fetal interface. Curr Opin877Immunol 74, 60-67 (2021). https://doi.org:10.1016/j.coi.2021.10.007
- 878 36 Fakonti, G., Pantazi, P., Bokun, V. & Holder, B. Placental Macrophage (Hofbauer Cell) Responses to
  879 Infection During Pregnancy: A Systematic Scoping Review. *Front Immunol* 12, 756035 (2021).
  880 <u>https://doi.org:10.3389/fimmu.2021.756035</u>
- Ning, J., Zhang, M., Cui, D. & Yang, H. The pathologic changes of human placental macrophages in women with hyperglycemia in pregnancy. *Placenta* 130, 60-66 (2022).
   <u>https://doi.org:10.1016/j.placenta.2022.11.004</u>

- 88438Girsch, J. H. *et al.* Host-Viral Interactions at the Maternal-Fetal Interface. What We Know and What885We Need to Know. Frontiers (Boulder) 2 (2022). <a href="https://doi.org:10.3389/fviro.2022.833106">https://doi.org:10.3389/fviro.2022.833106</a>
- Lasch, M. *et al.* Isolation of Decidual Macrophages and Hofbauer Cells from Term Placenta-Comparison of the Expression of CD163 and CD80. *Int J Mol Sci* 23 (2022).
  https://doi.org:10.3390/ijms23116113
- Mercnik, M. H., Schliefsteiner, C., Fluhr, H. & Wadsack, C. Placental macrophages present distinct
   polarization pattern and effector functions depending on clinical onset of preeclampsia. *Front Immunol* 13, 1095879 (2022). <u>https://doi.org:10.3389/fimmu.2022.1095879</u>
- Mittelberger, J. *et al.* The programmed cell death protein 1 (PD1) and the programmed cell death ligand 1 (PD-L1) are significantly downregulated on macrophages and Hofbauer cells in the placenta of preeclampsia patients. *Journal of reproductive immunology* 157, 103949 (2023).
   https://doi.org:10.1016/j.jri.2023.103949
- Zinn, V. Z., Khatri, A., Mednieks, M. I. & Hand, A. R. Localization of cystic fibrosis transmembrane
  conductance regulator signaling complexes in human salivary gland striated duct cells. *Eur J Oral Sci* 123, 140-148 (2015). <u>https://doi.org:10.1111/eos.12184</u>
- Maron, B. A. *et al.* Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. *Nat Commun* **12**, 873 (2021). <u>https://doi.org:10.1038/s41467-021-21146-y</u>
- 90244Burton, G. J. & Jauniaux, E. The human placenta: new perspectives on its formation and function903during early pregnancy. Proc Biol Sci 290, 20230191 (2023).904https://doi.org:10.1098/rspb.2023.0191
- 90545Ozen, M. *et al.* Omics approaches: interactions at the maternal-fetal interface and origins of child906health and disease. *Pediatr Res*, 1-10 (2022). <a href="https://doi.org:10.1038/s41390-022-02335-x">https://doi.org:10.1038/s41390-022-02335-x</a>
- 90746Wang, H. et al. The ion channel TRPM7 regulates zinc depletion-induced MDMX degradation. J Biol908Chem, 101292 (2021). <a href="https://doi.org:10.1016/j.jbc.2021.101292">https://doi.org:10.1016/j.jbc.2021.101292</a>
- 90947Nadezhdin, K. D. *et al.* Structural mechanisms of TRPM7 activation and inhibition. *Nat Commun* 14,9102639 (2023). <a href="https://doi.org:10.1038/s41467-023-38362-3">https://doi.org:10.1038/s41467-023-38362-3</a>
- 91148Abiria, S. A. et al. TRPM7 senses oxidative stress to release Zn(2+) from unique intracellular vesicles.912Proc Natl Acad Sci U S A 114, E6079-E6088 (2017). <a href="https://doi.org:10.1073/pnas.1707380114">https://doi.org:10.1073/pnas.1707380114</a>
- 91349Yang, H., Kim, T. H., Lee, G. S., Hong, E. J. & Jeung, E. B. Comparing the expression patterns of914placental magnesium/phosphorus-transporting channels between healthy and preeclamptic915pregnancies. Mol Reprod Dev 81, 851-860 (2014). https://doi.org:10.1002/mrd.22353
- 91650Neiman, M. et al. Individual and stable autoantibody repertoires in healthy individuals.917Autoimmunity 52, 1-11 (2019). <a href="https://doi.org:10.1080/08916934.2019.1581774">https://doi.org:10.1080/08916934.2019.1581774</a>
- 91851Cheng, J. et al. TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT919pathway and PPP metabolism. Nat Commun 11, 1880 (2020). <a href="https://doi.org:10.1038/s41467-020-15819-3">https://doi.org:10.1038/s41467-020-</a>92015819-3
- 92152Park, J. S. *et al.* Mechanical regulation of glycolysis via cytoskeleton architecture. *Nature* 578, 621-922626 (2020). <a href="https://doi.org:10.1038/s41586-020-1998-1">https://doi.org:10.1038/s41586-020-1998-1</a>
- 92353Silva, J. A. F., Qi, X., Grant, M. B. & Boulton, M. E. Spatial and temporal VEGF receptor intracellular924trafficking in microvascular and macrovascular endothelial cells. Sci Rep 11, 17400 (2021).925https://doi.org:10.1038/s41598-021-96964-7
- 92654Sutendra, G. *et al.* A nuclear pyruvate dehydrogenase complex is important for the generation of927acetyl-CoA and histone acetylation.*Cell***158**, 84-97 (2014).928https://doi.org:10.1016/j.cell.2014.04.046
- 92955Kofler, N. *et al.* The Rab-effector protein RABEP2 regulates endosomal trafficking to mediate930vascular endothelial growth factor receptor-2 (VEGFR2)-dependent signaling. *J Biol Chem* 293,9314805-4817 (2018). <a href="https://doi.org:10.1074/jbc.M117.812172">https://doi.org:10.1074/jbc.M117.812172</a>

- 93256Zhou, H. J. *et al.* SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological<br/>angiogenesis. *Nat Commun* **9**, 3303 (2018). <a href="https://doi.org:10.1038/s41467-018-05812-2">https://doi.org:10.1038/s41467-018-05812-2</a>
- 934 57 Buvinic, S. *et al.* P2Y1 and P2Y2 receptor distribution varies along the human placental vascular
   935 tree: role of nucleotides in vascular tone regulation. *The Journal of physiology* 573, 427-443 (2006).
   936 <u>https://doi.org:10.1113/jphysiol.2006.105882</u>
- 93758Guan, J. et al. Therapeutic Ligands Antagonize Estrogen Receptor Function by Impairing Its938Mobility. Cell 178, 949-963 e918 (2019). <a href="https://doi.org/10.1016/j.cell.2019.06.026">https://doi.org/10.1016/j.cell.2019.06.026</a>
- 93959Mayer, B. et al. Vasopressin stimulates the proliferation and differentiation of red blood cell940precursors and improves recovery from anemia. Science translational medicine 9 (2017).941https://doi.org:10.1126/scitranslmed.aao1632
- 94260Lam, L. K. M. et al. DNA binding to TLR9 expressed by red blood cells promotes innate immune943activation and anemia. Science translational medicine13, eabj1008 (2021).944https://doi.org:10.1126/scitranslmed.abj1008
- 94561Calderon-Garciduenas, L. *et al.* Environmental Nanoparticles Reach Human Fetal Brains.946Biomedicines 10 (2022). <a href="https://doi.org:10.3390/biomedicines10020410">https://doi.org:10.3390/biomedicines10020410</a>
- 94762Kerby, A. et al. Placental Morphology and Cellular Characteristics in Stillbirths in Women With948Diabetes and Unexplained Stillbirths. Arch Pathol Lab Med 145, 82-89 (2021).949https://doi.org:10.5858/arpa.2019-0524-OA
- Biggin Biggin
- 95264Mancini, F. et al. MDM4 actively restrains cytoplasmic mTORC1 by sensing nutrient availability.953Mol Cancer 16, 55 (2017). <a href="https://doi.org:10.1186/s12943-017-0626-7">https://doi.org:10.1186/s12943-017-0626-7</a>
- 95465Amin, M., Wu, R. & Gragnoli, C. Novel Risk Variants in the Oxytocin Receptor Gene (OXTR) Possibly955Linked to and Associated with Familial Type 2 Diabetes. Int J Mol Sci 24 (2023).956https://doi.org:10.3390/ijms24076282
- 95766Huang, Y. *et al.* Improving immune-vascular crosstalk for cancer immunotherapy. *Nat Rev Immunol*95818, 195-203 (2018). <a href="https://doi.org/10.1038/nri.2017.145">https://doi.org/10.1038/nri.2017.145</a>
- 959
   67
   Kao, K. C., Vilbois, S., Tsai, C. H. & Ho, P. C. Metabolic communication in the tumour-immune 960
   microenvironment. Nat Cell Biol 24, 1574-1583 (2022). <a href="https://doi.org/10.1038/s41556-022-01002-x">https://doi.org/10.1038/s41556-022-961
- 96268Zheng, W. et al. Manipulation of the crosstalk between tumor angiogenesis and963immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-<br/>angiogenesis and immune checkpoint blockade. Front Immunol 13, 1035323 (2022).965https://doi.org:10.3389/fimmu.2022.1035323
- 96669Spiliopoulos, M. et al. Characterizing placental stiffness using ultrasound shear-wave elastography967in healthy and preeclamptic pregnancies. Arch Gynecol Obstet **302**, 1103-1112 (2020).968https://doi.org:10.1007/s00404-020-05697-x
- 96970Mancini, F., Giorgini, L., Teveroni, E., Pontecorvi, A. & Moretti, F. Role of Sex in the Therapeutic970Targeting of p53 Circuitry. Front Oncol 11, 698946 (2021).971https://doi.org:10.3389/fonc.2021.698946
- 972 71 Swetzig, W. M., Wang, J. & Das, G. M. Estrogen receptor alpha (ERalpha/ESR1) mediates the p53973 independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. *Oncotarget* 7, 16049-16069 (2016). <a href="https://doi.org:10.18632/oncotarget.7533">https://doi.org:10.18632/oncotarget.7533</a>
- 97572Berkane, N. *et al.* From Pregnancy to Preeclampsia: A Key Role for Estrogens. *Endocr Rev* 38, 123-976144 (2017). <a href="https://doi.org:10.1210/er.2016-1065">https://doi.org:10.1210/er.2016-1065</a>
- 97773Jobe, S. O., Tyler, C. T. & Magness, R. R. Aberrant synthesis, metabolism, and plasma accumulation978of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular

| 979  |    | dysfunction.                    | Hypertension                                | 61,                       | 480-487                        | (2013).                |
|------|----|---------------------------------|---------------------------------------------|---------------------------|--------------------------------|------------------------|
| 980  |    | •                               | 161/HYPERTENSIONAHA.1                       | -                         |                                | ( /                    |
| 981  | 74 | Zhu, D., Su, Y., Fu, B          | 8. & Xu, H. Magnesium Red                   | uces Blood-Brain          | Barrier Permeability           | and Regulates          |
| 982  |    | Amyloid-beta Trans              | cytosis. Mol Neurobiol 55,                  | 7118-7131 (201            | 8). <u>https://doi.org:10.</u> | 1007/s12035-           |
| 983  |    | <u>018-0896-0</u>               |                                             |                           |                                |                        |
| 984  | 75 | Hentschke, M. R. <i>et</i>      | t al. Is the atherosclerotic p              | henotype of pre           | eeclamptic placentas o         | due to altered         |
| 985  |    | lipoprotein concent             | rations and placental lipop                 | rotein receptors          | ? Role of a small-for-ge       | estational-age         |
| 986  |    | phenotype. J Lipid F            | Res <b>54</b> , 2658-2664 (2013). <u>†</u>  | https://doi.org:1         | 0.1194/jlr.M036699             |                        |
| 987  | 76 | Zhang, S., Cao, F., L           | i, W. & Abumaria, N. TRPN                   | 17 kinase activity        | y induces amyloid-bet          | a degradation          |
| 988  |    | to reverse synaptic             | and cognitive deficits in mo                | use models of A           | lzheimer's disease. Sci        | ence signaling         |
| 989  |    | <b>16</b> , eade6325 (2023      | 3). <u>https://doi.org:10.1126/</u>         | scisignal.ade632          | <u>25</u>                      |                        |
| 990  | 77 | Ryan, C. P. <i>et al.</i> Re    | production predicts shorte                  | r telomeres and           | epigenetic age accele          | ration among           |
| 991  |    | young adult womer               | n. <i>Sci Rep</i> <b>8</b> , 11100 (2018).  | <u> https://doi.org:1</u> | .0.1038/s41598-018-2           | 9486-4                 |
| 992  | 78 | Richmond, R. C., Su             | derman, M., Langdon, R., R                  | elton, C. L. & Da         | vey Smith, G. DNA me           | thylation as a         |
| 993  |    | marker for prena                | tal smoke exposure in                       | adults. Int J             | Epidemiol <b>47</b> , 1120-    | 1130 (2018).           |
| 994  |    | https://doi.org:10.1            | <u>1093/ije/dyy091</u>                      |                           |                                |                        |
| 995  | 79 | Ryan, C. P. <i>et al.</i> Im    | mune cell type and DNA m                    | ethylation vary           | with reproductive stat         | us in women:           |
| 996  |    | possible pathways               | for costs of reproducti                     | on. Evol Med              | Public Health 10, 4            | 17-58 (2022).          |
| 997  |    | https://doi.org:10.1            | 1093/emph/eoac003                           |                           |                                |                        |
| 998  | 80 | Ghanim, H. <i>et al.</i> Re     | eduction in inflammation a                  | nd the expressio          | on of amyloid precurso         | or protein and         |
| 999  |    | other proteins rela             | ted to Alzheimer's disease                  | following gastr           | ic bypass surgery. J C         | lin Endocrinol         |
| 1000 |    | Metab <b>97</b> , E1197-12      | 201 (2012). <u>https://doi.org</u>          | :10.1210/jc.2011          | <u>1-3284</u>                  |                        |
| 1001 | 81 | Hinney, A. <i>et al.</i> Ge     | netic variation at the CELF                 | 1 (CUGBP, elav-           | like family member 1           | gene) locus is         |
| 1002 |    | genome-wide assoc               | ciated with Alzheimer's dise                | ease and obesity          | . Am J Med Genet B N           | europsychiatr          |
| 1003 |    | Genet <b>165B</b> , 283-29      | 93 (2014). <u>https://doi.org:1</u>         | 0.1002/ajmg.b.3           | 32234                          |                        |
| 1004 | 82 | Behura, S. K. <i>et a</i>       | <i>l.</i> The brain-placental axi           | s: Therapeutic            | and pharmacological            | relevancy to           |
| 1005 |    | pregnancy. Pharma               | col Res <b>149</b> , 104468 (2019)          | . https://doi.org         | <u>;:10.1016/j.phrs.2019.</u>  | 104468                 |
| 1006 | 83 | Mairesse, J. <i>et al.</i> Ox   | xytocin receptor agonist rec                | duces perinatal b         | orain damage by target         | ting microglia.        |
| 1007 |    | Glia <b>67</b> , 345-359 (20    | 019). <u>https://doi.org:10.10</u>          | 02/glia.23546             |                                |                        |
| 1008 | 84 | Shook, L. L., Sullivar          | n, E. L., Lo, J. O., Perlis, R. H.          | & Edlow, A. G. C          | COVID-19 in pregnancy          | : implications         |
| 1009 |    | for fetal brai                  | in development. <i>Tre</i>                  | ends Mol                  | Med 28, 319-3                  | 30 (2022).             |
| 1010 |    | https://doi.org:10.1            | 1016/j.molmed.2022.02.00                    | <u>4</u>                  |                                |                        |
| 1011 | 85 | Lazarov, T., Juarez-(           | Carreno, S., Cox, N. & Geiss                | mann, F. Physio           | logy and diseases of ti        | issue-resident         |
| 1012 |    | macrophages. Natu               | re <b>618</b> , 698-707 (2023). <u>ht</u> i | tps://doi.org:10.         | 1038/s41586-023-060            | <u>002-x</u>           |
| 1013 | 86 | Erickson, E. N., My             | yatt, L., Danoff, J. S., Kro                | l, K. M. & Con            | nelly, J. J. Oxytocin r        | eceptor DNA            |
| 1014 |    | methylation is asso             | ociated with exogenous o                    | xytocin needs o           | during parturition and         | d postpartum           |
| 1015 |    | hemorrhage. Comm                | nun Med (Lond) <b>3</b> , 11 (2023          | ). https://doi.or         | g:10.1038/s43856-023           | <u>3-00244-6</u>       |
| 1016 | 87 | Liang, Y., Duan, L., L          | u, J. & Xia, J. Engineering ex              | osomes for targ           | eted drug delivery. Th         | eranostics <b>11</b> , |
| 1017 |    | 3183-3195 (2021).               | https://doi.org:10.7150/th                  | <u>10.52570</u>           |                                |                        |
| 1018 | 88 | Stelzer, I. A. <i>et al.</i> In | tegrated trajectories of the                | e maternal meta           | bolome, proteome, an           | id immunome            |
| 1019 |    | predict labor                   | onset. Science                              | translational             | medicine 1                     | <b>3</b> (2021).       |
| 1020 |    | https://doi.org:10.1            | 126/scitranslmed.abd9898                    | <u>3</u>                  |                                |                        |
| 1021 | 89 | Aghaeepour, N. e                | et al. An immune clock                      | of human pr               | egnancy. Sci Immun             | ol <b>2</b> (2017).    |
| 1022 |    | https://doi.org:10.1            | 126/sciimmunol.aan2946                      |                           |                                |                        |
| 1023 | 90 | Gomez-Lopez, N. e               | t al. Macrophages exert he                  | omeostatic actic          | ons in pregnancy to p          | rotect against         |
| 1024 |    | preterm birth                   | and fetal inflamn                           | natory injury             | . JCI Insight                  | <b>6</b> (2021).       |
| 1025 |    | https://doi.org:10.1            | 172/jci.insight.146089                      |                           |                                |                        |
|      |    |                                 |                                             |                           |                                |                        |

- 102691Rackaityte, E. & Halkias, J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front1027Immunol 11, 588 (2020). <a href="https://doi.org/10.3389/fimmu.2020.00588">https://doi.org/10.3389/fimmu.2020.00588</a>
- 102892Miller, D. et al. Single-Cell Immunobiology of the Maternal-Fetal Interface. J Immunol 209, 1450-10291464 (2022). <a href="https://doi.org:10.4049/jimmunol.2200433">https://doi.org:10.4049/jimmunol.2200433</a>
- 103093Braitbard, O., Glickstein, H., Bishara-Shieban, J., Pace, U. & Stein, W. D. Competition between1031bound and free peptides in an ELISA-based procedure that assays peptides derived from protein1032digests. Proteome Sci 4, 12 (2006). <a href="https://doi.org:10.1186/1477-5956-4-12">https://doi.org:10.1186/1477-5956-4-12</a>
- 103394Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass1034spectrometric characterization of proteins and proteomes. Nat Protoc 1, 2856-2860 (2006).1035https://doi.org:10.1038/nprot.2006.468
- 103695Bushway, M. E. *et al.* Morphological and phenotypic analyses of the human placenta using whole1037mount immunofluorescence.*BiolReprod***90**,110 (2014).1038https://doi.org:10.1095/biolreprod.113.115915

#### Table 1.

#### Clinical characteristics of 47 patients in the study group.

**A.** Patient samples were labelled with a code consisting of a letter and 1, 2, 5, 6, 7 for non-preeclamptic, 3, 4 for preeclamptic patients or a Ho-number. **B**. Patients Ho-71, Ho-72 and Ho-73 provided placental samples for immunogold electron microscopy.

| A              |                |         |                            |              |      |      |              |    |                  |                      |            |                        |
|----------------|----------------|---------|----------------------------|--------------|------|------|--------------|----|------------------|----------------------|------------|------------------------|
| Patient        | Age Range      | Gravida | Gestational Age<br>(weeks) | BMI in L&D   | Race | cHTN | Preeclampsia | DM | Delivery<br>Mode | Pitocin pre-delivery | Sex<br>F=1 | Neonatal<br>weight (g) |
| H1             | 21-25          | 1       | 38.0                       | 30.0         | 6    | 0    | 0            | 0  | 1                | 1                    | 1          | 2,940                  |
| H2             | 21-25          | 2       | 37.0                       | 24.0         | 8    | 0    | 0            | 0  | 1                | NA                   | 2          | 2,590                  |
| H3             | 31-35          | 2       | 37.0                       | 32.0         | 8    | 0    | 1            | 0  | 1                | NA                   | 1          | 3,040                  |
| I-1            | 21-25          | 3       | 38.0                       | 34.0         | 2    | 0    | 0            | 0  | 3                | 1                    | 2          | 2,631                  |
| I-2            | 21-25          | 1       | 42.0                       | 30.0         | 1    | 0    | 0            | 0  | 1                | 1                    | 2          | 3,759                  |
| I-3            | 26-30          | 8       | 35.0                       | 34.0         | 2    | 0    | 1            | 2  | 2                | 0                    | 2          | 3,195                  |
| I-4            | 18-20          | 1       | 36.6                       | 41.0         | 8    | 0    | 1            | 0  | 3                | 0                    | 1          | 3,335                  |
| J-1            | 26-30          | 2       | 39.0                       | 25.0         | 8    | 0    | 0            | 0  | 3                | 0                    | 2          | 3,300                  |
| J-2            | 36-40          | 2       | 37.4                       | 22.0         | 1    | 0    | 0            | 0  | 1                | 1                    | 1          | 3,460                  |
| J-3            | 26-30          | 3       | 38.5                       | 28.0         | 1    | 0    | 1            | 3  | 3                | <u>1</u>             | 2          | 3,630                  |
| L1             | 21-25          | 1       | 39.0                       | 24.0         | 3    | 0    | 0            | 0  | 3                | 0                    | 1          | 3,147                  |
| L2             | 18-20          | 1       | 39.0                       | 29.0         | 6    | 0    | 0            | 0  | 1                | 1                    | 1          | 2,920                  |
| L3             | 21-25          | 3       | 35.0                       | 30.0         | 2    | 0    | 1            | 0  | 2                | 0                    | 2          | 2,235                  |
| L4             | 26-30          | 3       | 40.0                       | 29.0         | 8    | 0    | 1            | 0  | 1                | NA                   | 1          | 3,010                  |
| M1             | 21-25          | 3       | 40.1                       | 55.0         | 2    | 0    | 0            | 0  | 2                | 0                    | 1          | 3,795                  |
| M3             | 18-20          | 2       | 37.0                       | 31.3         | 8    | 0    | 1            | 0  | 2                | 0                    | 1          | 3,490                  |
| M4             | 26-30          | 1       | 40.1                       | 39.8         | 8    | 0    | 1            | 0  | 1                | 1                    | 2          | 3,380                  |
| N1             | 31-35          | 4       | 39.1                       | 30.0         | 8    | 0    | 0            | 2  | 2                | 0                    | 2          | 3,800                  |
| N2             | 31-35          | 2       | 39.3                       | 32.8         | 8    | 0    | 0            | 0  | 2                | 0                    | 1          | 3,180                  |
| N3             | 31-35          | 2       | 39.0                       | 35.5         | 8    | 0    | 1            | 0  | 2                | 0                    | 2          | 3,390                  |
| N4             | 18-20          | 2       | 36.4                       | 29.5         | 1    | 0    | 1            | 0  | 3                | 1                    | 2          | 3,510                  |
| 01             | 21-25          | 2       | 39.3                       | 26.2         | 1    | 0    | 0            | 0  | 4                | 1                    | 1          | 2,960                  |
| 02             | 21-25          | 1       | 38.4                       | 34.8         | 1    | 0    | 0            | 0  | 1                | 1                    | 1          | 2,940                  |
| 03             | 26-30          | 1       | 37.1                       | 29.5         | 1    | 0    | 1            | 0  | 1                | 1                    | 1          | 2,800                  |
| 04             | 21-25          | 3       | 40.3                       | 52.5         | 1    | 0    | 1            | 0  | 3                | 1                    | 2          | 3,575                  |
| O5             | 36-40          | 4       | 39.1                       | 50.4         | 8    | 0    | 0            | 3  | 2                | 0                    | 2          | 4,295                  |
| 07             | 32-35          | 12      | 39.3                       | 35.2         | 2    | 0    | 0            | 0  | 2                | 0                    | 1          | 3,780                  |
| Q1             | 21-25          | 2       | 37.0                       | 47.8         | 1    | 0    | 0            | 3  | 2                | 0                    | 1          | 3,885                  |
| Q2             | 31-35          | 4       | 39.1                       | 35.8         | 2    | 0    | 0            | 3  | 2                | 0                    | 1          | 3,390                  |
| Q3             | 26-30          | 2       | 37.2                       | 66.7         | 1    | 1    | 1            | 0  | 3                | 1                    | 2          | 3,375                  |
| Q4             | 31-35          | 4       | 39.1                       | 77.2         | 2    | 0    | 1            | 3  | 2                | 0                    | 2          | 3,835                  |
| R3             | 21-25          | 1       | 37.6                       | 49.5         | 1    | 1    | 1            | 0  | 1                | 1                    | 2          | 2,560                  |
| R4             | 26-30          | 4       | 39.1                       | 29.8         | 2    | 0    | 1            | 2  | 3                | 1                    | 1          | 3,960                  |
| R5             | 21-25          | 6       | 39.0                       | 30.9         | 2    | 0    | 0            | 0  | 2                | 0                    | 1          | 3,205                  |
| S1             | 26-30          | 2       | 37.4                       | 46.2         | 8    | 0    | 0            | 2  | 2                | 0                    | 2          | 4,675                  |
| S2             | 26-30          | 3<br>5  | 37.5                       | 42.2         | 1    | 0    | 0            | 2  | 2                | 0                    | 1          | 4,600                  |
| T1<br>T2       | 26-30          | 5<br>1  | 38.0<br>39.1               | 41.9         | 1    | 0    | 0            | 2  | 2                | 0                    | 1          | 3,090                  |
|                | 26-30          |         |                            | 53.3         | 2    | 1    | -            |    |                  | 0                    |            | 3,960                  |
| U1<br>U2       | 31-35<br>26-30 | 3       | 37.1<br>37.1               | 62.6<br>52.7 | 2    | 1    | 0            | 2  | 2                | 0                    | 2          | 4,440<br>5,020         |
| V1             |                | 5       | 37.1                       |              | 2    | 1    | 0            | 2  | 2                | 0                    | 2          | 2,720                  |
| V1<br>V2       | 36-40<br>36-40 | 2       | 37.1                       | 35.5<br>26.1 | 2    | 0    | 0            | 0  | 2                | 0                    | 2          | 4,150                  |
| V2<br>W1       | 18-20          | 1       | 39.2                       | 30.5         | 1    | 0    | 0            | 0  | 2                | 0                    | 2          | 3,470                  |
| W2             | 26-30          | 8       | 39.2                       | 51.7         | 2    | 1    | 0            | 0  | 2                | 0                    | <br>1      | 3,000                  |
| B              | 20-30          | 0       | 57.0                       | 51.7         | 2    |      | U            | U  | ۷                | 0                    | 1          | 3,000                  |
| Ho-71          | 31-35          | 6       | 37.1                       | N/A          | 2    | 0    | 0            | 0  | 2                | 0                    | 1          | 3,195                  |
| H0-71<br>H0-72 | 26-30          | 1       | 39.3                       | 29.4         | 2    | 0    | 0            | 3  | 2                | NA                   | 1          | 3,195                  |
| H0-72<br>H0-73 | 26-30          | 1       | 39.3                       | 29.4         | 2    | 0    | 1            | 3  | 1                | 1<br>1               | 2          | 2,780                  |
| 10-73          | 20-30          |         | 37.0                       | <u>ک</u> ۳.۱ | 0    | U    |              | U  | I                |                      | 2          | 2,100                  |

Abbreviations: *Race*: White 1, Black 2, Asian 3, Hispanic 8, unknown 6. *Chronic hypertension*: cHTN 1. *Preeclampsia* 1. *Diabetes (DM)*: Type-1 1, Type-2 2, Gestational 3. *Delivery mode*: Spontaneous vaginal delivery (SVD) 1, Cesarean delivery (CD) prior to the onset of labor 2, CD after the onset of labor 3, Vaginal birth after CD (VBAC) 4. Pitocin pre-delivery 1. *Fetal sex*: Female 1, Male 2. *L&D*: Labor and delivery suite. *NA*, not available. The number of patients in each category were as follows: Diabetes: 30 no, Type-2 9, Gestational 5. Preeclampsia: 28 no, 16 yes. Delivery Mode: SVD 12; CD prior to the onset of labor 23; CD after the onset of labor 9; VBAC 1.

#### Table 2

Proteins identified in VEGFR2 immunoprecipitations.

Placental extracts O4, O5, U1, and O7 were immunoprecipitated in one experiment.

| Majority Protein ID  | Protein                                                                      | Gene                 | Total Intensity            | Intensity<br>VEGFR2<br>O4 | Intensity<br>VEGFR2<br>05  | Intensity<br>VEGFR2<br>U1 | Intensity<br>VEGFR2<br>07 | Peptides |
|----------------------|------------------------------------------------------------------------------|----------------------|----------------------------|---------------------------|----------------------------|---------------------------|---------------------------|----------|
| P01857               | lg gamma-1 chain C region                                                    | IGHG1                | 24,993,000,000             |                           |                            | 4,017,600,000             |                           | 16       |
| O15151-5             | Protein Mdm4                                                                 | MDM4                 | 14,682,000,000             | 14,638,000,000            | 0                          | 21,714,000                | 22,289,000                | 14       |
| P01834               | Ig kappa chain C region                                                      | IGKC                 | 11,450,000,000             | 1,978,700,000             | 1,363,300,000              | 2,438,900,000             | 5,668,800,000             | 7        |
| A0A0B4J231           | Immunoglobulin lambda-like polypeptide 5;Ig lam                              | IGLL5                | 10,336,000,000             |                           |                            | 2,053,600,000             | 4,291,800,000             | 4        |
| P01871               | Ig mu chain C region                                                         | IGHM                 | 4,544,300,000              | 2,132,500,000             | 923,280,000                | 706,680,000               | 781,900,000               | 16       |
| P20073-2             | Annexin A7                                                                   | ANXA7                | 3,045,300,000              | 1,631,900,000             | 402,390,000                | 522,590,000               | 488,400,000               | 19       |
| P01624               | Ig kappa chain V-III region POM                                              | IGKV3D-15            | 2,885,700,000              | 707,630,000               | 775,800,000                |                           | 1,381,500,000             | 2        |
| A0A286YES1           | lg gamma-3 chain C region                                                    | IGHG3                | 2,266,900,000              | 1,322,900,000             | 493,150,000                | 239,480,000               | 211,400,000               | 14       |
| Q9Y6R7               | IgGFc-binding protein                                                        | FCGBP                | 1,815,700,000              | 1,201,900,000             | 310,570,000                | 246,590,000               | 56,630,000                | 50       |
| J3KT55               | Protein-tyrosine-phosphatase;Receptor-type tyro                              | PTPRM                | 1,604,700,000              | 511,350,000               | 129,960,000                | 380,380,000               | 582,970,000               | 1        |
| P01701               | Ig lambda chain V-I region NEW                                               | IGLV1-51             | 1,311,400,000              | 193,890,000               | 242,130,000                | 234,850,000               | 640,570,000               | 3        |
| P50995-2             | Annexin A11                                                                  | ANXA11               | 984,170,000                | 401,780,000               | 125,800,000                | 283,580,000               | 173,010,000               | 18       |
| P01583<br>P01709     | Ig kappa chain V-I region AU                                                 | IGKV1D-33<br>IGLV2-8 | 948,420,000                | 223,440,000               | 220,510,000                | 138,140,000               | 366,330,000               | 2<br>2   |
| P01709<br>P05783     | lg lambda chain V-II region MGC;<br>Keratin, type I cytoskeletal 18          | KRT18                | 640,270,000<br>610,030,000 | 48,724,000<br>342,270,000 | 120,690,000<br>114,070,000 | 169,210,000<br>75,571,000 | 301,660,000<br>78,111,000 | 2<br>19  |
| P35968               | Vascular endothelial growth factor receptor 2                                | KDR                  | 571,130,000                | 132,550,000               | 167,190,000                | 146,080,000               | 125,310,000               | 28       |
| A0A286YEY4           | Ig gamma-2 chain C region                                                    | IGHG2                | 460,180,000                | 213,440,000               | 63,593,000                 | 99,658,000                | 83,492,000                | 13       |
| A0A286YEY1           | lg alpha-1 chain C region                                                    | IGHA1                | 403,780,000                | 211,760,000               | 52,913,000                 | 85,992,000                | 53,116,000                | 6        |
| Q8WZ42               | Titin                                                                        | TTN                  | 396,070,000                | 215,440,000               | 31,243,000                 | 97,005,000                | 52,381,000                | 2        |
| A0A075B6K4           | lg lambda chain V-IV region Bau                                              | IGLV3-10             | 353,630,000                | 0                         | 105,060,000                | 0                         | 248,570,000               | 1        |
| P01602               | lg kappa chain V-I region HK102                                              | IGKV1-5              | 352,740,000                | 23,518,000                | 98,394,000                 | 83,336,000                | 147,490,000               | 1        |
| P07355               | Annexin A2;Annexin;Putative annexin A2-like pro                              | ANXA2                | 310,810,000                | 50,471,000                | 50,738,000                 | 48,427,000                | 161,170,000               | 9        |
| P0DP08               | Ig heavy chain V-II region NEWM;Ig heavy chain                               | IGHV4-61             | 304,360,000                | 139,200,000               | 44,252,000                 | 64,988,000                | 55,917,000                | 2        |
| A0A4W8ZXM2           | Immunoglobulin heavy variable 3-72                                           | IGHV3-72             | 293,310,000                | 149,140,000               | 29,272,000                 | 50,152,000                | 64,749,000                | 3        |
| A0A140T8W4           | Ras/Rap GTPase-activating protein SynGAP                                     | SYNGAP1              | 288,030,000                | 44,004,000                | 63,931,000                 | 66,499,000                | 113,600,000               | 1        |
| P01619               | lg kappa chain V-III region B6                                               | IGKV3D-20            | 270,720,000                | 61,855,000                | 116,270,000                | 75,359,000                | 17,241,000                | 3        |
| A0A0C4DH42           | Ig heavy chain V-III region BUT;Ig heavy chain V                             | IGHV3-66             | 262,750,000                | 165,010,000               | 39,894,000                 | 44,120,000                | 13,734,000                | 3        |
| A0A087WW87           | Ig kappa chain V-II region FR;Ig kappa chain V-II                            | IGKV2-40             | 253,710,000                | 36,751,000                | 64,720,000                 | 43,474,000                | 108,760,000               | 3        |
| P59666               | Neutrophil defensin 3;HP 3-56;Neutrophil defens                              | DEFA3                | 216,520,000                | 69,150,000                | 64,470,000                 | 3,576,200                 | 79,326,000                | 3        |
| P69905               | Hemoglobin subunit alpha                                                     | HBA1                 | 215,170,000                | 0                         | 0                          | 7,679,400                 | 207,490,000               | 3        |
| P68871               | Hemoglobin subunit beta;LVV-hemorphin-7;Spin                                 | HBB                  | 212,010,000                | 31,855,000                | 0                          | 8,761,200                 | 171,400,000               | 5        |
| A0A2R8Y804           | Catenin beta-1                                                               | CTNNB1               | 209,290,000                | 166,480,000               | 20,293,000                 | 22,516,000                | 0                         | 1        |
| H0Y2X5<br>P0DOY3     | Aldehyde dehydrogenase family 1 member A3                                    | ALDH1A3              | 208,040,000                | 81,161,000<br>71,942,000  | 28,288,000<br>14,393,000   | 92,767,000                | 5,824,900                 | 1        |
| P0D013<br>P17931     | Ig lambda-6 chain C region;Ig lambda-7 chain C                               | IGLC6<br>LGALS3      | 206,310,000                | 8,812,900                 |                            | 49,459,000                | 70,513,000                | 3<br>4   |
| P60709               | Galectin-3;Galectin<br>Actin, cytoplasmic 1;Actin, cytoplasmic 1, N-term     | ACTB                 | 177,750,000<br>169,720,000 | 77,252,000                | 12,846,000<br>11,135,000   | 37,357,000<br>41,447,000  | 118,730,000<br>39,882,000 | 4<br>7   |
| P0DP03               | Ig heavy chain V-III region CAM;Ig heavy chain V                             | IGHV3-23             | 161,210,000                | 84,420,000                | 37,310,000                 | 16,539,000                | 22,945,000                | 3        |
| P08670               | Vimentin                                                                     | VIM                  | 138,160,000                | 72,126,000                | 18,191,000                 | 31,138,000                | 16,707,000                | 14       |
| A0A0A0MRZ8           | lg kappa chain V-III region VG                                               | IGKV3D-11            | 111,170,000                | 34,909,000                | 76,260,000                 | 01,100,000                | 0                         | 1        |
| A0A075B6K5           | lg lambda chain V-III region LOI                                             | IGLV3-9              | 96,087,000                 | 25,060,000                | 23,281,000                 | 14,993,000                | 32,753,000                | 1        |
| A0A286YFJ8           | lg gamma-4 chain C region                                                    | IGHG4                | 87,485,000                 | 47,260,000                | 30,192,000                 | 1,565,900                 | 8,467,600                 | 9        |
| A0A075B6Z5           | T cell receptor alpha joining 4                                              | TRAJ4                | 81,903,000                 | 16,074,000                | 21,003,000                 | 0                         | 44,826,000                | 1        |
| Q96Q89-4             | Kinesin-like protein KIF20B                                                  | KIF20B               | 80,885,000                 | 35,045,000                | 8,063,900                  | 37,776,000                | 0                         | 1        |
| P31942-3             | Heterogeneous nuclear ribonucleoprotein H3                                   | HNRNPH3              | 80,200,000                 | 14,536,000                | 9,591,700                  | 10,848,000                | 45,224,000                | 4        |
| P0DP01               | Ig heavy chain V-I region HG3;Ig heavy chain V-I                             | IGHV1-3              | 75,366,000                 | 33,904,000                | 12,319,000                 | 16,686,000                | 12,457,000                | 1        |
| C9JA05               | Immunoglobulin J chain                                                       | JCHAIN               | 74,956,000                 | 6,239,800                 | 24,681,000                 | 8,971,600                 | 35,063,000                | 1        |
| A6NJ08               | Putative methyl-CpG-binding domain protein 3-lik                             | MBD3L5               | 72,585,000                 | 0                         | 0                          | 72,585,000                | 0                         | 1        |
| O43866               | CD5 antigen-like                                                             | CD5L                 | 67,251,000                 | 6,765,200                 | 12,049,000                 | 0                         | 48,437,000                | 3        |
| A0A075B6H9           | Immunoglobulin lambda variable 4-69                                          | IGLV4-69             | 66,271,000                 | 0                         | 23,139,000                 | 15,467,000                | 27,664,000                | 1        |
| A0A0C4DH31           | Ig heavy chain V-I region V35                                                | IGHV1-18             | 66,003,000                 | 33,480,000                | 6,768,000                  | 14,275,000                | 11,480,000                | 2        |
| Q8IZ41               | Ras and EF-hand domain-containing protein                                    | RASEF                | 63,614,000                 | 0                         | 0                          | 0                         | 63,614,000                | 1        |
| Q5JTQ6               | Alpha-catulin                                                                | CTNNAL1              | 57,823,000                 | 0                         | 0                          | 0                         | 57,823,000                | 1        |
| S4R460               | Immunoglobulin heavy variable 3/OR16-9                                       | IGHV3OR16-9          | 55,031,000                 | 38,287,000                | 3,882,000                  | 8,163,400                 | 4,697,800                 | 3        |
| P31943               | Heterogeneous nuclear ribonucleoprotein H;Hete                               | HNRNPH1              | 53,003,000                 | 27,450,000                | 6,928,200                  | 12,581,000                | 6,044,000                 | 8        |
| P01700<br>P69892     | lg lambda chain V-I region HA<br>Hemoglobin subunit gamma-2;Hemoglobin subur | IGLV1-47<br>HBG2     | 52,593,000<br>51,210,000   | 4,428,100<br>4,832,700    | 9,274,400<br>6,432,400     | 10,578,000<br>4,039,100   | 28,313,000<br>35,906,000  | 2<br>2   |
| Q01469               | Fatty acid-binding protein, epidermal                                        | FABP5                | 49,218,000                 | 9,923,200                 | 8,054,700                  | 6,476,700                 | 24,764,000                | 1        |
| A0A0C4DH38           | Immunoglobulin heavy variable 5-51                                           | IGHV5-51             | 47,777,000                 | 21,306,000                | 9,176,600                  | 9,526,200                 | 7,768,200                 | 2        |
| P06312               | lg kappa chain V-IV region                                                   | IGKV4-1              | 45,342,000                 | 3,210,900                 | 8,777,500                  | 9,179,900                 | 24,174,000                | 2        |
| A0A075B7B8           | 0 11                                                                         | IGHV30R16-12         | 42,463,000                 | 23,390,000                | 6,964,700                  | 8,836,000                 | 3,272,300                 | 2        |
| D6RF44               | Heterogeneous nuclear ribonucleoprotein D0                                   | HNRNPD               | 42,167,000                 | 25,423,000                | 6,531,800                  | 3,981,200                 | 6,231,100                 | 2        |
| P12314               | High affinity immunoglobulin gamma Fc receptor                               | FCGR1A               | 41,035,000                 | 21,744,000                | 3,306,900                  | 13,766,000                | 2,217,200                 | 4        |
| A0A075B6I0           | Immunoglobulin lambda variable 8-61                                          | IGLV8-61             | 36,318,000                 | 0                         | 15,369,000                 | 0                         | 20,949,000                | 1        |
| P01023               | Alpha-2-macroglobulin                                                        | A2M                  | 34,428,000                 | 24,712,000                | 0                          | 5,408,900                 | 4,307,000                 | 9        |
| M0R1R1               | Serine/threonine-protein kinase PAK 4                                        | PAK4                 | 33,472,000                 | 0                         | 0                          | 33,472,000                | 0                         | 1        |
| A0A1C7CYZ1           | Mitogen-activated protein kinase 15                                          | MAPK15               | 33,062,000                 | 6,944,400                 | 14,185,000                 | 7,347,000                 | 4,586,000                 | 1        |
| A0A0C4DGL8           | Haptoglobin;Haptoglobin alpha chain;Haptoglobi                               | HP                   | 32,080,000                 | 0                         | 0                          | 0                         | 32,080,000                | 2        |
| P05109               | Protein S100-A8;Protein S100-A8, N-terminally p                              | S100A8               | 29,241,000                 | 14,931,000                | 0                          | 10,002,000                | 4,308,000                 | 2        |
| Q03135               | Caveolin-1;Caveolin                                                          | CAV1                 | 28,128,000                 | 0                         | 0                          | 0                         | 28,128,000                | 2        |
| P01714               | Ig lambda chain V-III region SH                                              | IGLV3-19             | 26,041,000                 | 4,373,400                 | 0                          | 0                         | 21,668,000                | 1        |
| P19474               | E3 ubiquitin-protein ligase TRIM21                                           | TRIM21               | 25,255,000                 | 18,886,000                | 4,813,800                  | 1,555,300                 | 0                         | 4        |
| P62979               | Ubiquitin-40S ribosomal protein S27a;Ubiquitin;4                             | RPS27A               | 25,055,000                 | 1,656,300                 | 2,801,700                  | 7,174,300                 | 13,423,000                | 2        |
| P81605               | Dermcidin;Survival-promoting peptide;DCD-1                                   | DCD                  | 22,842,000                 | 12,716,000                | 3,502,900                  | 0                         | 6,623,700                 | 2        |
| P52594-2             | Arf-GAP domain and FG repeat-containing protei                               | AGFG1                | 22,167,000                 | 16,991,000                | 2,315,700                  | 2,860,400                 | 0                         | 1        |
| A0A0C4DH35           | Probable non-functional immunoglobulin                                       | IGHV3-35             | 20,964,000                 | 12,648,000                | 3,344,000                  | 2,850,000                 | 2,122,100                 | 1        |
| Q86VF2-5             | Isoform 5 of Immunoglobulin-like                                             | IGFN1                | 20,453,000                 | 4 268 800                 | 0                          | 0<br>0                    | 20,453,000                | 1        |
| K7EJT5<br>A0A0A0MSV6 | 60S ribosomal protein L22<br>Complement C1q subcomponent subunit B           | RPL22<br>C1QB        | 18,553,000<br>18,258,000   | 4,268,800<br>0            | 0<br>6,523,400             | 0                         | 14,284,000<br>11,734,000  | 2<br>2   |
| A0A075B6K0           | Ig lambda chain V-IV region Hil;Ig lambda chain \                            | IGLV3-16             | 18,172,000                 | 0                         | 4,095,500                  | 3,407,600                 | 10,669,000                | 2        |
| P06702               | Protein S100-A9                                                              | S100A9               | 17,656,000                 | 10,525,000                | 4,095,500                  | 7,131,300                 | 10,009,000                | 2        |
| F8W0I9               | Microspherule protein 1                                                      | MCRS1                | 16,973,000                 | 16,973,000                | 0                          | 7,131,500                 | 0                         | 1        |
| P48741               | Putative heat shock 70 kDa protein 7;Heat shock                              | HSPA7                | 15,835,000                 | 7,272,600                 | 1,230,000                  | 4,196,900                 | 3,135,800                 | 2        |
|                      |                                                                              |                      | ,                          | .,212,000                 | .,200,000                  | .,100,000                 | 0,100,000                 | -        |

| P04430     | lg kappa chain V-I region BAN                     | IGKV1-16  | 15,155,000             | 0          | 1,349,600           | 3,349,700 | 10,456,000 | 1      |
|------------|---------------------------------------------------|-----------|------------------------|------------|---------------------|-----------|------------|--------|
| O75594     | Peptidoglycan recognition protein 1               | PGLYRP1   | 14,595,000             | 2,156,900  | 2,885,000           | 0         | 9,552,700  | 1      |
| P01599     | lg kappa chain V-I region Gal                     | IGKV1-17  | 14,133,000             | 1,638,200  | 1,801,900           | 5,586,300 | 5,106,400  | 1      |
| A0A6Q8PHQ9 | Prelamin-A/C;Lamin-A/C                            | LMNA      | 13,477,000             | 10,473,000 | 0                   | 990,760   | 2,014,100  | 3      |
| F8WCU1     | Coiled-coil domain-containing protein 150         | CCDC150   | 13,165,000             | 13,165,000 | 0                   | 0         | 0          | 1      |
| P11021     | 78 kDa glucose-regulated protein                  | HSPA5     | 12,097,000             | 12,097,000 | 0                   | 0         | 0          | 3      |
| P10515     | Dihydrolipoyllysine-residue acetyltransferase cor | DLAT      | 11,577,000             | 0          | 0                   | 0         | 11,577,000 | 2      |
| A0A0C4DH73 | lg kappa chain V-I region Daudi;lg kappa chain ∖  | IGKV1-12  | 11,157,000             | 4,228,600  | 3,358,000           | 0         | 3,570,100  | 1      |
| Q02413     | Desmoglein-1                                      | DSG1      | 11,044,000             | 6,539,700  | 4,504,100           | 0         | 0          | 4      |
| A0A2R8Y851 | 40S ribosomal protein S29                         | RPS29     | 10,819,000             | 0          | 0                   | 0         | 10,819,000 | 1      |
| E9PHT9     | Annexin;Annexin A5                                | ANXA5     | 10,757,000             | 0          | 0                   | 0         | 10,757,000 | 2      |
| P01766     | Ig heavy chain V-III region BRO                   | IGHV3-13  | 9,742,100              | 6,872,500  | 2,869,600           | 0         | 0          | 3      |
| I3L0Q1     | CREB-binding protein;Histone acetyltransferase    | CREBBP    | 9,408,100              | 9,408,100  | 0                   | 0         | 0          | 2      |
| A0A0A0MT36 | Immunoglobulin kappa variable 6D-21               | IGKV6D-21 | 9,327,900              | 0          | 0                   | 0         | 9,327,900  | 1      |
| P35030-5   | Trypsin-3                                         | PRSS3     | 8,538,700              | 4,010,200  | 0                   | 0         | 4,528,500  | 1      |
| P02747     | Complement C1q subcomponent subunit C             | C1QC      | 8,466,800              | 0          | 6,587,500           | 1,879,200 | 0          | 2      |
| A0A0B4J1V0 | Immunoglobulin heavy variable 3-15                | IGHV3-15  | 8,461,900              | 2,460,400  | 6,001,500           | 0         | 0          | 2      |
| C9JD14     | Guanine nucleotide-binding protein G(I)/G(S)/G(   | GNB4      | 8,022,200              | 0          | 0                   | 0         | 8,022,200  | 1      |
| A0A0C4DH68 | Immunoglobulin kappa variable 2-24                | IGKV2-24  | 7,515,800              | 7,515,800  | 0                   | 0         | 0          | 2      |
| Q5T3N1     | Annexin;Annexin A1                                | ANXA1     | 7,426,700              | 1,331,300  | 0                   | 803,800   | 5,291,600  | 2      |
| A0A0A0MRA5 | Heterogeneous nuclear ribonucleoprotein U-like    | HNRNPUL1  | 6,653,000              | 6,653,000  | 0                   | 0         | 0          | 3      |
| P0DP04     | Ig heavy chain V-III region DOB                   | IGHV3-43D | 6,600,800              | 0          | 3,028,100           | 3,572,700 | 0          | 3      |
| P02675     | Fibrinogen beta chain;Fibrinopeptide B;Fibrinoge  | FGB       | 6,128,300              | 6,128,300  | 0                   | 0         | 0          | 2      |
| Q9NZT1     | Calmodulin-like protein 5                         | CALML5    | 6,023,300              | 1.202.800  | 0                   | 4.408.400 | 412.040    | 3      |
| A0A0C4DH67 | Immunoglobulin kappa variable 1-8                 | IGKV1-8   | 5,877,100              | 2,421,000  | 3,456,100           | 0         | 0          | 1      |
| A0A2R8YD12 | Serpin B6                                         | SERPINB6  | 5,710,400              | 5,710,400  | 0                   | 0         | 0          | 1      |
| A0A0A0MRQ5 | Peroxiredoxin-2;Peroxiredoxin-1                   | PRDX1     | 5,706,700              | 0          | 0                   | 2.361.100 | 3,345,600  | 1      |
| Q5VVL7     | Lipoamide acyltransferase component of branche    | DBT       | 5.612.200              | 3,395,200  | 0                   | 2.217.000 | 0          | 1      |
| P06310     | lg kappa chain V-II region RPMI 6410              | IGKV2-30  | 5,336,000              | 0,000,200  | 0<br>0              | 2,017,100 | 3,318,900  | 2      |
| P50991     | T-complex protein 1 subunit delta                 | CCT4      | 4,474,800              | 0          | 0                   | 2,011,100 | 4,474,800  | 1      |
| A0A0C4DH36 | Probable non-functional immunoglobulin heavy v    | IGHV3-38  | 4,238,600              | 0          | 4,238,600           | 0<br>0    | 0          | 2      |
| P47929     | Galectin-7                                        | LGALS7    | 4,195,800              | 0          | 0                   | 1.755.800 | 2.440.000  | 3      |
| B4E1S2     | Annexin;Annexin A4                                | ANXA4     | 4,022,500              | 0          | õ                   | 0         | 4,022,500  | 1      |
| E7ETU5     | RNA-binding motif, single-stranded-interacting pr | RBMS1     | 3,858,200              | 2.150.500  | Ő                   | 1,707,700 | 4,022,000  | 2      |
| I3L1P8     | Mitochondrial 2-oxoglutarate/malate carrier prote | SLC25A11  | 3,820,000              | 2,130,300  | 0                   | 1,707,700 | 3,820,000  | 1      |
| Q71U36-2   | Tubulin alpha-1A chain;Tubulin alpha-1B chain;T   | TUBA1A    | 3,782,000              | 3,782,000  | Ő                   | Ő         | 0,020,000  | 2      |
| D6R9P3     | Heterogeneous nuclear ribonucleoprotein A/B       | HNRNPAB   | 3,571,200              | 3,120,400  | 0                   | 450,800   | 0          | 2      |
| E9PJT1     | Phosphatidylinositol-binding clathrin assembly pr | PICALM    | 3,561,800              | 3.561.800  | 0                   | 430,000   | 0          | 1      |
| A0A0B4J1V6 | Immunoglobulin heavy variable 3-73                | IGHV3-73  | 3,460,100              | 3,301,800  | 1.501.600           | 1,958,600 | 0          | 3      |
| P14923     | Junction plakoglobin                              | JUP       | 3,261,700              | 2,178,900  | 1,501,000           | 1,938,000 | 1,082,900  | 3      |
| Q5T749     | Keratinocyte proline-rich protein                 | KPRP      | 3,196,400              | 3,196,400  | 0                   | 0         | 1,002,900  | 2      |
| P15924     | Desmoplakin                                       | DSP       |                        | 3,190,400  | 2.479.300           | 0         | 497,000    | 2      |
| E9PKD2     | Nuclear pore complex protein Nup214               | NUP214    | 2,976,300<br>2,854,500 | 1,488,400  | 2,479,300 1,366,100 | 0         | 497,000    | 3<br>1 |
|            |                                                   | KDM5B     |                        | 1,400,400  |                     | 0         | 0          | 1      |
| B3KV94     | Lysine-specific demethylase 5B                    | RAE1      | 2,598,600              | -          | 2,598,600<br>0      | 0         | 0          | 1      |
| P78406     | mRNA export factor                                |           | 2,408,100              | 2,408,100  |                     | -         | -          |        |
| P17661     | Desmin                                            | DES       | 2,140,500              | 0          | 0                   | 1,047,300 | 1,093,200  | 4      |
| P31994-5   | Low affinity immunoglobulin gamma Fc              | FCGR2B    | 2,042,300              | 0          | 2,042,300           | 0         | 0          | 1      |
| A0A087WT15 | N-acetylglucosaminyldiphosphodolichol             | ALG13     | 1,878,000              | 0          | 1,878,000           | 0         | 0          | 1      |
| P31944     | Caspase-14;Caspase-14 subunit p17, mature for     | CASP14    | 880,720                | 0          | 880,720             | 0         | 0          | 1      |
| A0A3B3ISA6 | Complement C4-A;Complement C4 beta chain;C        | C4B       | 664,880                | 0          | 0                   | 0         | 664,880    | 1      |

 Table 3

 Proteins identified in MDMX immunoprecipitations (IP).

 Protein extracts 01, 04, 06, Q1, Q4, and R4 were immunoprecipitated in one experiment.

|                      |                     |                        | rea were initiality explated in one experiment.                                                           |                          |                                  | Intensity                      | Intensity                      | Intensity                      | Intensity                      | Intensity                    | Intensity                      |          |
|----------------------|---------------------|------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|----------|
| Unique to<br>MDMX IP | Common<br>to all IP | Majority protein<br>ID | Protein                                                                                                   | Gene                     | Total Intensity                  | MDMX<br>01                     | MDMX<br>04                     | MDMX<br>06                     | MDMX<br>Q1                     | MDMX<br>Q4                   | MDMX<br>R4                     | Peptides |
|                      |                     | P01857                 | lg gamma-1 chain C region                                                                                 | IGHG1                    | 172,120,000,000                  | 22,238,000,000                 | 2,879,300,000                  | 4,953,400,000                  | 85,828,000,000                 | 8,388,500,000                | 47,830,000,000                 | 17       |
|                      | Yes<br>Yes          | P68871<br>P69905       | Hemoglobin subunit beta<br>Hemoglobin subunit alpha                                                       | HBB<br>HBA1              | 49,360,000,000<br>46,601,000,000 |                                |                                | 924,450,000<br>1,616,500,000   | 1,416,300,000                  |                              | 3,293,300,000<br>7,128,000,000 | 14<br>15 |
|                      | Yes                 | P20073-2<br>Q9Y6R7     | Annexin A7<br>IgGFc-binding protein                                                                       | ANXA7<br>FCGBP           | 25,375,000,000<br>19,471,000,000 | 5,386,800,000<br>6,976,500,000 | 1,897,400,000<br>5,284,100,000 | 6,836,600,000<br>2,450,000,000 | 2,658,100,000<br>1,183,900,000 | 3,368,800,000<br>470,780,000 | 5,226,900,000<br>3,105,900,000 | 31<br>75 |
| Ves                  |                     | P81605                 | Dermcidin;Survival-promoting peptide;DCD-1<br>Annexin A11                                                 | DCD                      | 11,575,000,000<br>11,312,000,000 | 2,289,500,000                  | 1,337,700,000                  | 2,158,100,000                  | 2,832,500,000                  | 985,260,000                  | 1,971,800,000                  | 9        |
| Yes                  | Yes                 | P50995<br>P01871       | Ig mu chain C region                                                                                      | ANXA11<br>IGHM           | 10,253,000,000                   | 478,090,000<br>2,115,600,000   | 3,548,100,000                  | 1,675,600,000<br>788,140,000   |                                | 1,253,200,000                | 2,827,400,000<br>1,620,700,000 | 22<br>18 |
|                      | Yes                 | P63261<br>P69892       | Actin, cytoplasmic 2<br>Hemoglobin subunit gamma-2                                                        | ACTG1<br>HBG2            | 7,787,800,000<br>7,148,400,000   | 669,640,000<br>1,386,800,000   | 2,068,500,000<br>780,010,000   | 955,900,000<br>795,220,000     | 645,430,000<br>661,950,000     | 2,563,700,000<br>460,580,000 | 884,630,000<br>3.063.800.000   | 16<br>12 |
| Yes                  |                     | P55072<br>P07355       | Transitional endoplasmic reticulum ATPase                                                                 | VCP<br>ANXA2             | 4,620,000,000                    | 185,550,000                    | 758,330,000                    | 1,565,000,000                  | 411,970,000                    | 553,090,000                  | 1,146,000,000                  | 39       |
| Yes                  | Yes                 | P15924                 | Annexin A2;Annexin;Putative annexin A2-like<br>Desmoplakin                                                | DSP                      | 4,497,800,000<br>4,032,200,000   | 586,000,000<br>470,760,000     | 417,330,000<br>397,430,000     | 1,170,600,000<br>777,640,000   | 722,980,000<br>503,940,000     | 573,440,000<br>1,011,000,000 | 1,027,400,000<br>871,340,000   | 24<br>71 |
|                      | Yes<br>Yes          | Q02413<br>P01834       | Desmoglein-1<br>Ig kappa chain C region                                                                   | DSG1<br>IGKC             | 3,842,500,000<br>3,261,700,000   | 671,480,000<br>842,260,000     | 532,380,000<br>1,005,100,000   | 484,300,000<br>115,500,000     | 578,340,000<br>198,480,000     | 684,390,000<br>706,400,000   | 891,590,000<br>393,970,000     | 23<br>8  |
| Yes                  |                     | P08670<br>A0A0C4DH90   | Vimentin<br>Ig kappa chain V-III region POM                                                               | VIM<br>IGKV3OR2-268      | 3,157,700,000<br>2,570,200,000   | 489,550,000<br>1,897,100,000   | 337,990,000<br>0               | 734,410,000<br>13,227,000      | 251,720,000<br>0               | 392,940,000<br>225,870,000   | 951,130,000<br>434,010,000     | 25<br>1  |
| Yes                  |                     | V9HW 50                | Alcohol dehydrogenase 1B                                                                                  | HEL-S-117                | 2,525,500,000                    | 0                              | 2,445,000,000                  | 0                              | 0                              | 80,447,000                   | 0                              | 17       |
| Yes                  | Yes                 | P17931<br>Q08554-2     | Galectin-3;Galectin<br>Desmocollin-1                                                                      | LGALS3<br>DSC1           | 2,429,700,000<br>2,289,200,000   | 1,214,100,000<br>409,040,000   | 169,570,000<br>260,520,000     | 378,710,000<br>496,130,000     | 177,170,000<br>269,620,000     | 77,588,000<br>267,980,000    | 412,490,000<br>585,960,000     | 8<br>11  |
|                      | Yes<br>Yes          | P0DOY3<br>P14923       | lg lambda-1 chain C regions<br>Junction plakoglobin                                                       | IGLC1<br>JUP             | 2,060,500,000<br>1,729,100,000   | 902,940,000<br>212,940,000     | 302,390,000<br>113,640,000     | 106,470,000<br>343,050,000     | 55,564,000<br>269,710,000      | 332,740,000<br>404,730,000   | 360,390,000<br>385,000,000     | 6<br>15  |
| Yes                  |                     | Q8N5G2-2               | Macoilin                                                                                                  | MACO1<br>KPRP            | 1,581,700,000                    | 99,294,000                     | 476,890,000                    | 430,010,000                    | 308,790,000                    | 0                            | 266,730,000                    | 2        |
|                      | Yes                 | Q5T749<br>P19474       | Keratinocyte proline-rich protein<br>E3 ubiquitin-protein ligase TRIM21                                   | TRIM21                   | 1,575,500,000<br>1,493,600,000   | 330,330,000<br>373,480,000     | 141,660,000<br>221,830,000     | 226,220,000<br>137,660,000     | 285,640,000<br>252,360,000     | 313,090,000<br>260,040,000   | 278,590,000<br>248,270,000     | 12<br>10 |
|                      | Yes                 | Q9NZT1<br>P04083       | Calmodulin-like protein 5<br>Annexin A1;Annexin                                                           | CALML5<br>ANXA1          | 1,415,300,000<br>1,402,800,000   | 243,820,000<br>51,347,000      | 182,070,000<br>99,256,000      | 222,180,000<br>209,080,000     | 153,060,000<br>80,360,000      | 70,118,000<br>733,430,000    | 544,030,000<br>229,300,000     | 5<br>12  |
| Yes<br>Yes           |                     | P02647<br>A0A3B3IS80   | Apolipoprotein A-I;Proapolipoprotein A-I<br>Fructose-bisphosphate aldolase B                              | APOA1<br>ALDOB           | 1,331,000,000<br>1,149,700,000   | 11,399,000<br>0                | 117,700,000<br>1.053.900.000   | 5,319,000<br>0                 | 16,475,000<br>0                | 1,162,800,000 95.806.000     | 17,217,000<br>0                | 15<br>15 |
| 100                  |                     | P04406                 | Glyceraldehyde-3-phosphate dehydrogenase                                                                  | GAPDH                    | 1,024,600,000                    | 45,228,000                     | 381,510,000                    | 144,970,000                    | 70,343,000                     | 219,600,000                  | 162,960,000                    | 13       |
|                      | Yes<br>Yes          | A0A286YES1<br>P02675   | lg gamma-3 chain C region<br>Fibrinogen beta chain                                                        | IGHG3<br>FGB             | 1,009,000,000<br>987,840,000     | 138,810,000<br>3,484,400       | 318,110,000<br>109,660,000     | 154,420,000<br>9,669,900       | 99,280,000<br>0                | 160,810,000<br>843,190,000   | 137,620,000<br>21,839,000      | 15<br>8  |
|                      |                     | A0A5F9ZH78<br>P04040   | Arginase-1<br>Catalase                                                                                    | ARG1<br>CAT              | 985,040,000<br>883,310,000       | 29,882,000<br>55,685,000       | 296,130,000<br>377,410,000     | 165,080,000<br>124,610,000     | 133,750,000<br>80,278,000      | 191,750,000<br>132,340,000   | 168,450,000<br>112,980,000     | 7<br>10  |
|                      |                     | A0A286YEY1             | Ig alpha-1 chain C region                                                                                 | IGHA1                    | 816,250,000                      | 19,070,000 22,095,000          | 323,900,000                    | 34,146,000                     | 95,177,000                     | 136,490,000                  | 207,470,000                    | 11       |
| Yes                  | Yes                 | P01023<br>Q2L6G8       | Alpha-2-macroglobulin<br>Corneodesmosin                                                                   | A2M<br>CDSN              | 764,980,000<br>755,530,000       | 85,379,000                     | 427,860,000<br>142,160,000     | 9,797,400<br>258,560,000       | 18,372,000<br>81,346,000       | 162,150,000<br>84,291,000    | 124,700,000<br>103,800,000     | 19<br>5  |
| Yes                  | Yes                 | P11021<br>Q14103-3     | 78 kDa glucose-regulated protein<br>Heterogeneous nuclear ribonucleoprotein D0                            | HSPA5<br>HNRNPD          | 754,080,000<br>743,760,000       | 73,659,000<br>190,940,000      | 267,450,000<br>159,680,000     | 111,330,000<br>172,750,000     | 14,914,000<br>62,051,000       | 122,090,000<br>75,439,000    | 164,640,000<br>82,904,000      | 19<br>7  |
| Yes                  | Yes                 | S4R460<br>Q8N257       | Ig heavy chain V-III region BRO<br>Histone H2B type 3-B                                                   | IGHV3OR16-9<br>HIST3H2BB | 737,650,000<br>735,150,000       | 77,631,000<br>68,866,000       | 167,330,000<br>97,720,000      | 68,300,000<br>133,440,000      | 164,380,000<br>90,551,000      | 145,600,000<br>222,990,000   | 114,400,000<br>121,590,000     | 2<br>4   |
|                      |                     | P02671                 | Fibrinogen alpha chain; Fibrinopeptide A                                                                  | FGA                      | 727,500,000                      | 0                              | 39,906,000                     | 0                              | 0                              | 687,600,000                  | 0                              | 20       |
| Yes                  |                     | H0Y9N0<br>A0A6Q8PFJ0   | Alcohol dehydrogenase 4<br>Prelamin-A/C;Lamin-A/C                                                         | ADH4<br>LMNA             | 720,950,000<br>692,900,000       | 0<br>124,240,000               | 690,910,000<br>137,300,000     | 0<br>102,670,000               | 0<br>16,496,000                | 30,039,000<br>157,450,000    | 0<br>154,750,000               | 13<br>15 |
| Yes                  |                     | P31327<br>P02787       | Carbamoyl-phosphate synthase [ammonia], mitochondrial<br>Serotransferrin                                  | CPS1<br>TF               | 684,130,000<br>652,910,000       | 0                              | 639,470,000<br>470,270,000     | 0                              | 0                              | 44,655,000<br>146,010,000    | 0<br>36,628,000                | 22<br>17 |
|                      | Yes                 | Q01469                 | Fatty acid-binding protein, epidermal                                                                     | FABP5                    | 620,650,000                      | 95,889,000                     | 59,613,000                     | 208,230,000                    | 97,652,000                     | 68,443,000                   | 90,819,000                     | 6        |
| Yes<br>Yes           |                     | Q9BTM1<br>P02042       | Histone H2A.J<br>Hemoglobin subunit delta                                                                 | H2AFJ<br>HBD             | 616,220,000<br>608,730,000       | 134,230,000<br>5,412,700       | 164,340,000<br>569,100,000     | 41,711,000<br>0                | 94,091,000<br>0                | 86,576,000<br>34,217,000     | 95,268,000<br>0                | 3<br>11  |
| Yes                  | Yes                 | P31943<br>Q15007       | Heterogeneous nuclear ribonucleoprotein H<br>Pre-mRNA-splicing regulator WTAP                             | HNRNPH1<br>WTAP          | 586,320,000<br>583,670,000       | 235,200,000<br>146,160,000     | 40,807,000<br>79,564,000       | 91,509,000<br>83,145,000       | 52,962,000<br>52,450,000       | 116,480,000<br>83,328,000    | 49,360,000<br>139,020,000      | 10<br>11 |
|                      |                     | E7ETU5<br>F8VZY9       | RNA-binding motif, single-stranded-interacting protein 1<br>Keratin, type I cytoskeletal 18               | RBMS1<br>KRT18           | 582,990,000<br>508,470,000       | 101,720,000<br>182,680,000     | 109,470,000<br>57,886,000      | 87,943,000<br>98,079,000       | 47,975,000<br>48,183,000       | 117,990,000<br>67,435,000    | 117,880,000<br>54,210,000      | 4<br>11  |
| Yes                  |                     | P01024                 | Complement C3;Complement C3 beta chain                                                                    | C3                       | 484,020,000                      | 0                              | 112,750,000                    | 0                              | 0                              | 371,270,000                  | 0                              | 18       |
| Yes<br>Yes           |                     | F5H5D3<br>C9JEU5       | Tubulin alpha-1C chain;Tubulin alpha-1B chain<br>Fibrinogen gamma chain                                   | TUBA1C<br>FGG            | 478,170,000<br>455,740,000       | 54,611,000<br>0                | 141,340,000<br>79,865,000      | 66,825,000<br>2,023,400        | 35,734,000<br>0                | 118,870,000<br>368,680,000   | 60,793,000<br>5,169,500        | 7<br>8   |
| Yes                  | Yes                 | P31942-2<br>A0A286YEY4 | Heterogeneous nuclear ribonucleoprotein H3<br>Ig gamma-2 chain C region                                   | HNRNPH3<br>IGHG2         | 453,350,000<br>432,350,000       | 48,222,000<br>114,780,000      | 34,002,000<br>109,100,000      | 131,920,000<br>83,334,000      | 77,527,000<br>18,798,000       | 103,460,000<br>68,437,000    | 58,216,000<br>37,904,000       | 7<br>10  |
| Yes                  | 100                 | P06733                 | Alpha-enolase                                                                                             | ENO1                     | 410,010,000                      | 29,654,000                     | 202,800,000                    | 42,689,000                     | 15,683,000                     | 119,190,000                  | 0                              | 12       |
| Yes                  |                     | E9PGY2<br>E5RHP7       | Dynein assembly factor 5, axonemal<br>Carbonic anhydrase 1                                                | DNAAF5<br>CA1            | 404,800,000<br>401,260,000       | 19,772,000<br>0                | 183,310,000<br>391,980,000     | 67,144,000<br>0                | 0                              | 69,246,000<br>9,284,600      | 65,333,000<br>0                | 1<br>8   |
|                      |                     | O43866<br>O14979-3     | CD5 antigen-like<br>Heterogeneous nuclear ribonucleoprotein D-like                                        | CD5L<br>HNRNPDL          | 377,830,000<br>365,710,000       | 69,239,000<br>19,376,000       | 55,821,000<br>5,685,600        | 96,818,000<br>198,730,000      | 44,043,000<br>94,806,000       | 63,341,000<br>32,417,000     | 48,571,000<br>14,696,000       | 7<br>8   |
| Yes                  |                     | Q9UNZ2<br>P01767       | NSFL1 cofactor p47<br>Ig heavy chain V-III region BUT                                                     | NSFL1C<br>IGHV3-66       | 347,920,000<br>341,860,000       | 35,893,000<br>194,310,000      | 47,043,000<br>62,905,000       | 106,430,000<br>0               | 50,500,000<br>45,120,000       | 26,935,000<br>39,526,000     | 81,121,000<br>0                | 8        |
|                      |                     | P06702                 | Protein S100-A9                                                                                           | S100A9                   | 328,250,000                      | 18,939,000                     | 0                              | 0                              | 0                              | 309,310,000                  | 0                              | 5        |
|                      |                     | E7EQB2<br>J3QSA3       | Lactotransferrin;Lactoferricin-H<br>Ubiquitin-40S ribosomal protein S27a                                  | LTF<br>UBB               | 327,250,000<br>324,440,000       | 38,827,000<br>21,637,000       | 139,660,000<br>77,494,000      | 27,766,000<br>57,113,000       | 5,594,100<br>32,248,000        | 60,142,000<br>60,277,000     | 55,260,000<br>75,668,000       | 7        |
| Yes<br>Yes           |                     | P35579<br>P00488       | Myosin-9<br>Coagulation factor XIII A chain                                                               | MYH9<br>F13A1            | 312,240,000<br>309,550,000       | 3,676,700<br>38,304,000        | 19,015,000<br>144,670,000      | 0<br>49,351,000                | 0                              | 289,550,000<br>12,444,000    | 0<br>64,783,000                | 14<br>11 |
|                      |                     | P16403                 | Histone H1.2                                                                                              | HIST1H1C                 | 308,980,000                      | 26,941,000                     | 14,080,000                     | 6,953,300                      | 0                              | 29,397,000                   | 231,610,000                    | 8        |
| Yes                  | Yes                 | P05091<br>P31944       | Aldehyde dehydrogenase, mitochondrial<br>Caspase-14;Caspase-14 subunit p17, mature form                   | ALDH2<br>CASP14          | 295,420,000<br>292,460,000       | 0<br>41,450,000                | 295,420,000<br>20,154,000      | 0<br>92,287,000                | 0<br>47,890,000                | 0<br>24,225,000              | 0<br>66,452,000                | 13<br>5  |
| Yes                  |                     | P23141-3<br>Q13492-3   | Liver carboxylesterase 1<br>Phosphatidylinositol-binding clathrin assembly protein                        | CES1<br>PICALM           | 287,760,000<br>280,250,000       | 0                              | 275,240,000<br>13,085,000      | 0<br>54,721,000                | 0<br>40,016,000                | 12,513,000<br>68,106,000     | 0<br>104,330,000               | 8<br>2   |
| Yes                  |                     | P08263<br>P01709       | Glutathione S-transferase A1<br>Io lambda chain V-II region MGC                                           | GSTA1                    | 276,080,000<br>272,320,000       | 0<br>194,040,000               | 276,080,000<br>27,482,000      | 0                              | 0                              | 0<br>20,496,000              | 0<br>30,296,000                | 6<br>1   |
| Yes                  |                     | K7EMS3<br>P32119       | Keratin, type I cytoskeletal 19                                                                           | KRT19<br>PRDX2           | 271,550,000                      | 43,143,000                     | 35,179,000                     | 52,355,000<br>17,114,000       | 28,751,000                     | 3,693,300                    | 108,430,000                    | 8        |
| Yes                  |                     | P11142                 | Peroxiredoxin-2<br>Heat shock cognate 71 kDa protein                                                      | HSPA8                    | 264,970,000<br>256,440,000       | 10,440,000<br>21,135,000       | 64,536,000                     | 39,021,000                     | 0                              | 28,665,000<br>87,034,000     | 44,712,000                     | 7<br>12  |
| Yes<br>Yes           |                     | H3BQ34<br>M0QZK8       | Pyruvate kinase;Pyruvate kinase PKM<br>Gamma-glutamylcyclotransferase                                     | PKM<br>GGCT              | 253,600,000<br>252,790,000       | 157,610,000<br>23,067,000      | 12,316,000<br>23,773,000       | 26,633,000<br>53,047,000       | 7,716,200<br>57,290,000        | 41,154,000<br>26,710,000     | 8,175,000<br>68,899,000        | 4<br>3   |
|                      |                     | P62805<br>F8VV32       | Histone H4<br>Lysozyme;Lysozyme C                                                                         | HIST1H4A<br>LYZ          | 247,550,000<br>237,840,000       | 32,165,000<br>25,942,000       | 44,025,000<br>54,297,000       | 57,166,000<br>24,124,000       | 32,274,000<br>46,944,000       | 24,152,000<br>38,336,000     | 57,770,000<br>48,197,000       | 3        |
| Yes                  |                     | A0A2R8YGD1             | Tripeptidyl-peptidase 1                                                                                   | TPP1                     | 228,720,000                      | 59,580,000                     | 36,930,000                     | 40,003,000                     | 12,722,000                     | 48,382,000                   | 31,107,000                     | 2        |
| Yes                  |                     | A0A286YFJ8<br>P30086   | lg gamma-4 chain C region<br>Phosphatidylethanolamine-binding protein 1                                   | IGHG4<br>PEBP1           | 221,300,000<br>220,410,000       | 21,901,000<br>0                | 25,795,000<br>220,410,000      | 0                              | 48,084,000<br>0                | 94,876,000<br>0              | 30,645,000<br>0                | 9<br>6   |
| Yes                  |                     | Q8NDC0<br>E9PSB3       | MAPK-interacting and spindle-stabilizing protein-like<br>Eukaryotic translation initiation factor 3 Sub M | MAPK1IP1L<br>EIF3M       | 219,790,000<br>204,390,000       | 0                              | 0                              | 74,677,000<br>204,390,000      | 0                              | 55,083,000<br>0              | 90,029,000<br>0                | 1<br>1   |
| Yes<br>Yes           |                     | P00367<br>P01040       | Glutamate dehydrogenase 1, mitochondrial<br>Cystatin-A;Cystatin-A, N-terminally processed                 | GLUD1<br>CSTA            | 202,320,000<br>200,650,000       | 0<br>31,866,000                | 194,820,000<br>28,575,000      | 0<br>24,874,000                | 0<br>17,883,000                | 7,505,800                    | 0<br>97,455,000                | 8<br>3   |
| Yes                  |                     | H0Y755                 | Low affinity immunoglobulin gamma Fc region receptor III-A                                                | FCGR3A                   | 200,010,000                      | 96,729,000                     | 0                              | 76,577,000                     | 15,235,000                     | 0                            | 11,468,000                     | 2        |
| Yes<br>Yes           |                     | Q6UWP8<br>H0YH81       | Suprabasin<br>ATP synthase subunit beta,mitochondrial                                                     | SBSN<br>ATP5B            | 199,090,000<br>192,440,000       | 23,686,000<br>0                | 5,567,100<br>150,240,000       | 53,784,000<br>11,186,000       | 11,163,000<br>0                | 9,392,600<br>26,174,000      | 95,502,000<br>4,835,000        | 7<br>3   |
| Yes                  | Yes                 | P00738<br>P05109       | Haptoglobin;Haptoglobin alpha chain<br>Protein S100-A8;Protein S100-A8, N-terminally processed            | HP<br>\$100A8            | 191,600,000<br>188,970,000       | 0<br>15,112,000                | 83,217,000<br>51,461,000       | 0<br>6,955,600                 | 0<br>7,752,500                 | 105,830,000<br>102,410,000   | 2,547,800<br>5,286,800         | 8<br>4   |
|                      |                     | P10412<br>P30101       | Histone H1.4<br>Protein disulfide-isomerase A3                                                            | HIST1H1E<br>PDIA3        | 188,770,000<br>184,850,000       | 0<br>27,987,000                | 51,503,000<br>81,404,000       | 19,340,000<br>9,267,600        | 0                              | 38,303,000<br>52,967,000     | 79,622,000<br>13,224,000       | 7        |
| Yes                  |                     | Q60FE5                 | Filamin-A                                                                                                 | FLNA                     | 176,900,000                      | 17,314,000                     | 62,222,000                     | 4,156,600                      | 0                              | 93,211,000                   | 0                              | 14       |
|                      | Yes                 | P59666<br>A0A7I2V4I6   | Neutrophil defensin 3;HP 3-56;Neutrophil defensin 2<br>Heterogeneous nuclear ribonucleoproteins A2/B1     | DEFA3<br>HNRNPA2B1       | 175,940,000<br>175,770,000       | 12,525,000<br>10,611,000       | 147,180,000<br>33,709,000      | 0<br>28,025,000                | 0<br>3,763,900                 | 0<br>47,208,000              | 16,235,000<br>52,448,000       | 4<br>8   |
| Yes                  |                     | C9JZN1<br>E9PJX3       | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit 2<br>DC-STAMP domain-containing protein 1       | GNB2<br>DCST1            | 167,230,000<br>165,830,000       | 0<br>165,830,000               | 32,409,000<br>0                | 0                              | 114,540,000<br>0               | 0                            | 20,285,000                     | 3<br>1   |
| Yes                  |                     | Q93088                 | Betainehomocysteine S-methyltransferase 1                                                                 | BHMT                     | 156,930,000                      | 0                              | 156,930,000                    | 0                              | 0                              | 0                            | 0                              | 5        |
| Yes                  |                     | Q08188<br>Q5JP53       | Protein-glutamine gamma-glutamyltransferase E<br>Tubulin beta chain;Tubulin beta-2B chain                 | TGM3<br>TUBB             | 151,040,000<br>148,810,000       | 19,454,000<br>0                | 14,749,000<br>39,759,000       | 30,930,000<br>10,457,000       | 27,901,000<br>5,418,600        | 11,456,000<br>93,172,000     | 46,554,000<br>0                | 6<br>3   |
| Yes                  |                     | P00352<br>A0A7I2V3H3   | Retinal dehydrogenase 1<br>Putative elongation factor 1-alpha-like 3                                      | ALDH1A1<br>EEF1A1        | 147,820,000<br>146,880,000       | 0<br>10,829,000                | 143,910,000<br>56,560,000      | 0<br>10,460,000                | 0<br>7,325,300                 | 3,905,500<br>52,315,000      | 0<br>9,388,600                 | 7<br>1   |
| Yes                  |                     | P29508-2<br>P47929     | Galectin-7                                                                                                | SERPINB3<br>LGALS7       | 144,360,000<br>142,190,000       | 34,074,000<br>14,374,000       | 0                              | 63,249,000<br>53,808,000       | 7,558,700                      | 7,745,700 41,851,000         | 31,729,000<br>12,331,000       | 3        |
| Yes                  |                     | P02730                 | Band 3 anion transport protein                                                                            | SLC4A1                   | 137,560,000                      | 0                              | 122,820,000                    | 6,434,500                      | 0                              | 0                            | 8,304,400                      | 6        |
| Yes<br>Yes           |                     | P25705-2<br>P09467     | ATP synthase subunit alpha, mitochondrial<br>Fructose-1,6-bisphosphatase 1                                | ATP5A1<br>FBP1           | 135,600,000<br>134,090,000       | 25,045,000<br>0                | 92,411,000<br>112,310,000      | 4,146,300<br>0                 | 0                              | 14,002,000<br>21,781,000     | 0                              | 9<br>4   |
| Yes                  |                     | A0A6Q8PFK8<br>P14625   | Heat shock protein beta-1<br>Endoplasmin                                                                  | HSPB1<br>HSP90B1         | 129,770,000<br>128,220,000       | 6,293,600                      | 23,017,000<br>87,804,000       | 23,662,000<br>12,003,000       | 14,009,000<br>1,880,000        | 27,850,000<br>22,276,000     | 34,937,000<br>4,253,300        | 3<br>6   |
|                      |                     | A0A5F9ZHX5             | Chromodomain-helicase-DNA-binding protein 3                                                               | CHD3                     | 126,410,000                      | 72,151,000                     | 0                              | 0                              | 0                              | 0                            | 54,262,000                     | 1        |
| Yes                  |                     | D3YTK1<br>P07476       | B-cell lymphoma/leukemia 11B<br>Involucrin                                                                | BCL11B<br>IVL            | 124,710,000<br>120,360,000       | 76,098,000<br>0                | 14,068,000<br>0                | 16,701,000<br>0                | 0                              | 0<br>120,360,000             | 17,845,000<br>0                | 1<br>6   |
| Yes                  |                     | P00558-2<br>A0A0G2JRN3 | Phosphoglycerate kinase 1<br>Alpha-1-antitrypsin;Short peptide from AAT                                   | PGK1<br>SERPINA1         | 119,430,000<br>119,420,000       | 0                              | 106,620,000<br>0               | 0                              | 0                              | 12,816,000<br>119,420,000    | 0                              | 5<br>2   |
| Yes                  |                     | P10599-2<br>A0A087WVQ6 | Thioredoxin<br>Clathrin heavy chain;Clathrin heavy chain 1                                                | TXN<br>CLTC              | 119,320,000<br>118,860,000       | 32,992,000<br>7,694,400        | 7,421,500<br>39,319,000        | 15,014,000<br>4,351,100        | 6,942,900<br>5,094,400         | 38,357,000<br>27,799,000     | 18,590,000<br>34,607,000       | 3<br>5   |
|                      |                     |                        | · · · ·                                                                                                   |                          |                                  |                                | .,,                            | ,,                             | .,,                            | ,,                           |                                | -        |

| Yes        |     | P11166<br>A0A0A0MSI0 | Solute carrier family 2, facilitated glucose transporter member 1<br>Peroxiredoxin-1                                        | SLC2A1<br>PRDX1      | 117,840,000<br>117,410,000 | 27,594,000<br>0          | 20,800,000<br>23,434,000  | 27,638,000<br>24,158,000 | 17,045,000<br>0          | 17,769,000<br>50,913,000 | 6,991,000<br>18,908,000  | 1<br>6  |
|------------|-----|----------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------|
| res        |     | P04843               | Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1                                                      | RPN1                 | 114,750,000                | 14,069,000               | 19,291,000                | 38,305,000               | 0                        | 5,918,100                | 37,166,000               | 5       |
| Yes        |     | Q9BS26<br>P31040     | Endoplasmic reticulum resident protein 44<br>Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial       | ERP44<br>SDHA        | 114,410,000<br>110,870,000 | 0<br>21,023,000          | 19,792,000<br>29,762,000  | 0<br>5,004,900           | 57,777,000<br>6,511,700  | 15,611,000<br>7,760,200  | 21,226,000<br>40,805,000 | 2<br>5  |
| Yes        |     | E9PS23<br>P00918     | Cofilin-1<br>Carbonic anhydrase 2                                                                                           | CFL1<br>CA2          | 105,680,000<br>103,530,000 | 0                        | 47,412,000<br>103,530,000 | 6,922,800<br>0           | 6,769,200<br>0           | 42,374,000<br>0          | 2,206,100<br>0           | 2<br>6  |
| Yes        |     | P40926               | Malate dehydrogenase, mitochondrial;Malate dehydrogenase                                                                    | MDH2                 | 102,110,000                | 0                        | 102,110,000               | 0                        | 0                        | 0                        | 0                        | 6       |
| Yes<br>Yes |     | P09210<br>P09211     | Glutathione S-transferase A2<br>Glutathione S-transferase P                                                                 | GSTA2<br>GSTP1       | 101,640,000<br>101,360,000 | 0                        | 101,640,000<br>24,528,000 | 0                        | 0                        | 0<br>76,833,000          | 0                        | 6<br>2  |
| Yes<br>Yes |     | P00338-3<br>P30084   | L-lactate dehydrogenase A chain<br>Enovl-CoA hydratase, mitochondrial                                                       | LDHA<br>ECHS1        | 101,020,000<br>100,510,000 | 0                        | 67,486,000<br>100.510.000 | 0                        | 0                        | 33,536,000<br>0          | 0                        | 4<br>5  |
| Yes        |     | P00326               | Alcohol dehydrogenase 1C                                                                                                    | ADH1C                | 99,362,000                 | 0                        | 99,362,000                | 0                        | 0                        | 0                        | 0                        | 12      |
| Yes<br>Yes |     | P11182<br>P60174     | Lipoamide acyltransferase component of branched-chain α-keto acid<br>Triosephosphate isomerase                              | DBT<br>TPI1          | 98,020,000<br>96,410,000   | 2,429,500<br>0           | 0<br>96,410,000           | 88,425,000<br>0          | 7,165,200<br>0           | 0                        | 0                        | 6<br>6  |
| Yes<br>Yes |     | P31995-4<br>P81605-2 | Low affinity immunoglobulin gamma Fc region receptor II-c<br>Dermcidin;Survival-promoting peptide;DCD-1                     | FCGR2C<br>DCD        | 95,150,000<br>94,948,000   | 0                        | 0<br>17,310,000           | 21,613,000<br>24,755,000 | 16,029,000<br>14,705,000 | 0<br>27.485.000          | 57,508,000<br>10,693,000 | 2<br>8  |
| Yes        |     | A0A7I2V2R3           | Heterogeneous nuclear ribonucleoprotein A3                                                                                  | HNRNPA3<br>CST6      | 94,476,000<br>90,006,000   | 0<br>23,842,000          | 0                         | 40,480,000               | 18,442,000               | 11,950,000               | 23,604,000               | 5       |
| Yes        |     | Q15828<br>P04259     | Cystatin-M<br>Keratin, type II cytoskeletal 6B                                                                              | KRT6B                | 89,853,000                 | 0                        | 3,936,600                 | 12,469,000<br>12,262,000 | 11,616,000<br>4,134,500  | 14,124,000<br>69,520,000 | 27,955,000<br>0          | 56      |
| Yes        |     | K7EQ02<br>P08238     | DAZ-associated protein 1<br>Heat shock protein HSP 90-beta                                                                  | DAZAP1<br>HSP90AB1   | 88,043,000<br>87,486,000   | 0<br>9,004,500           | 4,283,400<br>43,177,000   | 36,199,000<br>0          | 21,232,000<br>0          | 26,328,000<br>26,031,000 | 0<br>9,274,000           | 2<br>8  |
| Yes        |     | Q13835-2<br>P16401   | Plakophilin-1<br>Histone H1.5                                                                                               | PKP1<br>HIST1H1B     | 87,271,000<br>86,334,000   | 14,367,000               | 4,843,200                 | 0                        | 14,614,000               | 47,376,000               | 6,070,300                | 3<br>5  |
| Yes        |     | P21549               | Serinepyruvate aminotransferase                                                                                             | AGXT                 | 84,253,000                 | ō                        | 84,253,000                | 0                        | ō                        | 33,838,000<br>0          | 52,496,000<br>0          | 3       |
| Yes<br>Yes |     | E7EQR4<br>A8MW49     | Ezrin<br>Fatty acid-binding protein, liver                                                                                  | EZR<br>FABP1         | 83,177,000<br>80,281,000   | 11,616,000<br>0          | 57,174,000<br>80,281,000  | 0                        | 0                        | 0                        | 14,386,000<br>0          | 6<br>3  |
| Yes<br>Yes |     | Q09666<br>P06396-2   | Neuroblast differentiation-associated protein AHNAK<br>Gelsolin                                                             | AHNAK<br>GSN         | 79,609,000<br>77,391,000   | 4,552,900<br>0           | 0                         | 0                        | 0                        | 75,056,000<br>77,391,000 | 0                        | 8<br>5  |
| Yes        |     | P08311               | Cathepsin G                                                                                                                 | CTSG                 | 75,345,000                 | 0                        | 64,752,000                | 0                        | 0                        | 10,593,000               | 0                        | 3       |
| Yes<br>Yes |     | P07737<br>Q13867     | Profilin-1<br>Bleomycin hydrolase                                                                                           | PFN1<br>BLMH         | 73,460,000<br>71,299,000   | 0<br>15,720,000          | 45,606,000<br>8,186,000   | 0<br>22,679,000          | 0                        | 27,854,000<br>9,475,800  | 0<br>15,237,000          | 2<br>2  |
| Yes<br>Yes |     | A0A0G2JIW1<br>P25311 | Heat shock 70 kDa protein 1A;Heat shock 70 kDa protein 1B<br>Zinc-alpha-2-glycoprotein                                      | HSPA1A<br>AZGP1      | 70,838,000<br>70,437,000   | 0<br>17,679,000          | 40,124,000<br>10,057,000  | 9,828,700<br>36,466,000  | 0                        | 14,307,000<br>0          | 6,577,900<br>6,235,100   | 7<br>6  |
|            |     | A0A7I2YQK6           | 60 kDa heat shock protein, mitochondrial                                                                                    | HSPD1                | 70,230,000                 | 0                        | 41,023,000                | 0                        | 0                        | 29,206,000               | 0                        | 3       |
| Yes<br>Yes |     | P30041<br>P17066     | Peroxiredoxin-6<br>Heat shock 70 kDa protein 6;Putative heat shock 70 kDa protein 7                                         | PRDX6<br>HSPA6       | 70,214,000<br>69,823,000   | 0                        | 70,214,000<br>31,296,000  | 0<br>5,901,700           | 0<br>4,534,000           | 0<br>18,897,000          | 0<br>9,194,300           | 2<br>4  |
|            | Yes | E9PHT9<br>P31025     | Annexin;Annexin A5<br>Lipocalin-1:Putative lipocalin 1-like protein 1                                                       | ANXA5<br>LCN1        | 69,705,000<br>68,579,000   | 7,186,600<br>17,246,000  | 4,930,200<br>0            | 11,971,000<br>8,715,500  | 16,361,000<br>19,543,000 | 5,489,900<br>9 898 400   | 23,766,000<br>13,176,000 | 4<br>2  |
|            |     | P31930               | Cytochrome b-c1 complex subunit 1, mitochondrial                                                                            | UQCRC1               | 66,759,000                 | 0                        | 7,055,500                 | 32,142,000               | 9,727,500                | 17,834,000               | 0                        | 2       |
| Yes<br>Yes |     | P22735<br>Q6ZVX7     | Protein-glutamine gamma-glutamyltransferase K<br>F-box only protein 50                                                      | TGM1<br>NCCRP1       | 66,068,000<br>65,548,000   | 9,145,000<br>18,299,000  | 8,097,100<br>1,627,800    | 11,141,000<br>13,871,000 | 12,123,000<br>10,069,000 | 8,823,300<br>9,179,600   | 16,739,000<br>12,502,000 | 2       |
| Yes        |     | Q92637               | High affinity immunoglobulin gamma Fc receptor IB                                                                           | FCGR1B               | 65,085,000                 | 14,808,000               | 24,911,000                | 0                        | 0                        | 0                        | 25,367,000               | 2       |
|            |     | P31947-2<br>M0R3F1   | 14-3-3 protein sigma<br>Heterogeneous nuclear ribonucleoprotein U-like protein 1                                            | SFN<br>HNRNPUL1      | 65,014,000<br>64,921,000   | 0<br>7,997,300           | 0<br>41,310,000           | 0<br>15,614,000          | 0                        | 65,014,000<br>0          | 0                        | 4<br>3  |
| Yes        |     | Q9HAU0-6<br>Q16822   | Pleckstrin homology domain-6<br>Phosphoenolpyruvate carboxykinase [GTP], mitochondrial                                      | PLEKHA6<br>PCK2      | 64,712,000<br>63,356,000   | 0                        | 0<br>63,356,000           | 0                        | 35,710,000<br>0          | 13,996,000<br>0          | 15,006,000<br>0          | 1<br>6  |
| Yes        |     | P42765               | 3-ketoacyl-CoA thiolase, mitochondrial                                                                                      | ACAA2                | 63,130,000                 | 0                        | 63,130,000                | 0                        | 0                        | 0                        | ō                        | 3       |
| Yes<br>Yes |     | V9GYC1<br>095954     | Apolipoprotein A-II; Proapolipoprotein A-II; Truncated apolipoprotein A-II<br>Formimidoyltransferase-cyclodeaminase         | APOA2<br>FTCD        | 63,025,000<br>62,955,000   | 0                        | 0<br>62,955,000           | 0                        | 0                        | 63,025,000<br>0          | 0                        | 3       |
| Yes        |     | P01833<br>H3BUH7     | Polymeric immunoglobulin receptor;Secretory component<br>Fructose-bisphosphate aldolase;Fructose-bisphosphate aldolase A    | PIGR<br>ALDOA        | 62,780,000<br>61,547,000   | 55,565,000<br>0          | 0<br>30,590,000           | 7,215,700<br>0           | 0                        | 0<br>30.957.000          | 0                        | 2       |
| Yes        |     | I3NI03               | Protein disulfide-isomerase                                                                                                 | P4HB                 | 61,057,000                 | 5,594,500                | 24,393,000                | 6,481,000                | 4,107,900                | 14,479,000               | 6,001,800                | 1       |
| Yes<br>Yes |     | P04899-4<br>J3QS36   | Guanine nucleotide-binding protein G(i) subunit alpha-2<br>L-xylulose reductase                                             | GNAI2<br>DCXR        | 60,628,000<br>58,887,000   | 0                        | 5,045,200<br>58,887,000   | 17,245,000<br>0          | 6,652,900<br>0           | 12,318,000<br>0          | 19,367,000<br>0          | 3<br>4  |
| Yes        |     | D6REM4<br>P01594     | Casein kinase I isoform alpha;Casein kinase I isoform alpha-like                                                            | CSNK1A1<br>IGKV1D-33 | 58,574,000<br>58,512,000   | 58,574,000<br>35,985,000 | 0<br>4,295,800            | 0<br>2,809,900           | 0<br>3,517,000           | 0<br>4,290,800           | 0                        | 1<br>1  |
|            |     | A0A0A0MSV6           | lg kappa chain V-I region AU;Ig kappa chain V-I region AG<br>Complement C1q subcomponent subunit B                          | C1QB                 | 58,010,000                 | 0                        | 0                         | 58,010,000               | 0                        | 0                        | 7,612,700<br>0           | 2       |
| Yes<br>Yes |     | P69891<br>Q5T6W2     | Hemoglobin subunit gamma-1<br>Heterogeneous nuclear ribonucleoprotein K                                                     | HBG1<br>HNRNPK       | 57,351,000<br>56,797,000   | 0                        | 0<br>9,694,800            | 20,525,000<br>10,343,000 | 11,885,000<br>0          | 0<br>20.754.000          | 24,940,000<br>16.006.000 | 11<br>1 |
| Yes        |     | Q6P0N6               | Dystonin                                                                                                                    | DST                  | 55,054,000                 | 0                        | 0                         | 0                        | 55,054,000               | 0                        | 0                        | 1       |
| Yes<br>Yes |     | P08559-3<br>P54868   | Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial<br>Hydroxymethylglutaryl-CoA synthase, mitochondrial       | PDHA1<br>HMGCS2      | 54,649,000<br>54,294,000   | 0                        | 0<br>54,294,000           | 36,915,000<br>0          | 17,733,000<br>0          | 0                        | 0                        | 2<br>3  |
| Yes        |     | K7EP41<br>A0A7I2V5R8 | Glucose-6-phosphate isomerase<br>Dipeptidyl peptidase 4 soluble form                                                        | GPI<br>DPP4          | 51,787,000<br>49,250,000   | 0<br>16,947,000          | 28,093,000<br>0           | 0<br>6,971,900           | 0                        | 23,693,000<br>0          | 0<br>25,332,000          | 1<br>3  |
| Yes        |     | P02745               | Complement C1q subcomponent subunit A                                                                                       | C1QA                 | 49,029,000                 | 0                        | 0                         | 26,241,000               | 7,260,800                | 0                        | 15,527,000               | 1       |
| Yes<br>Yes |     | H7C131<br>P14550     | 3-ketoacyl-CoA thiolase, peroxisomal<br>Alcohol dehydrogenase [NADP(+)]                                                     | ACAA1<br>AKR1A1      | 49,012,000<br>48,970,000   | 0                        | 39,040,000<br>48,970,000  | 0                        | 0                        | 9,971,800<br>0           | 0                        | 2<br>3  |
| Yes<br>Yes |     | H7BYH4<br>075891-2   | Superoxide dismutase [Cu-Zn]                                                                                                | SOD1<br>ALDH1L1      | 48,641,000<br>47,334,000   | 0                        | 36,536,000<br>47,334,000  | 0                        | 0                        | 12,105,000               | 0                        | 1       |
| Yes        |     | P16152               | Cytosolic 10-formyltetrahydrofolate dehydrogenase<br>Carbonyl reductase [NADPH] 1                                           | CBR1                 | 46,537,000                 | Ō                        | 46,537,000                | Ō                        | ō                        | ō                        | ō                        | 3       |
| Yes        |     | Q16762<br>P98082-2   | Thiosulfate sulfurtransferase<br>Disabled homolog 2                                                                         | TST<br>DAB2          | 46,314,000<br>46,020,000   | 0<br>7,661,800           | 46,314,000<br>4,233,100   | 0<br>4,780,500           | 0<br>11,910,000          | 0<br>4,537,100           | 0<br>12,898,000          | 3<br>1  |
| Yes        |     | A0A2R8Y7L2           | Peroxisomal multifunctional enzyme type 2;Enoyl-CoA hydratase 2                                                             | HSD17B4              | 44,462,000                 | 0                        | 44,462,000                | 0<br>27.748.000          | 0                        | 0                        | 0                        | 3       |
| Yes        |     | F5H5P2<br>P07910     | 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial<br>Heterogeneous nuclear ribonucleoproteins C1/C2               | BCKDHA<br>HNRNPC     | 44,336,000<br>44,199,000   | 0                        | 0                         | 27,748,000<br>19,282,000 | 6,992,100<br>0           | 9,596,700<br>24,917,000  | 0                        | 2<br>2  |
| Yes        |     | P01701<br>Q16610-2   | lg lambda chain V-I region NEW<br>Extracellular matrix protein 1                                                            | IGLV1-51<br>ECM1     | 43,260,000<br>43,164,000   | 43,260,000<br>16,073,000 | 0                         | 0<br>4,679,200           | 0<br>16,017,000          | 0                        | 0<br>6,394,400           | 1<br>3  |
| Yes        |     | P80748               | Ig lambda chain V-III region LOI                                                                                            | IGLV3-9              | 39,938,000                 | 39,938,000               | Ó                         | 0                        | 0                        | ō                        | 0                        | 2       |
| Yes<br>Yes |     | P00480<br>P06727     | Ornithine carbamoyltransferase, mitochondrial<br>Apolipoprotein A-IV                                                        | OTC<br>APOA4         | 38,811,000<br>38,730,000   | 0                        | 38,811,000<br>0           | 0                        | 0                        | 0<br>38,730,000          | 0                        | 3<br>4  |
|            | Yes | A0A3B3ISA6<br>C9J2I0 | Complement C4-A;Complement C4 beta chain<br>Arf-GAP domain and FG repeat-containing protein 1                               | C4B<br>AGFG1         | 37,477,000<br>37,463,000   | 0                        | 0<br>19,993,000           | 0                        | 0<br>17,470,000          | 37,477,000<br>0          | 0                        | 3<br>1  |
| Yes        |     | P62081               | 40S ribosomal protein S7                                                                                                    | RPS7                 | 36,563,000                 | Ō                        | 0                         | 0                        | 0                        | 36,563,000               | 0                        | 1       |
| Yes<br>Yes |     | P00505<br>Q14669     | Aspartate aminotransferase, mitochondrial<br>E3 ubiquitin-protein ligase TRIP12                                             | GOT2<br>TRIP12       | 36,173,000<br>35,387,000   | 0<br>5,063,600           | 36,173,000<br>0           | 0                        | 0<br>1,274,500           | 0<br>7,478,400           | 0<br>21,571,000          | 1<br>2  |
| Yes<br>Yes |     | P00747<br>A0A5E97HD4 | Plasminogen; Plasmin heavy chain A; Activation peptide; Angiostatin                                                         | PLG                  | 35,204,000                 | 0                        | 18,546,000<br>34,864,000  | 0                        | 0                        | 16,658,000               | 0                        | 2       |
| Yes        |     | P42357               | Acetyl-CoA acetyltransferase, mitochondrial<br>Histidine ammonia-lyase                                                      | ACAT1<br>HAL         | 34,864,000<br>34,798,000   | 3,023,300                | 5,789,400                 | 4,315,200                | 4,655,100                | 0<br>3,693,900           | 13,321,000               | 1       |
| Yes<br>Yes |     | P08574<br>A0A7I2V2G2 | Cytochrome c1, heme protein, mitochondrial<br>Stress-70 protein, mitochondrial                                              | CYC1<br>HSPA9        | 34,705,000<br>34,422,000   | 17,970,000<br>3,644,700  | 0<br>30,777,000           | 0                        | 3,321,100<br>0           | 6,646,500<br>0           | 6,767,300<br>0           | 1<br>5  |
| Yes        |     | Q13151<br>Q00266     | Heterogeneous nuclear ribonucleoprotein A0<br>S-adenosylmethionine synthase isoform type-1                                  | HNRNPA0<br>MAT1A     | 34,332,000<br>34,266,000   | 9,337,700                | 8,802,000<br>34,266,000   | 6,967,600                | 9,225,100                | 0                        | 0                        | 1       |
|            |     | B4E1S2               | Annexin;Annexin A4                                                                                                          | ANXA4                | 34,107,000                 | Ō                        | 23,248,000                | 7,248,900                | ō                        | Ō                        | 3,610,400                | 2       |
| Yes<br>Yes |     | E7EN95<br>Q15149-7   | Filamin-B<br>Plectin                                                                                                        | FLNB<br>PLEC         | 33,248,000<br>32,622,000   | 0                        | 0                         | 0                        | 0                        | 33,248,000<br>32,622,000 | 0                        | 4<br>5  |
| Yes        |     | Q5T750<br>P29401     | Skin-specific protein 32<br>Transketolase                                                                                   | XP32<br>TKT          | 32,441,000<br>32,236,000   | 14,229,000               | 12,308,000<br>25,916,000  | 0                        | 5,905,100<br>0           | 0<br>6,320,100           | 0                        | 1       |
| Yes        |     | R4GN49               | Protein S100-A2                                                                                                             | S100A2               | 32,039,000                 | 0                        | 0                         | 0                        | 0                        | 32,039,000               | 0                        | 2       |
| Yes<br>Yes |     | Q14574-2<br>P07900   | Desmocollin-3<br>Heat shock protein HSP 90-alpha                                                                            | DSC3<br>HSP90AA1     | 31,820,000<br>31,748,000   | 0                        | 0                         | 11,287,000<br>18,987,000 | 9,170,400<br>0           | 0<br>12,762,000          | 11,362,000<br>0          | 2<br>7  |
| Yes        |     | K7ESE1               | Keratin, type I cytoskeletal 17                                                                                             | KRT17                | 31,444,000                 | 0                        | 0                         | 0                        | 0                        | 31,444,000               | 0                        | 6       |
| Yes        |     | H7BZJ3<br>A0A2R8YGX3 | Protein disulfide-isomerase A3<br>Tropomyosin alpha-4 chain                                                                 | PDIA3<br>TPM4        | 31,218,000<br>30,416,000   | 10,969,000<br>0          | 0                         | Ō                        | 0                        | 12,027,000<br>30,416,000 | 8,221,900<br>0           | 4       |
| Yes        |     | A0A1X7SBZ2<br>P68133 | Probable ATP-dependent RNA helicase DDX17<br>Actin, alpha skeletal muscle; Actin, aortic smooth muscle                      | DDX17<br>ACTA1       | 30,189,000<br>28,542,000   | 11,040,000<br>0          | 12,105,000<br>0           | 0<br>22,625,000          | 0                        | 7,044,500<br>5,916,600   | 0                        | 1<br>11 |
| Yes        |     | P31151               | Protein S100-A7                                                                                                             | S100A7               | 28,377,000                 | 16,068,000               | Ó                         | 0                        | 3,923,400                | 5,362,900                | 3,022,700                | 1       |
| Yes<br>Yes |     | O75874<br>P63104     | Isocitrate dehydrogenase [NADP] cytoplasmic<br>14-3-3 protein zeta/delta                                                    | IDH1<br>YWHAZ        | 27,456,000<br>26,529,000   | 0                        | 27,456,000<br>0           | 0<br>3,983,100           | 0                        | 0<br>11,736,000          | 0<br>10,810,000          | 3<br>3  |
| Yes<br>Yes |     | A0A7I2V3U0<br>C9JEH7 | Aconitate hydratase, mitochondrial<br>40S ribosomal protein S4, X isoform                                                   | ACO2<br>RPS4Y1       | 26,341,000<br>26,072,000   | 0<br>26,072,000          | 7,668,600<br>0            | 3,421,200<br>0           | 0                        | 7,748,000<br>0           | 7,503,500<br>0           | 2<br>3  |
| Yes        |     | D6RHJ7               | Dihydropteridine reductase                                                                                                  | QDPR                 | 25,964,000                 | 0                        | 22,627,000                | 0                        | 0                        | 3,337,100                | 0                        | 2       |
| Yes        | Yes | P21980<br>I3L1P8     | Protein-glutamine gamma-glutamyltransferase 2<br>Mitochondrial 2-oxoglutarate/malate carrier protein                        | TGM2<br>SLC25A11     | 25,527,000<br>25,396,000   | 0                        | 25,527,000<br>0           | 0<br>9,416,800           | 0                        | 0<br>5,550,200           | 0<br>10,429,000          | 3<br>1  |
| Yes<br>Yes |     | E9PP21<br>P26641     | Cysteine and glycine-rich protein 1<br>Elongation factor 1-gamma                                                            | CSRP1<br>EEF1G       | 25,181,000<br>25,062,000   | 0<br>8,120,000           | 19,963,000                | 5,218,000<br>0           | 0                        | 0<br>16,942,000          | 0                        | 1       |
| Yes        |     | Q99497               | Protein deglycase DJ-1                                                                                                      | PARK7                | 24,469,000                 | 0                        | 24,469,000                | Ō                        | ō                        | 0                        | ō                        | 2       |
| Yes        |     | B4DK69<br>H3BTX9     | Aldo-keto reductase family 1 member C2<br>Acyl-coenzyme A synthetase ACSM2B, mitochondrial                                  | AKR1C2<br>ACSM2B     | 23,775,000<br>23,403,000   | 0                        | 23,775,000<br>23,403,000  | 0                        | 0                        | 0                        | 0                        | 3<br>2  |
| Yes        |     | P17096<br>O43548     | High mobility group protein HMG-I/HMG-Y                                                                                     | HMGA1<br>TGM5        | 23,239,000<br>22,931,000   | 0                        | 0                         | 0<br>5,106,200           | 0<br>3,459,400           | 0<br>5,197,500           | 23,239,000<br>9,168,100  | 1       |
| Yes        |     | A0A6E1W9L1           | Protein-glutamine gamma-glutamyttransferase 5<br>Zinc finger and BTB domain-containing protein 3                            | ZBTB3                | 22,345,000                 | 5,533,200                | 0                         | 7,473,000                | 0                        | 5,197,500<br>9,338,700   | 0                        | 2       |
| Yes<br>Yes |     | P07099<br>A0A7I2YQ74 | Epoxide hydrolase 1<br>UTPglucose-1-phosphate uridylyltransferase                                                           | EPHX1<br>UGP2        | 21,730,000<br>21,651,000   | 0                        | 21,730,000<br>21,651,000  | 0                        | 0                        | 0                        | 0                        | 2<br>3  |
| Yes        |     | P34896-3             | Serine hydroxymethyltransferase, cytosolic                                                                                  | SHMT1                | 21,544,000                 | 0                        | 21,544,000                | 0                        | ō                        | 0                        | 0                        | 2       |
| Yes<br>Yes |     | P51857-2<br>H0YCY6   | 3-oxo-5-beta-steroid 4-dehydrogenase<br>Bifunctional ATP-dependent dihydroxyacetone kinase; ATP-dependent                   | AKR1D1<br>TKFC       | 21,175,000<br>20,829,000   | 0                        | 21,175,000<br>20,829,000  | 0                        | 0                        | Ō                        | 0                        | 2<br>3  |
| Yes<br>Yes |     | F8VPF3<br>P01019     | Myosin light polypeptide 6;Myosin light chain 6B<br>Angiotensinogen;Angiotensin-1;Angiotensin-2;Angiotensin-3;Angiotensin-4 | MYL6<br>AGT          | 20,561,000<br>20,374,000   | 0                        | 0                         | 0                        | 0                        | 20,561,000<br>20,374,000 | 0                        | 1<br>2  |
|            |     |                      | <ul> <li>g</li></ul>                                                                                                        |                      | _3,51-7,000                | v                        | v                         | v                        | 5                        | ,0, 1,000                | v                        | -       |

|     | P25325-2<br>A0A3B3ISY1 | 3-mercaptopyruvate sulfurtransferase;Sulfurtransferase<br>Tissue factor pathway inhibitor 2 | MPST<br>TFPI2    | 19,789,000<br>19,686,000 | 0<br>8,176,900 | 19,789,000<br>0 | 0              | 0<br>8,803,000 | 0<br>2,706,500 | 0         |
|-----|------------------------|---------------------------------------------------------------------------------------------|------------------|--------------------------|----------------|-----------------|----------------|----------------|----------------|-----------|
|     | Q16698-2               | 2,4-dienoyl-CoA reductase, mitochondrial                                                    | DECR1            | 19,661,000               | 0,170,300      | 19,661,000      | 0              | 0,000,000      | 2,700,500      | 0         |
|     | C9JV37                 | Prothrombin;Activation peptide fragment 1                                                   | F2               | 19,349,000               | ō              | 0               | ō              | ō              | 19,349,000     | ō         |
|     | A0A6Q8PFC6             | Glycine amidinotransferase, mitochondrial                                                   | GATM             | 18,900,000               | 0              | 18,900,000      | 0              | 0              | 0              | -         |
|     | A0A075B6H9             | Immunoglobulin lambda variable 4-69                                                         | IGLV4-69         | 18,184,000               | 18,184,000     | 0               | ō              | ō              | ō              | č         |
|     | V9GYG0                 | ADP/ATP translocase 3; ADP/ATP translocase 3, N-terminally processed                        | SLC25A4          | 17.956.000               | 0              | ō               | 6.886.600      | 4.931.600      | ō              | 6.137.900 |
|     | A0A1W2PP35             | Heterogeneous nuclear ribonucleoprotein U                                                   | HNRNPU           | 17,783,000               | 0              | 0               | 17,783,000     | 0              | 0              | (         |
|     | E5RGW4                 | Nucleophosmin                                                                               | NPM1             | 17,763,000               | 0              | 0               | 0              | 0              | 17,763,000     | (         |
|     | J3QRN2                 | Beta-2-glycoprotein 1                                                                       | APOH             | 17,755,000               | 0              | 8,891,500       | Ō              | 0              | 0              | 8,863,30  |
|     | E9PRN7                 | 3 beta-hydroxysteroid dehydrogenase/Delta 5>4-isomerase type 2                              | HSD3B1           | 17,661,000               | 0              | 0               | 4,061,200      | 6,881,400      | 0              | 6,718,40  |
|     | P52758                 | Ribonuclease UK114                                                                          | HRSP12           | 16,603,000               | 0              | 16,603,000      | 0              | 0              | 0              |           |
|     | Q15084-3               | Protein disulfide-isomerase A6                                                              | PDIA6            | 16,371,000               | 0              | 10,683,000      | 0              | 0              | 5,687,900      |           |
|     | Q5TF55                 | Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial                                | ALDH4A1          | 16,343,000               | 0              | 16,343,000      | 0              | 0              | 0              |           |
|     | H0Y4K8                 | Fibronectin;Anastellin;Ugl-Y1;Ugl-Y2;Ugl-Y3                                                 | FN1              | 16,129,000               | 2,290,000      | 0               | 7,354,100      | 0              | 0              | 6,485,40  |
|     | A0A494C1T2             | C-1-tetrahydrofolate synthase, cytoplasmic                                                  | MTHFD1           | 15,674,000               | 0              | 15,674,000      | 0              | 0              | 0              |           |
|     | E7EPM6                 | Long-chain-fatty-acidCoA ligase 1                                                           | ACSL1            | 15,503,000               | 0              | 15,503,000      | 0              | 0              | 0              |           |
|     | H0YJF9                 | Dihydrolipoyllysine-residue succinyltransferase/2-oxoglutarate dehydrogen                   | DLST             | 14,869,000               | 0              | 0               | 11,035,000     | 0              | 3,833,400      |           |
|     | Q14134-2               | Tripartite motif-containing protein 29                                                      | TRIM29           | 14,797,000               | 0              | 0               | 0              | 0              | 14,797,000     |           |
|     | P18206-2               | Vinculin                                                                                    | VCL              | 14,766,000               | 0              | 0               | 0              | 0              | 0              | 14,766,00 |
| Yes | D6R9P3                 | Heterogeneous nuclear ribonucleoprotein A/B                                                 | HNRNPAB          | 14,544,000               | 0              | 0               | 14,544,000     | 0              | 0              |           |
|     | P10696                 | Alkaline phosphatase, placental-like;Alkaline phosphatase, placental type                   | ALPPL2           | 14,464,000               | 14,464,000     | 0               | 0              | 0              | 0              |           |
|     | H3BRG4                 | Cytochrome b-c1 complex subunit 2, mitochondrial                                            | UQCRC2           | 14,346,000               | 0              | 14,346,000      | 0              | 0              | 0              |           |
| •   | C9JRL4                 | Malate dehydrogenase;Malate dehydrogenase, cytoplasmic                                      | MDH1             | 14,124,000               | 0              | 14,124,000      | 0              | 0              | 0              | 0 407 50  |
|     | P62258                 | 14-3-3 protein epsilon                                                                      | YWHAE            | 14,037,000               | 0              | 5,850,000       | 0              | 0              | 0              | 8,187,50  |
|     | D6RFG5                 | Annexin;Annexin A3                                                                          | ANXA3            | 13,723,000               | 0              | 0               | 0              | 0              | 13,723,000     |           |
|     | O60701-3               | UDP-glucose 6-dehydrogenase                                                                 | UGDH             | 13,415,000               | 0              | 13,415,000      | 0              | 0              | 0              |           |
|     | B0YIW2                 | Apolipoprotein C-III                                                                        | APOC3            | 13,244,000               | 0              | 0               | 0              | 0              | 13,244,000     |           |
|     | A0A0G2JQH2             | 40S ribosomal protein S18                                                                   | RPS18            | 13,172,000               | 0              | 0               | 0              | 0              | 13,172,000     |           |
|     | P49189                 | 4-trimethylaminobutyraldehyde dehydrogenase                                                 | ALDH9A1          | 13,161,000               | 0              | 13,161,000      | 0              | 0              | 0              |           |
|     | P11277-3               | Spectrin beta chain, erythrocytic                                                           | SPTB             | 13,077,000               | 0              | 13,077,000      | 0              | 0              | 0              |           |
|     | Q9HC84<br>P46783       | Mucin-5B<br>405 ribosomal protein \$10 Butativo 405 ribosomal protein \$10 liko             | MUC5B            | 12,990,000<br>12,790.000 | 0              | 12,990,000      | 0              | 0              | 0<br>6,459,400 |           |
|     | P46783<br>P04080       | 40S ribosomal protein S10;Putative 40S ribosomal protein S10-like<br>Cvstatin-B             | RPS10<br>CSTB    |                          |                | 6,330,400<br>0  |                | 0              | 6,459,400<br>0 |           |
|     | F6RED5                 | Cystatin-B<br>Destrin                                                                       | DSTN             | 12,717,000<br>12.619.000 | 7,164,000<br>0 | 0<br>12,619,000 | 5,552,700<br>0 | 0              | 0              |           |
|     | P25786                 | Proteasome subunit alpha type-1;Proteasome subunit alpha type                               | PSMA1            | 12,242,000               | 0              | 8,949,000       | 3,292,900      | 0              | 0              |           |
|     | P16157-14              | Ankvrin-1                                                                                   | ANK1             | 12,242,000               | 0              | 12.173.000      | 3,292,900      | 0              | 0              |           |
|     | A0A087WT59             | Transthvretin                                                                               | TTR              | 11,910,000               | 0              | 12,173,000      | 0              | 0              | 11,910,000     |           |
|     | F9PK47                 | Alpha-1,4 glucan phosphorylase;Glycogen phosphorylase, liver form                           | PYGI             | 11.862.000               | 0              | 11,862,000      | 0              | 0              | 11,310,000     |           |
|     | P02808                 | Statherin                                                                                   | STATH            | 11,823,000               | 11,823,000     | 11,002,000      | 0              | 0              | 0              |           |
|     | P08246                 | Neutrophil elastase                                                                         | FLANE            | 11.630.000               | 11,023,000     | 11,630,000      | 0              | 0              | 0              |           |
|     | P52907                 | F-actin-capping protein subunit alpha-1                                                     | CAPZA1           | 11,591,000               | 0              | 0               | 0              | ő              | 11,591,000     |           |
|     | C9JA05                 | Immunoglobulin J chain                                                                      | JCHAIN           | 11,558,000               | 0              | ő               | 0              | ő              | 11,558,000     |           |
|     | Q9UG54                 | Mitogen-activated protein kinase kinase kinase 7                                            | DKFZp586F0420    | 11,510,000               | 11,510,000     | ő               | ő              | ŏ              | 0              |           |
|     | P45954-2               | Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial                         | ACADSB           | 11.392.000               | 0              | 11 392 000      | ŏ              | ő              | ő              |           |
|     | B5MD38                 | Trifunctional enzyme subunit beta, mitochondrial;3-ketoacyl-CoA thiolase                    | HADHB            | 11,328,000               | ō              | 11.328.000      | ō              | ō              | ō              |           |
|     | P25815                 | Protein S100-P                                                                              | \$100P           | 11.215.000               | 0              | 0               | Ó              | 0              | 0              | 11.215.00 |
|     | P02549-2               | Spectrin alpha chain, erythrocytic 1                                                        | SPTA1            | 10,654,000               | 0              | 10,654,000      | 0              | 0              | 0              |           |
|     | H0YAG8                 | Alcohol dehydrogenase class-3                                                               | ADH5             | 10,551,000               | 0              | 10,551,000      | 0              | 0              | 0              |           |
|     | A0A087WW87             | Ig kappa chain V-II region FR;Ig kappa chain V-II region Cum                                | IGKV2-40         | 10,538,000               | 0              | 0               | 0              | 0              | 10,538,000     |           |
|     | B1AKI5                 | Muscleblind-like protein 3;Muscleblind-like protein 2                                       | MBNL3            | 10,394,000               | 0              | 10,394,000      | 0              | 0              | 0              |           |
|     | B1AKQ8                 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1                            | GNB1             | 10,354,000               | 0              | 0               | 0              | 0              | 0              | 10,354,00 |
|     | A0A0J9YXZ5             | Ras GTPase-activating-like protein IQGAP1                                                   | IQGAP1           | 10,328,000               | 0              | 0               | 0              | 0              | 10,328,000     |           |
|     | P13716-2               | Delta-aminolevulinic acid dehydratase                                                       | ALAD             | 10,259,000               | 0              | 10,259,000      | 0              | 0              | 0              |           |
|     | Q13404-8               | Ubiquitin-conjugating enzyme E2 variant 1                                                   | UBE2V1           | 9,964,900                | 0              | 9,964,900       | 0              | 0              | 0              |           |
|     | M0R0Y6                 | Heterogeneous nuclear ribonucleoprotein M                                                   | HNRNPM           | 9,627,300                | 0              | 0               | 0              | 0              | 9,627,300      |           |
|     | A0A7I2V699             | Nucleolin                                                                                   | NCL              | 9,473,600                | 0              | 0               | 0              | 0              | 9,473,600      |           |
|     | P05387                 | 60S acidic ribosomal protein P2                                                             | RPLP2            | 9,359,400                | 3,670,500      | 0               | 0              | 0              | 5,688,900      |           |
|     | Q06520                 | Bile salt sulfotransferase                                                                  | SULT2A1          | 9,347,800                | 0              | 9,347,800       | 0              | 0              | 0              |           |
|     | P21399                 | Cytoplasmic aconitate hydratase                                                             | ACO1             | 9,273,300                | 0              | 9,273,300       | 0              | 0              | 0              |           |
|     | P27824-3               | Calnexin                                                                                    | CANX             | 9,232,100                | 0              | 0               | 0              | 0              | 9,232,100      |           |
|     | A0A0C4DGA2             | Encyl-CoA delta isomerase 2, mitochondrial                                                  | ECI2             | 9,217,600                | 0              | 9,217,600       | 0              | 0              | 0              |           |
|     | A0A140TA58             | Keratin-associated protein 9-9                                                              | KRTAP9-9         | 9,046,100                | 0              | 9,046,100       | 0              | 0              | 0              | 4 770 20  |
|     | J3KRG2<br>E5GZP6       | Gasdermin-A                                                                                 | GSDMA<br>PPEIBP1 | 8,582,300                | 0              | 3,803,000       | 0              | 0              | 0              | 4,779,30  |
|     | P32926                 | Liprin-beta-1<br>Desmoglein-3                                                               | DSG3             | 8,376,800                | 8,376,800<br>0 | 0               | 0              | 0              | 0<br>8,254,400 |           |
|     | A0A0G2JMB2             | Ig alpha-2 chain C region                                                                   | IGHA2            | 8,254,400<br>7,976.600   | 0              | 7.976.600       | 0              | 0              | 8,254,400      |           |
|     | M0QY85                 | Tubulin beta-4A chain;Tubulin beta-4B chain                                                 | TUBB4A           | 7,933,700                | 0              | 7,933,700       | 0              | 0              | 0              |           |
|     | Q14117                 | Dihydropyrimidinase                                                                         | DPYS             | 7,933,700                | 0              | 7,933,700       | 0              | 0              | 0              |           |
|     | E9PE82                 | Short-chain specific acyl-CoA dehydrogenase, mitochondrial                                  | ACADS            | 7,313,700                | 0              | 7,313,700       | 0              | 0              | 0              |           |
|     | E3FE02                 | Selenium-binding protein 1                                                                  | SELENBP1         | 6 229 500                | 0              | 6 229 500       | 0              | 0              | 0              |           |
|     | Q13011                 | Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial                                  | ECH1             | 5,760,800                | 0              | 5,760,800       | 0              | 0              | 0              |           |
|     | Q9UBG3                 | Cornulin                                                                                    | CRNN             | 5 651 400                | ő              | 0,700,000       | 5 651 400      | 0              | 0              |           |
|     | Q08257-2               | Quinone oxidoreductase                                                                      | CRYZ             | 5,461,300                | 0              | 5,461,300       | 0,001,400      | 0              | ő              |           |
|     | P28838-2               | Cytosol aminopeptidase                                                                      | LAP3             | 5,135,200                | 0              | 5,135,200       | 0              | 0              | 0              |           |
|     | A8MUD9                 | 60S ribosomal protein L7                                                                    | RPL7             | 4,984,000                | 4,984,000      | 0 0             | 0              | 0              | 0              |           |
|     | E9PEB5                 | Far upstream element-binding protein 1                                                      | FUBP1            | 4,984,000                | 4,984,000      | 0               | 4,190,600      | 0              | 0              |           |
|     | P09651                 | Heterogeneous nuclear ribonucleoprotein A1                                                  | HNRNPA1          | 3,752,800                | 3,752,800      | 0               | 4,190,000      | 0              | 0              |           |
|     | P22314-2               | Ubiquitin-like modifier-activating enzyme 1                                                 | UBA1             | 3,748,100                | 3,752,800      | 3 748 100       | 0              | 0              | 0              |           |
|     | Q14032                 | Bile acid-CoA:amino acid N-acyltransferase                                                  | BAAT             | 3,451,500                | 0              | 3,451,500       | 0              | 0              | ő              |           |
|     | G3V5K1                 | Protein transport protein Sec23A                                                            | SEC23A           | 2.912.600                | ő              | 0,401,000       | 0              | ő              | 2,912,600      | (         |
|     | H7C4C8                 | T-complex protein 1 subunit theta                                                           | CCT8             | 2,848,600                | ŏ              | 2,848,600       | ő              | ŏ              | 2,012,000      | Č         |
|     |                        |                                                                                             |                  |                          |                |                 |                |                |                |           |

 Table 4

 Proteins identified in PICALM immunoprecipitations.

 Placental extracts U1, R4, Q1, Q4, O1, and N3 were immunoprecipitated in one experiment.

| Majority protein ID  | Protein                                                                                             | Gene                 | Total Intensity                | Intensity<br>PICALM     | Intensity<br>PICALM            | Intensity<br>PICALM       | Intensity<br>PICALM         | Intensity<br>PICALM        | Intensity<br>PICALM        | Peptides |
|----------------------|-----------------------------------------------------------------------------------------------------|----------------------|--------------------------------|-------------------------|--------------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|----------|
| P01857               | Ig gamma-1 chain C region                                                                           | IGHG1                | 48 398 000 000                 | U1                      | R4<br>13,091,000,000           | <b>Q1</b><br>789,180,000  | <b>Q4</b><br>14,626,000,000 | <b>O1</b> 12,977,000,000   | N3<br>6 715 700 000        | 23       |
| Q13492               | Phosphatidylinositol-binding clathrin assembly prote                                                | PICALM               | 18,858,000,000                 |                         | 5,271,000,000                  | 657,650,000               | 3,743,800,000               |                            |                            | 35       |
| P50995-2             | Annexin A11                                                                                         | ANXA11               | 15,851,000,000                 |                         | 4,529,400,000                  | 433,220,000               | 3,795,300,000               | 3,270,300,000              |                            | 37       |
| P20073-2             | Annexin A7                                                                                          | ANXA7                | 9,130,600,000                  |                         | 2,765,200,000                  | 238,940,000               | 1,535,100,000               | 2,049,900,000              |                            | 32       |
| A0A286YES1           | Ig gamma-3 chain C region                                                                           | IGHG3                | 4,336,300,000                  | 33,112,000              | 1,106,600,000                  | 53,173,000                | 927,810,000                 | 812,970,000                |                            | 20       |
| A0A7I2V378<br>E7EVS6 | Laminin subunit beta-1<br>Actin, cytoplasmic 1;Actin, cytoplasmic 1, N-termina                      | LAMB1<br>ACTB        | 3,056,100,000<br>2,600,000,000 | 0<br>74,816,000         | 3,056,100,000<br>1,747,800,000 | 0<br>140,870,000          | 0<br>230,680,000            | 0<br>217,870,000           | 0<br>187,980,000           | 1<br>19  |
| P01834               | Ig kappa chain C region                                                                             | IGKC                 | 2,165,500,000                  | 19,359,000              | 221.050.000                    | 1,391,900,000             | 195,150,000                 | 232,100,000                | 105,920,000                | 9        |
| A0A286YFJ8           | Ig gamma-4 chain C region                                                                           | IGHG4                | 1,609,600,000                  | 0                       | 218,830,000                    | 22,468,000                | 138,990,000                 | 428,050,000                | 801,270,000                | 17       |
| P0DOY3               | Immunoglobulin lambda constant 3                                                                    | IGLC3                | 1,591,000,000                  | 2,681,900               | 60,706,000                     | 741,050,000               | 302,850,000                 | 240,510,000                | 243,250,000                | 9        |
| A0A286YEY1           | Ig alpha-1 chain C region                                                                           | IGHA1                | 1,335,500,000                  | 23,359,000              | 584,930,000                    | 130,660,000               | 252,550,000                 | 139,020,000                | 204,990,000                | 14       |
| Q9Y6R7               | IgGFc-binding protein                                                                               | FCGBP                | 1,098,700,000<br>1,060,200,000 | 9,162,000<br>0          | 128,730,000                    | 9,654,400                 | 38,684,000                  | 824,150,000<br>205.020.000 | 88,293,000<br>0            | 30       |
| P01624<br>P31943     | Ig kappa chain V-III region POM<br>Heterogeneous nuclear ribonucleoprotein H;Heterog                | IGKV3D-15<br>HNRNPH1 | 1,047,700,000                  | 10,293,000              | 124,770,000<br>217,040,000     | 613,850,000<br>24,254,000 | 116,590,000<br>289,540,000  | 295,340,000                | 211,190,000                | 2<br>11  |
| P08670               | Vimentin                                                                                            | VIM                  | 951,490,000                    | 6,378,400               | 298,510,000                    | 5,089,400                 | 72,211,000                  | 358,520,000                | 210,780,000                | 26       |
| H0YEF7               | Phosphatidylinositol-binding clathrin assembly prote                                                | PICALM               | 874,480,000                    | 16,602,000              | 212,520,000                    | 57,324,000                | 467,540,000                 | 68,277,000                 | 52,211,000                 | 14       |
| E9PQV5               | Coiled-coil domain-containing protein 37                                                            | CCDC37               | 870,490,000                    | 0                       | 0                              | 870,490,000               | 0                           | 0                          | 0                          | 1        |
| A0A4W8ZXM2           | Immunoglobulin heavy variable 3-72                                                                  | IGHV3-72             | 808,240,000                    | 44,918,000              | 282,930,000                    | 12,296,000                | 137,660,000                 | 204,230,000                | 126,190,000                | 3        |
| P05783<br>P07355     | Keratin, type I cytoskeletal 18<br>Annexin A2;Annexin;Putative annexin A2-like protei               | KRT18<br>ANXA2       | 760,020,000<br>742,370,000     | 0<br>6,496,700          | 231,740,000<br>256,760,000     | 8,635,500<br>55,166,000   | 185,390,000<br>54,726,000   | 187,570,000<br>196,500,000 | 146,680,000<br>172,720,000 | 17<br>15 |
| P01871               | Ig mu chain C region                                                                                | IGHM                 |                                | 105,950,000             | 12,770,000                     | 0                         | 95,422,000                  | 155,950,000                | 352,180,000                | 18       |
| P31942-2             | Heterogeneous nuclear ribonucleoprotein H3                                                          | HNRNPH3              | 681,640,000                    | 0                       | 133,900,000                    | 68,508,000                | 133,680,000                 | 231,950,000                | 113,610,000                | 9        |
| Q8NDC0               | MAPK-interacting and spindle-stabilizing protein-like                                               | MAPK1IP1L            | 497,400,000                    | 15,599,000              | 39,220,000                     | 243,740,000               | 59,063,000                  | 32,791,000                 | 106,990,000                | 1        |
| P51512-2             | Matrix metalloproteinase-16                                                                         | MMP16                | 429,540,000                    | 0                       | 178,440,000                    | 27,390,000                | 0                           | 223,720,000                | 0                          | 1        |
| H0Y8G5               | Heterogeneous nuclear ribonucleoprotein D0                                                          | HNRNPD               | 409,120,000                    | 0<br>5,970,500          | 31,290,000                     | 27,715,000                | 95,052,000                  | 151,740,000                | 103,320,000<br>110,760,000 | 5        |
| E7ETU5<br>Q8WZ42     | RNA-binding motif, single-stranded-interacting prote<br>Titin                                       | RBMS1<br>TTN         | 391,920,000<br>387,820,000     | 5,970,500               | 68,667,000<br>0                | 17,784,000<br>0           | 143,760,000<br>75,928,000   | 44,979,000<br>210,050,000  | 101,840,000                | 7<br>1   |
| P02675               | Fibrinogen beta chain; Fibrinopeptide B; Fibrinogen b                                               | FGB                  | 348,580,000                    | 0                       | 343,520,000                    | 2,249,600                 | 0,020,000                   | 210,000,000                | 2,806,500                  | 16       |
| A0A0D9SF16           | Methyl-CpG-binding domain protein 5                                                                 | MBD5                 | 346,080,000                    | 0                       | 0                              | 0                         | 346,080,000                 | 0                          | 0                          | 1        |
| O14979-3             | Heterogeneous nuclear ribonucleoprotein D-like                                                      | HNRNPDL              | 334,140,000                    | 4,097,000               | 84,425,000                     | 6,682,100                 | 92,722,000                  | 38,095,000                 | 108,120,000                | 6        |
| P98082               | Disabled homolog 2                                                                                  | DAB2                 | 308,620,000                    | 30,904,000              | 53,571,000                     | 22,044,000                | 29,573,000                  | 79,395,000                 | 93,129,000                 | 8        |
| A0A286YEY4<br>P68871 | Ig gamma-2 chain C region<br>Hemoglobin subunit beta;LVV-hemorphin-7;Spinorp                        | IGHG2<br>HBB         | 295,690,000<br>289,630,000     | 3,630,700<br>17,601,000 | 140,820,000<br>25,216,000      | 13,340,000<br>58,392,000  | 30,486,000<br>73,808,000    | 32,731,000<br>70,816,000   | 74,683,000<br>43,798,000   | 15<br>4  |
| P11021               | 78 kDa glucose-regulated protein                                                                    | HSPA5                | 278,720,000                    | 66,634,000              | 8,224,700                      | 00,392,000                | 44,577,000                  | 12,509,000                 | 146,770,000                | 14       |
| P04083               | Annexin A1;Annexin                                                                                  | ANXA1                | 264,550,000                    | 7,343,100               | 128,430,000                    | 38,085,000                | 12,426,000                  | 24,473,000                 | 53,792,000                 | 13       |
| P01594               | Ig kappa variable 1-33                                                                              | IGKV1-33             | 258,450,000                    | 2,181,900               | 6,309,800                      | 167,650,000               | 34,900,000                  | 29,177,000                 | 18,233,000                 | 2        |
| O43866               | CD5 antigen-like                                                                                    | CD5L                 | 258,210,000                    | 0                       | 64,662,000                     | 0                         | 27,301,000                  | 135,430,000                | 30,812,000                 | 5        |
| F8VV32               | Lysozyme;Lysozyme C                                                                                 | LYZ                  | 201,490,000                    | 13,865,000              | 0                              | 33,772,000<br>155,520,000 | 58,974,000<br>0             | 48,689,000                 | 46,193,000<br>0            | 3<br>4   |
| P21980-2<br>P01615   | Protein-glutamine gamma-glutamyltransferase 2<br>Immunoglobulin kappa varibable 2D-28               | TGM2<br>IGKV2D-28    | 182,780,000<br>157,840,000     | 21,051,000<br>0         | 6,206,000<br>0                 | 56,727,000                | 2,124,500                   | 1,244,100                  | 97,746,000                 | 4        |
| Q5T749               | Keratinocyte proline-rich protein                                                                   | KPRP                 | 156,670,000                    | 0                       | 14,536,000                     | 42,583,000                | 12,523,000                  | 41,980,000                 | 45,045,000                 | 8        |
| Q5T7N2               | LINE-1 type transposase domain-containing protein                                                   | L1TD1                | 147,570,000                    | 0                       | 33,515,000                     | 51,668,000                | 0                           | 0                          | 62,386,000                 | 2        |
| A0A6Q8PGK1           | Heat shock protein beta-1                                                                           | HSPB1                | 140,170,000                    | 5,102,400               | 5,175,100                      | 116,740,000               | 0                           | 9,140,400                  | 4,009,100                  | 4        |
| Q02413               | Desmoglein-1                                                                                        | DSG1                 | 139,520,000                    | 4,467,600               | 13,159,000                     | 21,449,000                | 21,775,000                  | 52,035,000                 | 26,635,000                 | 9        |
| F8VVB9<br>A0A6Q8PFJ0 | Tubulin alpha-1B chain;Tubulin alpha-1A chain;Tubu<br>Prelamin-A/C;Lamin-A/C                        | TUBA1B<br>LMNA       | 130,470,000<br>126,810,000     | 4,960,800<br>51,770,000 | 53,076,000<br>36,048,000       | 11,800,000<br>0           | 10,998,000<br>9,173,200     | 17,150,000<br>5,398,800    | 32,482,000<br>24,420,000   | 4<br>7   |
| P69905               | Hemoglobin subunit alpha                                                                            | HBA1                 | 120,580,000                    | 8,819,100               | 32,928,000                     | 0                         | 19,697,000                  | 31,037,000                 | 28,103,000                 | 3        |
| P02671               | Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen                                                  | FGA                  | 119,010,000                    | 5,765,800               | 89,186,000                     | 13,712,000                | 0                           | 1,589,500                  | 8,753,800                  | 6        |
| A0A0B4J231           | Immunoglobulin lambda-like polypeptide 5;lg lambd                                                   | IGLL5                | 113,780,000                    | 0                       | 823,960                        | 0                         | 51,884,000                  | 45,566,000                 | 15,503,000                 | 7        |
| Q9HAU0-6             | Pleckstrin homology domain-6                                                                        | PLEKHA6              | 100,890,000                    | 0                       | 9,826,200                      | 91,063,000                | 0                           | 0                          | 0                          | 1        |
| Q92945               | Far upstream element-binding protein 2                                                              | KHSRP                | 96,813,000                     | 25,823,000              | 0                              | 0                         | 5,257,900                   | 16,437,000                 | 49,295,000                 | 8        |
| R4GNB1               | Acyl-CoA synthetase family member 4                                                                 | AASDH                | 94,959,000                     | 0                       | 6,802,400                      | 6,567,300                 | 14,507,000                  | 47,725,000                 | 19,358,000                 | 1        |
| C9JEU5               | Fibrinogen gamma chain                                                                              | FGG<br>GAPDH         | 90,470,000                     | 63,046,000              | 15,905,000                     | 0                         | 10,380,000                  | 0                          | 1,139,700                  | 7<br>6   |
| P04406<br>K7ERX7     | Glyceraldehyde-3-phosphate dehydrogenase<br>ATP synthase subunit alpha, mitochondrial               | ATP5A1               | 89,398,000<br>87,648,000       | 4,504,400<br>0          | 74,117,000<br>49,222,000       | 3,593,000<br>0            | 1,898,700<br>0              | 5,284,800<br>20,992,000    | 0<br>17,434,000            | 5        |
| E9PPG9               | mRNA export factor                                                                                  | RAE1                 | 87,447,000                     | 0                       | 40,222,000                     | ő                         | 58,237,000                  | 2,416,200                  | 26,794,000                 | 4        |
| P30101               | Protein disulfide-isomerase A3                                                                      | PDIA3                | 86,682,000                     | 0                       | 34,607,000                     | 0                         | 0                           | 17,446,000                 | 34,628,000                 | 8        |
| K7EQ02               | DAZ-associated protein 1                                                                            | DAZAP1               | 83,974,000                     | 0                       | 11,234,000                     | 0                         | 42,826,000                  | 23,140,000                 | 6,774,000                  | 2        |
| Q01469               | Fatty acid-binding protein, epidermal                                                               | FABP5                | 79,112,000                     | 0                       | 8,010,100                      | 12,771,000                | 28,053,000                  | 0                          | 30,278,000                 | 1        |
| Q01085<br>P21397-2   | Nucleolysin TIAR;Nucleolysin TIA-1 isoform p40<br>Amine oxidase [flavin-containing] A;Amine oxidase | TIAL1<br>MAOA        | 77,006,000<br>76,723,000       | 0                       | 15,592,000<br>33,332,000       | 0<br>0                    | 14,334,000<br>16,437,000    | 18,441,000<br>0            | 28,639,000<br>26,954,000   | 4<br>4   |
| A6NHN2               | Roquin-2                                                                                            | RC3H2                | 74,367,000                     | 0                       | 00,002,000                     | 50,159,000                | 10,437,000                  | 8,880,000                  | 15,328,000                 | 1        |
| P14866               | Heterogeneous nuclear ribonucleoprotein L                                                           | HNRNPL               | 68,836,000                     | 0                       | 0                              | 0                         | 0                           | 0                          | 68,836,000                 | 7        |
| Q5JPU3               | Pyruvate dehydrogenase E1 component subunit alp                                                     | PDHA1                | 66,908,000                     | 0                       | 12,367,000                     | 0                         | 31,262,000                  | 13,254,000                 | 10,024,000                 | 3        |
| Q8IUC1               | Keratin-associated protein 11-1                                                                     | KRTAP11-1            | 65,493,000                     | 0                       | 18,492,000                     | 28,950,000                | 0                           | 18,051,000                 | 0                          | 3        |
| Q5JP53               | Tubulin beta chain                                                                                  | TUBB                 | 64,164,000<br>59,976,000       | 3,856,400<br>4,759,100  | 37,532,000                     | 2,310,200                 | 7,223,200                   | 4,449,300<br>18,719,000    | 8,792,800                  | 3        |
| C9J2I0<br>P19474     | Arf-GAP domain and FG repeat-containing protein 1<br>E3 ubiguitin-protein ligase TRIM21             | AGFG1<br>TRIM21      | 58,811,000                     | 4,759,100               | 12,457,000<br>6,681,800        | 0                         | 0                           | 29,267,000                 | 24,041,000<br>22,862,000   | 5        |
| D6R9P3               | Heterogeneous nuclear ribonucleoprotein A/B                                                         | HNRNPAB              | 58,548,000                     | 0                       | 7,571,700                      | 2,186,500                 | 9,640,700                   | 28,004,000                 | 11,145,000                 | 4        |
| Q5T1M5               | FK506-binding protein 15                                                                            | FKBP15               | 58,396,000                     | 11,484,000              | 0                              | 0                         | 14,598,000                  | 0                          | 32,314,000                 | 4        |
| E9PGY2               | Dynein assembly factor 5, axonemal                                                                  | DNAAF5               | 56,016,000                     | 0                       | 0                              | 0                         | 20,626,000                  | 25,326,000                 | 10,064,000                 | 1        |
| P63261<br>Q9NZT1     | Actin, cytoplasmic 2;Actin, cytoplasmic 2, N-termina<br>Calmodulin-like protein 5                   | ACTG1<br>CALML5      | 55,103,000<br>54,136,000       | 0                       | 29,965,000<br>7,928,200        | 6,910,800<br>10,694,000   | 6,077,800<br>0              | 5,127,100<br>27,905,000    | 7,022,400<br>7,608,500     | 19<br>1  |
| C9JZN1               | Guanine nucleotide-binding protein G(I)/G(S)/G(T) s                                                 | GNB2                 | 53,184,000                     | 0                       | 7,920,200                      | 45,048,000                | 8,135,900                   | 27,905,000                 | 7,008,500                  | 4        |
| A0A7I2YQK6           | 60 kDa heat shock protein, mitochondrial                                                            | HSPD1                | 50,218,000                     | 1,514,400               | 15,195,000                     | 0                         | 15,571,000                  | 6,895,200                  | 11,042,000                 | 3        |
| P31040-2             | Succinate dehydrogenase [ubiquinone] flavoprotein                                                   | SDHA                 | 49,094,000                     | 0                       | 23,561,000                     | 0                         | 3,205,300                   | 15,958,000                 | 6,369,600                  | 5        |
| A0A7I2V2R3           | Heterogeneous nuclear ribonucleoprotein A3                                                          | HNRNPA3              | 48,903,000                     | 0                       | 15,655,000                     | 0                         | 7,296,200                   | 11,237,000                 | 14,714,000                 | 2        |
| Q8IWB6-3             | Inactive serine/threonine-protein kinase TEX14                                                      | TEX14                | 48,249,000                     | 0                       | 0                              | 0                         | 0                           | 21,743,000                 | 26,507,000                 | 1        |
| P68371<br>H0YFX9     | Tubulin beta-4B chain;Tubulin beta-4A chain<br>Histone H2A;Histone H2A type 1-J;Histone H2A type    | TUBB4B<br>H2AFJ      | 48,032,000<br>45,901,000       | 0<br>12,453,000         | 39,150,000<br>7,861,100        | 0<br>20,288,000           | 4,137,600<br>0              | 0                          | 4,744,800<br>5,298,900     | 3<br>1   |
| Q8IUC0               | Keratin-associated protein 13-1;Keratin-associated p                                                | KRTAP13-1            | 44,512,000                     | 12,433,000              | 7,315,500                      | 7,365,500                 | 0                           | 29,831,000                 | 3,230,300                  | 1        |
| A0A087WVQ6           | Clathrin heavy chain;Clathrin heavy chain 1                                                         | CLTC                 | 44,504,000                     | 21,103,000              | 0                              | 0                         | 0                           | 0                          | 23,400,000                 | 3        |
| P63267               | Actin, gamma-enteric smooth muscle;Actin, alpha s                                                   | ACTG2                | 44,025,000                     | 0                       | 23,112,000                     | 0                         | 0                           | 8,310,000                  | 12,603,000                 | 12       |
| H7BZJ3               | Protein disulfide-isomerase A3                                                                      | PDIA3                | 43,257,000                     | 4,680,500               | 27,448,000                     | 0                         | 0                           | 11,128,000                 | 0                          | 3        |
| A0A0B4J1V1           | Ig heavy chain V-III region JON;Ig heavy chain V-III                                                | IGHV3-21             | 43,147,000                     | 0                       | 9,064,600                      | 2,411,600                 | 0                           | 22,858,000                 | 8,812,900<br>0             | 2<br>1   |
| H7C582<br>Q9BYR6     | Integrator complex subunit 1<br>Keratin-associated protein 3-3                                      | INTS1<br>KRTAP3-3    | 42,661,000<br>40,458,000       | 0                       | 0<br>40,458,000                | 42,661,000<br>0           | 0                           | 0                          | 0                          | 1        |
| Q13151               | Heterogeneous nuclear ribonucleoprotein A0                                                          | HNRNPA0              | 39,870,000                     | 0                       | 40,430,000                     | 5,577,800                 | 21,067,000                  | 9,442,300                  | 3,783,300                  | 1        |
| H0Y6B2               | Sushi domain-containing protein 1                                                                   | SUSD1                | 38,095,000                     | 0                       | 0                              | 22,678,000                | 8,950,800                   | 6,466,400                  | 0                          | 1        |
| A0A1B0GVP4           | Ligand-dependent nuclear receptor corepressor                                                       | LCORL                | 36,335,000                     | 0                       | 16,645,000                     | 0                         | 9,411,000                   | 0                          | 10,278,000                 | 1        |
| P14923               | Junction plakoglobin                                                                                | JUP                  | 35,503,000                     | 0                       | 0                              | 4,915,000                 | 0                           | 21,240,000                 | 9,347,600                  | 6        |
| P01023<br>A0A7I2V3H3 | Alpha-2-macroglobulin<br>Putative elongation factor 1-alpha-like 3;Elongation                       | A2M<br>EEF1A1        | 35,281,000<br>34,691,000       | 0                       | 0<br>20,615,000                | 0                         | 18,291,000<br>0             | 0<br>6,899,500             | 16,990,000<br>7,176,500    | 2<br>3   |
| I3L0W5               | Putative elongation factor 1-alpha-like 3;Elongation<br>14-3-3 protein epsilon                      | YWHAE                | 34,691,000                     | 0                       | 4,124,200                      | 0<br>16,649,000           | 3,202,500                   | 4,882,900                  | 5,292,400                  | 3        |
| P02787               | Serotransferrin                                                                                     | TF                   | 33,379,000                     | 5,509,000               | 4,124,200                      | 4,698,000                 | 8,538,800                   | 1,682,500                  | 12,951,000                 | 3        |
| Q08554-2             | Desmocollin-1                                                                                       | DSC1                 | 31,458,000                     | 0                       | 0                              | 2,709,100                 | 0                           | 22,304,000                 | 6,444,900                  | 2        |
| E5RGE1               | 14-3-3 protein zeta/delta                                                                           | YWHAZ                | 31,118,000                     | 0                       | 0                              | 31,118,000                | 0                           | 0                          | 0                          | 2        |
| P06576<br>P17931     | ATP synthase subunit beta, mitochondrial;ATP synt<br>Galectin-3;Galectin                            | ATP5B<br>LGALS3      | 31,113,000<br>30,883,000       | 0                       | 31,113,000<br>0                | 0<br>30,883,000           | 0                           | 0                          | 0                          | 3<br>3   |
| C9JA05               | Immunoglobulin J chain                                                                              | JCHAIN               | 29,005,000                     | 6,597,900               | 8,495,000                      | 8,405,600                 | 0                           | 0                          | 5,506,600                  | 1        |
|                      |                                                                                                     |                      |                                |                         |                                |                           | -                           | -                          |                            |          |

| A0A0G2JRN3           | Alpha-1-antitrypsin;Short peptide from AAT                                                                    | SERPINA1              | 28,649,000               | 1,644,400              | 2,510,900               | 10.667.000      | 8,084,300      | 1,831,300               | 3,911,300               | 2      |
|----------------------|---------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|------------------------|-------------------------|-----------------|----------------|-------------------------|-------------------------|--------|
| P31025               | Lipocalin-1;Putative lipocalin 1-like protein 1                                                               | LCN1                  | 28,552,000               | 0                      | 0                       | 2,845,200       | 0              | 6,027,100               | 19,679,000              | 2      |
| P07237               | Protein disulfide-isomerase                                                                                   | P4HB                  | 28,383,000               | 0                      | 18,574,000              | 0               | 0              | 4,970,100               | 4,837,900               | 3      |
| H0Y5H6               | Ubiquitin-associated protein 2-like                                                                           | UBAP2L                | 25,709,000               | 0                      | 0                       | 0               | 0              | 8,179,400               | 17,530,000              | 1      |
| Q96CBB<br>S4R460     | Integrator complex subunit 12<br>Ig heavy chain V-III region BRO region DOB                                   | INTS12<br>IGHV30R16-9 | 25,627,000<br>24,932,000 | 0                      | 0<br>13,396,000         | 0               | 0              | 25,627,000<br>6,415,600 | 0<br>5,120,200          | 1<br>3 |
| Q5JTQ6               | Alpha-catulin                                                                                                 | CTNNAL1               | 23,896,000               | ů<br>0                 | 10,000,000              | 17,301,000      | 0              | 6,594,900               | 0,120,200               | 1      |
| P07910               | Heterogeneous nuclear ribonucleoproteins C1/C2                                                                | HNRNPC                | 23,699,000               | 0                      | 15,502,000              | 0               | 8,197,000      | 0                       | 0                       | 2      |
| E9PEB5               | Far upstream element-binding protein 1                                                                        | FUBP1                 | 23,687,000               | 0                      | 0                       | 0               | 0              | 20,589,000              | 3,098,200               | 3      |
| Q07065               | Cytoskeleton-associated protein 4                                                                             | CKAP4                 | 23,211,000               | 0                      | 10,484,000              | 0               | 0              | 7,232,200               | 5,495,600               | 5      |
| Q9UBG3               | Cornulin                                                                                                      | CRNN<br>IGHV1-18      | 23,063,000               | 0                      | 0                       | 23,063,000<br>0 | 0              | 0<br>8 305 300          | 6 214 900               | 3<br>2 |
| A0A0C4DH31<br>P04843 | Ig heavy chain V-I region V35<br>Dolichyl-diphosphooligosaccharideprotein glycosyl                            | RPN1                  | 22,114,000<br>21,647,000 | 0                      | 7,494,400<br>6,872,300  | 0               | 2,481,300      | 8,305,200<br>3,898,300  | 6,314,800<br>8,395,600  | 2      |
| A0A0G2JIW1           | Heat shock 70 kDa protein 1A;Heat shock 70 kDa pr                                                             | HSPA1A                | 21,113,000               | 1,946,300              | 16,283,000              | 0               | 2,101,000      | 2,883,300               | 0,000,000               | 4      |
| P11142-2             | Heat shock cognate 71 kDa protein                                                                             | HSPA8                 | 20,977,000               | 14,054,000             | 0                       | 1,367,200       | 1,373,400      | 4,182,300               | 0                       | 6      |
| Q15365               | Poly(rC)-binding protein 1;Poly(rC)-binding protein 3                                                         | PCBP1                 | 19,851,000               | 0                      | 8,243,700               | 0               | 0              | 7,620,100               | 3,987,300               | 4      |
| P29401               | Transketolase                                                                                                 | TKT                   | 19,791,000               | 2,617,800<br>0         | 17,173,000              | 0               | 0              | 0                       | 0                       | 3      |
| P11166<br>M0R3F1     | Solute carrier family 2, facilitated glucose transporte<br>Heterogeneous nuclear ribonucleoprotein U-like pro | SLC2A1<br>HNRNPUL1    | 19,512,000<br>19,055,000 | 0                      | 19,512,000<br>0         | 0               | 0              | 0                       | 19,055,000              | 1<br>4 |
| P69892               | Hemoglobin subunit gamma-2;Hemoglobin subunit g                                                               | HBG2                  | 18,869,000               | 8,500,000              | 10,370,000              | 0               | 0              | 0                       | 19,000,000              | 4      |
| A0A7I2V4I6           | Heterogeneous nuclear ribonucleoproteins A2/B1                                                                | HNRNPA2B1             | 18,704,000               | 0                      | 0                       | 0               | 0              | 12,162,000              | 6,541,300               | 4      |
| A0A5F9ZH78           | Arginase-1                                                                                                    | ARG1                  | 17,366,000               | 0                      | 4,850,200               | 0               | 0              | 5,206,700               | 7,309,200               | 2      |
| J3KPS3               | Fructose-bisphosphate aldolase;Fructose-bisphosph                                                             | ALDOA                 | 16,868,000               | 0                      | 16,868,000              | 0               | 0              | 0                       | 0                       | 3      |
| A0A7I2YQY2<br>Q9BYQ3 | Heterogeneous nuclear ribonucleoprotein A1;Heterc<br>Keratin-associated protein 9-3                           | HNRNPA1<br>KRTAP9-3   | 16,360,000<br>16,191,000 | 2,149,600<br>0         | 2,573,000<br>16,191,000 | 0<br>0          | 7,993,500<br>0 | 3,644,300<br>0          | 0                       | 1<br>2 |
| Q9BS26               | Endoplasmic reticulum resident protein 44                                                                     | ERP44                 | 16,007,000               | 0<br>0                 | 7,136,300               | 0<br>0          | 0              | 7,435,300               | 1,435,800               | 3      |
| P15924-2             | Desmoplakin                                                                                                   | DSP                   | 15,924,000               | 0                      | 0                       | 6,126,800       | 0              | 9,797,400               | 0                       | 5      |
| P05109               | Protein S100-A8; Protein S100-A8, N-terminally proc                                                           | S100A8                | 15,760,000               | 828,670                | 4,227,300               | 10,704,000      | 0              | 0                       | 0                       | 1      |
| E9PMZ8               | T-lymphoma invasion and metastasis-inducing prote                                                             | TIAM2                 | 15,463,000               | 0                      | 0                       | 15,463,000      | 0              | 0                       | 0                       | 1      |
| P01833<br>H3BQZ7     | Polymeric immunoglobulin receptor;Secretory comp<br>Heterogeneous nuclear ribonucleoprotein U-like pro        |                       | 15,458,000<br>15,173,000 | 0<br>1,669,300         | 11,036,000<br>0         | 0               | 0              | 3,208,000               | 1,214,700<br>13,503,000 | 3<br>1 |
| P55795               | Heterogeneous nuclear ribonucleoprotein U-like pro                                                            | HNRNPH2               | 14,987,000               | 1,009,300              | 4,489,200               | 0               | 1,825,300      | 5,079,900               | 3,592,900               | 5      |
| A0A0G2JPP1           | Keratin-associated protein 4-8                                                                                | KRTAP4-8              | 14,521,000               | 0                      | 14,521,000              | 0               | 0              | 0                       | 0                       | 1      |
| E9PHT9               | Annexin;Annexin A5                                                                                            | ANXA5                 | 12,946,000               | 0                      | 0                       | 12,946,000      | 0              | 0                       | 0                       | 2      |
| A0A6Q8PF87           | Apoptosis-inducing factor 1, mitochondrial                                                                    | AIFM1                 | 12,539,000               | Ő                      | 12,539,000              | 0               | Ő              | 0                       | Ő                       | 1      |
| M0R1R1               | Serine/threonine-protein kinase PAK 4                                                                         | PAK4                  | 12,509,000               | 0                      | 0                       | 0               | 0              | 0                       | 12,509,000              | 1      |
| P04040               | Catalase                                                                                                      | CAT                   | 12,392,000               | 0                      | 3,717,800               | 1,498,500       | 0              | 3,932,900               | 3,243,300               | 1      |
| A0A140TA58           | Keratin-associated protein 9-9;Keratin-associated pr                                                          | KRTAP9-9              | 12,125,000               | 0                      | 12,125,000              | 0               | 0              | 0                       | 0                       | 2      |
| A0A0A0MS98<br>P0DP03 | Band 3 anion transport protein<br>Ig heavy chain V-III region CAM;Ig heavy chain V-II                         | SLC4A1<br>IGHV3-23    | 12,063,000<br>11,962,000 | 2,108,100<br>0         | 0                       | 0               | 3,363,800<br>0 | 0<br>7,237,200          | 6,591,400<br>4,724,800  | 1<br>1 |
| P81605               | Dermcidin;Survival-promoting peptide;DCD-1                                                                    | DCD                   | 11,727,000               | 0                      | ő                       | 7,387,600       | 0              | 4,338,900               | 4,724,000               | 2      |
| H0YFA4               | Cysteine-rich protein 2                                                                                       | CRIP2                 | 11,648,000               | 0                      | 0                       | 7,587,800       | 4,060,200      | 0                       | 0                       | 2      |
| A0A3B3ITD8           | Nuclear pore complex protein Nup98-Nup96;Nuclea                                                               | NUP98                 | 11,301,000               | 0                      | 0                       | 0               | 11,301,000     | 0                       | 0                       | 2      |
| P14625               | Endoplasmin                                                                                                   | HSP90B1               | 11,207,000               | 11,207,000             | 0                       | 0               | 0              | 0                       | 0                       | 4      |
| Q96PK6<br>E7ENL6     | RNA-binding protein 14<br>Collagen alpha-3(VI) chain                                                          | RBM14<br>COL6A3       | 11,150,000<br>10,671,000 | 0<br>10,671,000        | 0                       | 0               | 7,074,900<br>0 | 0                       | 4,075,400               | 1<br>3 |
| F8WBE5               | Transferrin receptor protein 1;Transferrin receptor p                                                         | TFRC                  | 10,642,000               | 3,853,100              | 0                       | 0               | 0              | 0                       | 6,788,600               | 1      |
| A0A0G2JMB2           | Ig alpha-2 chain C region                                                                                     | IGHA2                 | 10,360,000               | 0                      | 5,177,500               | 0               | 0              | 2,870,900               | 2,311,700               | 9      |
| A0A7I2YQJ0           | Transitional endoplasmic reticulum ATPase                                                                     | VCP                   | 10,078,000               | 10,078,000             | 0                       | 0               | 0              | 0                       | 0                       | 2      |
| B3KVK2               | Guanine nucleotide-binding protein G(I)/G(S)/G(T) s                                                           | GNB1                  | 9,941,900                | 0                      | 0                       | 6,870,800       | 0              | 3,071,100               | 0                       | 1      |
| Q9BYR3<br>P52597     | Keratin-associated protein 4-4<br>Heterogeneous nuclear ribonucleoprotein F;Heterog                           | KRTAP4-4<br>HNRNPF    | 9,925,900<br>9,850,000   | 0                      | 9,925,900<br>3,857,200  | 0               | 0              | 0                       | 0<br>5,992,800          | 1<br>3 |
| P01024               | Complement C3;Complement C3 beta chain;C3-bet                                                                 | C3                    | 9,848,400                | 0                      | 9,848,400               | 0               | 0              | 0                       | 5,992,600               | 2      |
| P80723-2             | Brain acid soluble protein 1                                                                                  | BASP1                 | 9,527,100                | 0                      | 0                       | Ō               | 0              | 0                       | 9,527,100               | 2      |
| F8W1T6               | RNA-binding motif, single-stranded-interacting prote                                                          | RBMS2                 | 9,438,700                | 0                      | 0                       | 0               | 0              | 0                       | 9,438,700               | 4      |
| P31944               | Caspase-14;Caspase-14 subunit p17, mature form;(                                                              | CASP14                | 9,239,700                | 0                      | 0                       | 5,161,200       | 0              | 0                       | 4,078,600               | 1      |
| P0DP08<br>H3BU13     | Ig heavy chain V-II region NEWM;Ig heavy chain V-<br>Pyruvate kinase;Pyruvate kinase PKM                      | IGHV4-4<br>PKM        | 9,180,400<br>9,106,300   | 0                      | 0<br>9,106,300          | 0               | 0              | 5,589,100<br>0          | 3,591,300<br>0          | 1<br>1 |
| F8WEU2               | ATP-dependent 6-phosphofructokinase, liver type                                                               | PFKL                  | 9,083,300                | 9,083,300              | 9,100,300               | 0               | 0              | 0                       | 0                       | 1      |
| A0A0C4DH25           | Immunoglobulin kappa variable 3D-20                                                                           | IGKV3D-20             | 8,934,800                | 0                      | 0                       | 0               | 0              | 0                       | 8,934,800               | 1      |
| P52907               | F-actin-capping protein subunit alpha-1                                                                       | CAPZA1                | 8,912,600                | 0                      | 8,912,600               | 0               | 0              | 0                       | 0                       | 1      |
| I3L1P8               | Mitochondrial 2-oxoglutarate/malate carrier protein                                                           | SLC25A11              | 8,767,800                | 0                      | 0                       | 8,767,800       | 0              | 0                       | 0                       | 1      |
| B4E3S0<br>F8W6D9     | Coronin;Coronin-1C<br>Sentrin-specific protease 6                                                             | CORO1C<br>SENP6       | 8,702,200<br>8,679,600   | 0                      | 4,567,500<br>0          | 0<br>0          | 0              | 4,134,700<br>0          | 0<br>8,679,600          | 1<br>2 |
| P36957-2             | Dihydrolipoyllysine-residue succinyltransferase com                                                           | DLST                  | 8,276,700                | 0                      | 5,934,900               | 0               | 0              | 0                       | 2,341,800               | 1      |
| P31930               | Cytochrome b-c1 complex subunit 1, mitochondrial                                                              | UQCRC1                | 8,234,200                | Ő                      | 3,957,100               | õ               | Ő              | 0                       | 4,277,000               | 2      |
| P02808               | Statherin                                                                                                     | STATH                 | 8,064,100                | 0                      | 0                       | 8,064,100       | 0              | 0                       | 0                       | 1      |
| P16403               | Histone H1.2;Histone H1.3                                                                                     | HIST1H1C              | 7,889,100                | 0                      | 2,483,600               | 5,405,500       | 0              | 0                       | 0                       | 3      |
| K7EMF8               | Very long-chain specific acyl-CoA dehydrogenase, r                                                            | ACADVL                | 7,844,000                | 0                      | 7,844,000               | 0               | 0              | 0                       | 0                       | 1      |
| C9JP00<br>A0A6I8PIN8 | Muscleblind-like protein 1<br>F-actin-capping protein subunit beta                                            | MBNL1<br>CAPZB        | 7,830,800<br>7,662,300   | 0                      | 0<br>0                  | 0<br>6,785,600  | 0              | 2,369,000<br>876,710    | 5,461,800<br>0          | 1<br>1 |
| 095205               | Muscleblind-like protein 2                                                                                    | MBLL                  | 7,485,300                | ů<br>0                 | Ő                       | 0,700,000       | 0              | 1,647,200               | 5,838,000               | 1      |
| A0A590UK99           | Deleted in malignant brain tumors 1 protein                                                                   | DMBT1                 | 7,481,500                | 1,749,100              | 0                       | 0               | 3,277,000      | 0                       | 2,455,300               | 1      |
| P01766               | Ig heavy chain V-III region BRO                                                                               | IGHV3-13              | 6,767,800                | 0                      | 0                       | 0               | 0              | 4,376,000               | 2,391,900               | 2      |
| J3KSH9<br>P55268     | Integrin beta-4                                                                                               | ITGB4                 | 6,700,000                | 0                      | 0                       | 0               | 0              | 0                       | 6,700,000               | 1      |
| P55268<br>P47929     | Laminin subunit beta-2<br>Galectin-7                                                                          | LAMB2<br>LGALS7       | 6,456,200<br>6,362,600   | 6,456,200<br>0         | 0                       | 0<br>1,822,500  | 0              | 0                       | 0<br>4,540,100          | 2<br>1 |
| E9PFG7               | 2-oxoglutarate dehydrogenase, mitochondrial                                                                   | OGDH                  | 6,288,400                | 6,288,400              | 0                       | 1,822,500       | 0              | 0                       | 4,540,100               | 1      |
| E5RK69               | Annexin;Annexin A6                                                                                            | ANXA6                 | 6,072,900                | 0                      | 0                       | 0               | 0              | 0                       | 6,072,900               | 2      |
| E7EQB2               | Lactotransferrin;Lactoferricin-H;Kaliocin-1;Lactoferre                                                        | LTF                   | 6,032,800                | 0                      | 3,762,400               | 2,270,400       | 0              | 0                       | 0                       | 3      |
| E9PRN7               | 3 beta-hydroxysteroid dehydrogenase/Delta 5>4-is                                                              | HSD3B1                | 5,960,500                | 0                      | 5,960,500               | 0               | 0              | 0                       | 0                       | 1      |
| P17661<br>A0A087X0S5 | Desmin<br>Collagen alpha-1(VI) chain                                                                          | DES<br>COL6A1         | 5,939,400<br>5,903,600   | 0<br>5,903,600         | 5,939,400<br>0          | 0<br>0          | 0              | 0                       | 0                       | 5<br>2 |
| P0DP09               | Immunoglobulin kappa variable 1-13                                                                            | IGKV1D-13             | 5,730,000                | 0                      | 0                       | 5,730,000       | 0              | 0                       | 0                       | 1      |
| P62805               | Histone H4                                                                                                    | HIST1H4A              | 5,728,200                | 0                      | 2,222,200               | 0               | 0              | 3,506,000               | 0                       | 2      |
| Q8WVV4               | Protein POF1B                                                                                                 | POF1B                 | 5,534,300                | 0                      | 0                       | 0               | 0              | 5,534,300               | 0                       | 1      |
| A0A1W2PP22           | Heterogeneous nuclear ribonucleoprotein U                                                                     | HNRNPU                | 5,391,800                | 0                      | 0                       | 0               | 0              | 0                       | 5,391,800               | 1      |
| Q9BW30<br>P08572     | Tubulin polymerization-promoting protein family me<br>Collagen alpha-2(IV) chain;Canstatin                    | TPPP3<br>COL4A2       | 5,092,600<br>5,034,400   | 5,092,600<br>5,034,400 | 0<br>0                  | 0               | 0              | 0                       | 0                       | 1<br>1 |
| A0A075B6K5           | Ig lambda chain V-III region LOI                                                                              | IGLV3-9               | 5,034,400                | 5,034,400<br>0         | 0                       | 2,660,600       | 0              | 0                       | 2,364,600               | 1      |
| H0YJL6               | Ena/VASP-like protein                                                                                         | EVL                   | 4,998,300                | 0                      | Ő                       | 4,998,300       | Ő              | Ő                       | 2,001,000               | 1      |
| P59666               | Neutrophil defensin 3;HP 3-56;Neutrophil defensin 2                                                           | DEFA3                 | 4,545,800                | 0                      | 0                       | 0               | 0              | 4,545,800               | 0                       | 1      |
| Q9NQP5               | Coagulation factor XIII A chain                                                                               | F13A1                 | 4,473,400                | 4,473,400              | 0                       | 0               | 0              | 0                       | 0                       | 2      |
| E9PS23<br>B4DU11     | Cofilin-1<br>Estradiol 17-beta-dehydrogenase 1                                                                | CFL1<br>HSD17B1       | 4,289,600<br>4,274,500   | 0                      | 2,251,300<br>2,367,500  | 0<br>1,907,000  | 2,038,300      | 0                       | 0                       | 2<br>1 |
| C9J9S3               | Estradioi 17-beta-denydrogenase 1<br>Serine/threonine-protein phosphatase;Serine/threon                       | PPP1CB                | 4,274,500 4,214,000      | 0                      | 2,367,500               | 1,907,000       | 0              | 0                       | 2,297,500               | 1      |
| C9JHS9               | Vigilin                                                                                                       | HDLBP                 | 4,198,300                | 0                      | 0                       | 1,910,400       | 1,536,900      | 0                       | 2,297,300               | 1      |
| P05187               | Alkaline phosphatase, placental type;Alkaline phosp                                                           | ALPP                  | 4,169,700                | 0                      | 0                       | 0               | 0              | 0                       | 4,169,700               | 2      |
| F8WEW2               | Actin-related protein 3                                                                                       | ACTR3                 | 4,132,700                | 0                      | 4,132,700               | 0               | 0              | 0                       | 0                       | 1      |
| Q9ULV0               | Unconventional myosin-Vb                                                                                      | MYO5B                 | 4,073,000                | 2,220,100              | 0                       | 0               | 1,853,000      | 0                       | 2 756 400               | 2      |
| J3QSA3<br>B8ZZ51     | Ubiquitin-40S ribosomal protein S27a;Ubiquitin;40S<br>Malate dehydrogenase, cytoplasmic                       | UBB<br>MDH1           | 4,045,100<br>4,029,700   | 1,288,700<br>0         | 0                       | 0<br>4,029,700  | 0              | 0                       | 2,756,400<br>0          | 1<br>1 |
| E9PQ34               | Serpin H1                                                                                                     | SERPINH1              | 4,029,700                | 0                      | 4,018,600               | 4,029,700       | 0              | 0                       | 0                       | 1      |
| 13L245               | Nuclear pore complex protein Nup88                                                                            | NUP88                 | 3,921,000                | 0                      | 0                       | Ő               | 0              | 0                       | 3,921,000               | 1      |
| Q13263-2             | Transcription intermediary factor 1-beta                                                                      | TRIM28                | 3,569,200                | 3,569,200              | 0                       | 0               | 0              | 0                       | 0                       | 1      |
| Q9HD89               | Resistin                                                                                                      | RETN                  | 3,487,400                | 0                      | 0                       | 2,254,600       | 0              | 1,232,800               | 0                       | 1      |
| Q9GZM7-3             | Tubulointerstitial nephritis antigen-like                                                                     | TINAGL1               | 3,481,600                | 0                      | 3,481,600               | 0               | 0              | 0                       | 0                       | 1      |
|                      |                                                                                                               |                       |                          |                        |                         |                 |                |                         |                         |        |

| P27824-3   | Calnexin                                            | CANX      | 3,444,400 | 0         | 0         | 0         | 0         | 0         | 3,444,400 | 1 |
|------------|-----------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---|
| A0A3B3ISA6 | Complement C4-A;Complement C4 beta chain;Com        | C4B       | 3,381,500 | 0         | 0         | 0         | 0         | 0         | 3,381,500 | 1 |
| A6NCI4-3   | von Willebrand factor A domain-containing protein 3 | VWA3A     | 3,185,200 | 0         | 0         | 0         | 3,185,200 | 0         | 0         | 1 |
| Q8WV48-5   | Coiled-coil domain-containing protein 107           | CCDC107   | 3,057,000 | 0         | 0         | 3,057,000 | 0         | 0         | 0         | 1 |
| Q00013-2   | 55 kDa erythrocyte membrane protein                 | MPP1      | 2,911,300 | 0         | 2,911,300 | 0         | 0         | 0         | 0         | 1 |
| Q14677     | Clathrin interactor 1                               | CLINT1    | 2,901,400 | 0         | 0         | 0         | 0         | 2,901,400 | 0         | 1 |
| A6NHR2     | 39S ribosomal protein L37, mitochondrial            | MRPL37    | 2,898,500 | 0         | 0         | 0         | 0         | 2,898,500 | 0         | 1 |
| P82663-3   | 8S ribosomal protein S25, mitochondrial             | MRPS25    | 2,580,800 | 0         | 0         | 0         | 0         | 0         | 2,580,800 | 1 |
| H7C4C8     | T-complex protein 1 subunit theta                   | CCT8      | 2,560,000 | 0         | 2,560,000 | 0         | 0         | 0         | 0         | 1 |
| P16401     | Histone H1.5                                        | HIST1H1B  | 2,527,600 | 0         | 0         | 2,527,600 | 0         | 0         | 0         | 1 |
| A0A3B3ITI4 | Stress-70 protein, mitochondrial                    | HSPA9     | 2,413,000 | 2,413,000 | 0         | 0         | 0         | 0         | 0         | 1 |
| Q8TE68     | Epidermal growth factor receptor kinase substrate 8 | EPS8L1    | 2,165,700 | 2,165,700 | 0         | 0         | 0         | 0         | 0         | 1 |
| Q8TDL5     | BPI fold-containing family B member 1               | BPIFB1    | 2,146,600 | 0         | 0         | 0         | 0         | 1,170,700 | 975,880   | 1 |
| P31146     | Coronin-1A                                          | CORO1A    | 2,123,800 | 0         | 0         | 0         | 0         | 2,123,800 | 0         | 1 |
| E9PSE0     | MAP kinase-interacting S/T-protein kinase 1         | MKNK1     | 1,976,500 | 0         | 0         | 0         | 1,976,500 | 0         | 0         | 1 |
| A0A1X7SBZ2 | Probable ATP-dependent RNA helicase DDX17           | DDX17     | 1,903,300 | 0         | 0         | 0         | 1,903,300 | 0         | 0         | 1 |
| M0R1B5     | Acetolactate synthase-like protein                  | ILVBL     | 1,702,000 | 0         | 1,702,000 | 0         | 0         | 0         | 0         | 1 |
| M0QX10     | Nuclear pore glycoprotein p62                       | NUP62     | 1,380,100 | 0         | 0         | 0         | 0         | 0         | 1,380,100 | 1 |
| P09525-2   | Annexin A4                                          | ANXA4     | 1,341,500 | 0         | 0         | 1,341,500 | 0         | 0         | 0         | 1 |
| O15400-2   | Syntaxin-7                                          | STX7      | 1,329,200 | 1,329,200 | 0         | 0         | 0         | 0         | 0         | 1 |
| H3BS21     | Haptoglobin;Haptoglobin alpha chain;Haptoglobin b   | HP        | 1,311,500 | 0         | 1,311,500 | 0         | 0         | 0         | 0         | 2 |
| U3KQK0     | Histone H2B;Histone H2B type 1-L;Histone H2B typ    | HIST1H2BN | 1,266,700 | 0         | 1,266,700 | 0         | 0         | 0         | 0         | 1 |
| K7EJ44     | Profilin-1                                          | PFN1      | 1,249,400 | 0         | 0         | 0         | 0         | 1,249,400 | 0         | 1 |
| K7EK06     | PhenylalaninetRNA ligase alpha subunit              | FARSA     | 1,246,700 | 0         | 1,246,700 | 0         | 0         | 0         | 0         | 1 |
| P10412     | Histone H1.4                                        | HIST1H1E  | 1,033,200 | 0         | 0         | 1,033,200 | 0         | 0         | 0         | 3 |
| A0A087WUX6 | Proteasomal ubiquitin receptor ADRM1                | ADRM1     | 993,900   | 0         | 993,900   | 0         | 0         | 0         | 0         | 1 |
| B1AUU8     | Epidermal growth factor receptor substrate 15       | EPS15     | 797,470   | 797,470   | 0         | 0         | 0         | 0         | 0         | 1 |
| O76041     | Nebulette                                           | NEBL      | 651,720   | 0         | 0         | 0         | 0         | 0         | 651,720   | 1 |
|            |                                                     |           |           |           |           |           |           |           |           |   |

Table 5 Protein levels of MDMX (A), PICALM (B), OT-R (C) and V1aR (D) in 44 placental extracts. MDIXX and PICALM values are relative to extract D1, and OT-R and V1aR values relative to sample V1. Replicate and mean values are shown.

| Patient |       |       |       | % of Q1 |       |            |       | MEAN  |
|---------|-------|-------|-------|---------|-------|------------|-------|-------|
| H1      |       | 128.4 | 116.9 | 116.5   | 78.2  | 116.9      | 141.1 | 116.3 |
| H2      |       |       | 19.1  | 60.8    | 32.5  | 18.9       | 16.0  | 29.5  |
| H3      |       |       | 8.3   | 9.0     | 26.3  | 17.4       | 4.2   | 13.0  |
| 1-1     |       | 128.8 | 209.0 | 114.6   | 222.2 | 102.8      | 146.1 | 153.9 |
| 1-2     |       |       |       | 57.1    | 75.4  | 106.7      | 51.6  | 72.7  |
| 1-3     |       | 123.6 | 72.5  | 77.1    | 84.1  | 37.8       | 71.7  | 77.8  |
| 1-4     | 136.6 | 88.3  | 135.7 | 81.5    | 58.6  | 133.1      | 103.0 | 94.1  |
| J-1     |       |       |       |         | 118.1 | 130.2      | 119.1 | 122.5 |
| J-2     |       |       |       |         | 92.9  | 56.5       | 58.9  | 69.5  |
| J-3     |       |       |       |         | 84.0  | 60.8       | 66.2  | 70.3  |
| L1      |       |       | 46.6  | 61.1    | 72.0  | 35.8       | 41.9  | 51.5  |
| L2      |       |       |       |         | 46.3  | 55.2       | 31.0  | 44.2  |
| L3      |       |       |       |         | 72.1  | 69.1       | 47.5  | 62.9  |
| L4      |       |       |       | 11.9    | 23.9  | 16.2       | 8.9   | 16.3  |
| M1      |       |       |       | 57.2    | 57.5  | 29.7       | 62.4  | 51.7  |
| M3      |       |       |       |         |       | 76.8       | 37.2  | 57.0  |
| M4      |       |       |       | 60.1    | 40.8  | 42.1       | 68.7  | 52.9  |
| N1      |       | 60.1  | 40.8  | 42.1    | 68.7  | 101.6      | 101.6 | 115.5 |
| N2      |       | 10.2  | 31.0  | 45.5    | 58.0  | 58.2       | 6.6   | 34.9  |
| N3      |       |       | 75.3  | 167.8   | 85.8  | 80.4       | 68.0  | 95.5  |
| N4      |       |       |       | 55.9    | 52.5  | 60.4       | 48.7  | 54.4  |
| 01      |       |       | 57.5  | 34.5    | 46.1  | 101.6      | 49.8  | 57.9  |
| 02      |       |       |       | 78.4    | 82.8  | 34.4       | 85.6  | 70.3  |
| 03      |       | 77.3  | 58.3  | 22.3    | 42.5  | 11.0       | 8.6   | 36.7  |
| 04      |       |       | 72.9  | 24.9    | 34.5  | 25.4       | 111.4 | 53.8  |
| O5      |       |       |       |         | 244.4 | 229.0      | 145.1 | 206.1 |
| 07      |       |       |       |         | 167.2 | 179.6      | 163.3 | 170.0 |
| Q1      | 100.0 | 100.0 | 100.0 | 100.0   | 100.0 | 100.0      | 100.0 | 100.0 |
| Q2      |       | 199.7 | 169.8 | 211.0   | 205.4 | 156.5      | 144.9 | 181.2 |
| Q3      |       | 90.9  | 90.1  | 76.0    | 75.8  | 74.2       | 88.5  | 82.6  |
| Q4      |       | 50.5  | 86.2  | 28.6    | 45.5  | 62.7       | 31.5  | 50.8  |
| R3      |       | 28.2  | 99.6  | 57.5    | 20.0  | 60.2       | 77.0  | 54.5  |
| R4      |       |       | 126.7 | 116.9   | 93.8  | 58.6       | 109.0 | 101.3 |
| R5      |       |       |       |         | 33.6  | 79.8       | 48.8  | 54.1  |
| S1      |       |       |       |         | 207.4 | 128.9      | 151.4 | 162.6 |
| S2      |       |       |       |         | 202.5 | 107.1      | 110.4 | 140.0 |
| T1      |       |       |       | 124.8   | 161.9 | 155.5      | 124.5 | 141.7 |
| T2      |       |       |       |         | 115.0 | 91.3       | 82.9  | 96.4  |
| U1      |       |       |       |         | 119.7 | 87.7       | 103.7 | 103.7 |
| U2      |       |       |       |         | 163.0 | 175.0      | 122.9 | 153.6 |
| V1      |       |       |       |         | 75.4  | 71.1       | 21.0  | 55.9  |
| V2      |       |       |       |         | 92.8  | 72.9       | 99.0  | 88.2  |
| W1      |       | 1     |       | 1       | 99.2  | 72.4 197.7 | 84.0  | 85.2  |

| Patient  |       |       |       | % of Q1 |       |               |                | MEAN           |
|----------|-------|-------|-------|---------|-------|---------------|----------------|----------------|
| H1       |       |       |       |         | 21.3  | 31.8          | 34.7           | 29.3           |
| H2       |       |       |       |         | 32.8  | 31.2          | 55.6           | 39.9           |
| H3       |       |       |       | 126.3   | 114.0 | 164.0         | 120.6          | 131.2          |
| 1.1      |       |       |       | 120.0   | 114.0 | 59.9          | 77.3           | 68.6           |
| 1.2      |       |       |       |         |       | 64.9          | 78.8           | 71.8           |
| 1.3      |       |       |       |         | 31.5  | 28.4          | 10.5           | 23.4           |
| 1-4      |       |       | 15.7  | 14.2    | 2.0   | 7.1           | 2.9            | 84             |
| J-1      | 85.4  | 122.8 | 105.8 | 72.0    | 126.2 | 127.1         | 103.0          | 106.0          |
| J-2      |       |       |       | 30.9    | 21.9  | 21.6          | 41.0           | 28.8           |
| J-3      |       |       | 93.6  | 118.5   | 113.6 | 166.7         | 101.5          | 118.8          |
| L1       |       |       |       | 95.2    | 122.6 | 227.4         | 127.2          | 143.1          |
| L2       |       |       |       |         | 60.2  | 58.9          | 91.8           | 70.3           |
| L3       |       |       |       | 100.2   | 102.2 | 142.1         | 94.5           | 109.7          |
| L4       |       |       |       |         | 77.4  | 92.1          | 115.4          | 95.0           |
| M1       |       |       |       | 167.9   | 156.1 | 131.4         | 159.8          | 153.8          |
| M3       |       |       |       |         | 4.6   | 4.3           | 4.2            | 4.4            |
| M4       |       |       |       |         | 106.1 | 78.3          | 104.0          | 96.1           |
| N1       |       |       |       |         | 42.5  | 34.5          | 80.1           | 52.4           |
| N2       |       |       |       | 50.7    | 49.6  | 87.1          | 62.5           | 62.5           |
| N3       |       |       |       |         | 72.7  | 69.7          | 77.3           | 73.2           |
| N4       |       |       |       | 45.2    | 42.4  | 43.5          | 51.3           | 45.6           |
| 01       |       |       |       | 41.5    | 43.8  | 35.3          | 11.4           | 33.0           |
| 02       |       |       |       | 96.6    | 42.9  | 109.5         | 117.3          | 91.6           |
| 03       |       |       |       | 53.7    | 66.5  | 45.6          | 151.3          | 79.3           |
| 04       |       |       |       | 157.1   | 63.8  | 54.9          | 188.3          | 116.0          |
| 05       |       |       |       |         |       | 153.7         | 134.3          | 144.0          |
| 07       |       |       |       |         |       | 142.0         | 216.5          | 179.2          |
| Q1       | 100.0 | 100.0 | 100.0 | 100.0   | 100.0 | 100.0         | 100.0          | 100.0          |
| Q2       |       |       | 166.3 | 186.0   | 176.6 | 138.0         | 140.5          | 161.5          |
| Q3       |       |       |       |         | 115.3 | 138.5         | 138.3          | 130.7          |
| Q4       |       |       |       |         |       | 198.8         | 188.6          | 193.7          |
| R3       |       |       |       |         | 95.8  | 208.0         | 244.3          | 182.7          |
| R4       |       |       |       |         | 83.7  | 64.9          | 42.0           | 63.5           |
| R5<br>S1 |       |       |       | 150.9   | 115.3 | 205.3<br>97.3 | 274.9          | 240.1<br>137.6 |
| S1<br>S2 |       |       |       | 150.9   | 115.3 | 97.3          | 186.9<br>216.2 | 206.0          |
| 52<br>T1 |       |       |       | 192.9   | 101.9 |               |                | 206.0          |
| 11<br>T2 |       |       |       | 226.5   | 181.1 | 173.3         | 169.2<br>219.4 | 171.3          |
| U1       |       |       |       | 220.0   | 101.1 | 165.3         | 219.4          | 169.5          |
| U2       |       |       |       |         | 104.2 | 165.3         | 217.6          | 162.3          |
| V1       |       |       |       |         | 119.8 | 207.3         | 218.0          | 214.1          |
| V1<br>V2 |       |       |       |         | 225.3 | 207.3         | 251.0          | 214.1 230.4    |
| V2<br>W1 |       |       |       | 129.3   | 225.3 | 215.0         | 251.0          | 230.4          |
| W2       |       |       |       | 149.3   | 125.9 | 125.7         | 152.0          | 145.4          |

| Patient  |       |       | ***   | T-R<br>fV1 |       |       | MEAN  |
|----------|-------|-------|-------|------------|-------|-------|-------|
| H1       |       | -     |       | 31.9       | 32.6  | 34.9  | 33.1  |
| H2       |       |       |       | 44.6       | 47.5  | 54.3  | 48.8  |
| H2<br>H3 |       |       | 52.7  | 53.5       | 66.5  | 64.1  | 40.0  |
| 1-1      |       |       | 32.1  | 45.9       | 44.5  | 43.4  | 44.6  |
| 1.2      | 56.0  | 64.8  | 43.0  | 40.5       | 51.5  | 35.1  | 44.0  |
| 1-2      | 36.0  | 04.0  | 43.3  | 40.3       | 29.3  | 32.2  | 36.9  |
| 1-4      |       |       | 43.3  | 24.3       | 25.3  | 18.2  | 22.3  |
| J-1      |       |       | 78.0  | 66.2       | 80.9  | 83.8  | 77.2  |
| .1.2     |       |       | 78.0  | 64.8       | 55.1  | 44.8  | 54.9  |
| J-3      |       | 74.2  | 64.0  | 62.4       | 73.1  | 87.1  | 72.2  |
| L1       |       | 1.4.5 | 04.0  | 02.4       | 85.6  | 77.4  | 81.5  |
| L2       |       |       | 84.2  | 80.5       | 86.5  | 93.2  | 86.1  |
| L3       |       |       | 77.8  | 72.1       | 61.6  | 81.6  | 73.3  |
| 14       |       |       | 79.0  | 70.5       | 82.2  | 82.3  | 78.5  |
| M1       |       |       |       | 43.2       | 37.9  | 41.8  | 41.0  |
| M3       |       |       | 22.0  | 22.3       | 21.1  | 18.9  | 21.1  |
| M4       |       |       | 22.0  | 57.8       | 42.3  | 45.7  | 48.6  |
| N1       |       |       | 73.6  | 61.4       | 84.1  | 88.0  | 76.8  |
| N2       |       |       |       | 75.7       | 80.6  | 78.6  | 78.3  |
| N3       |       |       |       | 102.2      | 95.9  | 108.0 | 102.0 |
| N4       |       |       | 56.3  | 55.7       | 76.5  | 55.9  | 61.1  |
| 01       |       |       | 40.0  | 61.6       | 46.1  | 43.1  | 47.7  |
| 02       |       |       |       | 81.7       | 85.7  | 90.1  | 85.8  |
| 03       |       |       | 67.0  | 77.0       | 90.8  | 93.7  | 82.1  |
| 04       |       | 80.5  | 81.2  | 84.9       | 93.8  | 97.9  | 87.7  |
| 05       |       |       | 100.2 | 85.9       | 89.7  | 95.0  | 92.7  |
| 07       |       |       |       | 67.1       | 71.1  | 79.1  | 72.4  |
| Q1       |       |       | 83.6  | 76.2       | 85.0  | 99.4  | 86.1  |
| Q2       |       |       | 93.4  | 102.4      | 103.9 | 119.0 | 104.7 |
| Q3       | 69.1  | 65.4  | 91.4  | 67.6       | 71.4  | 74.1  | 73.2  |
| Q4       | _     |       |       | 77.3       | 70.4  | 82.6  | 76.8  |
| R3       | _     |       |       | 117.8      | 101.2 | 107.9 | 109.0 |
| R4       | _     |       | 87.2  | 75.4       | 84.6  | 97.8  | 86.2  |
| R5       | _     |       | 80.3  | 79.4       | 83.4  | 122.1 | 91.3  |
| S1       | _     |       | 108.7 | 99.1       | 116.1 | 118.3 | 110.6 |
| S2       |       | 102.9 | 89.2  | 116.9      | 119.2 | 116.5 | 108.9 |
| T1       |       | 120.1 | 104.1 | 113.7      | 129.4 | 119.7 | 117.4 |
| T2       |       |       | 118.7 | 112.9      | 127.8 | 122.0 | 120.4 |
| U1       |       | 84.5  | 66.8  | 75.1       | 126.9 | 103.6 | 91.4  |
| U2       |       |       | 107.0 | 101.2      | 117.9 | 112.0 | 109.5 |
| V1       | 100.0 | 100.0 | 100.0 | 100.0      | 100.0 | 100.0 | 100.0 |
| V2       |       | 111.0 | 100.6 | 104.7      | 117.9 | 114.4 | 109.7 |
| W1       |       |       | 102.0 | 113.8      | 121.5 | 118.2 | 113.9 |

| D        |       |       |       |              |              |              |       |
|----------|-------|-------|-------|--------------|--------------|--------------|-------|
| Patient  |       |       |       | 1aR<br>fV1   |              |              | MEAN  |
| H1       |       | -     | 740   |              | 27.0         | 46.7         | 36.9  |
| H2       |       |       |       | 51.5         | 62.7         | 70.4         | 61.5  |
| H3       |       |       |       | 01.0         | 73.0         | 73.8         | 73.4  |
| 1-1      |       |       |       | 77.8         | 61.7         | 72.6         | 70.7  |
| 1-2      |       |       |       | 11.0         | 51.4         | 56.5         | 53.9  |
| 1-3      |       |       |       |              | 58.5         | 69.7         | 64.1  |
| 1-4      |       |       |       |              | 56.4         | 67.2         | 61.8  |
| J-1      |       |       | 41.2  | 43.3         | 54.9         | 67.6         | 51.7  |
| J-2      |       |       |       |              | 55.3         | 42.6         | 48.9  |
| J-3      |       |       |       | 56.8         | 61.7         | 75.2         | 64.5  |
| L1       |       |       | 43.6  | 57.5         | 63.6         | 67.0         | 57.9  |
| L2       |       |       |       | 80.4         | 76.0         | 91.4         | 82.6  |
| L3       |       |       |       | 87.9         | 87.8         | 98.6         | 91.5  |
| L4       |       |       |       | 87.2         | 68.3         | 75.9         | 77.1  |
| M1       |       |       |       | 76.4         | 90.0         | 87.7         | 84.7  |
| M3       |       |       |       | 118.5        | 80.7         | 108.1        | 102.4 |
| M4       |       |       | 43.9  | 60.7         | 66.4         | 63.1         | 58.5  |
| N1       |       |       |       | 67.4         | 79.6         | 76.5         | 74.5  |
| N2       |       |       | 65.5  | 58.4         | 72.5         | 81.7         | 69.5  |
| N3       |       |       |       | 71.8         | 70.9         | 85.2         | 75.9  |
| N4       |       | 30.3  | 16.9  | 46.6         | 46.1         | 31.8         | 34.3  |
| 01       |       |       |       | 83.8         | 60.3         | 76.4         | 73.5  |
| 02       |       |       |       | 75.0         | 72.3         | 77.4         | 74.9  |
| 03       |       |       |       | 74.5         | 72.2         | 79.3         | 75.3  |
| 04       |       |       |       | 69.9         | 51.4         | 70.2         | 63.8  |
| 05       |       | 49.8  | 93.2  | 68.2         | 85.9         | 73.6         | 74.2  |
| 07       |       |       |       | 83.8         | 73.3         | 88.3         | 81.8  |
| Q1       |       |       | 98.8  | 62.7         | 98.3         | 79.8         | 84.9  |
| Q2<br>Q3 |       | 91.1  | 77.3  | 102.2        | 99.7         | 100.8        | 94.2  |
| Q3<br>Q4 | 68.5  | 60.6  | 96.9  | 71.5         | 62.4<br>73.7 | 66.2<br>82.9 | 66.7  |
| Q4<br>R3 | 68.5  | 33.1  | 96.9  | 76.0         | 51.4         | 74.6         | 76.7  |
| R3<br>R4 |       | 33.1  | 98.1  | 74.7<br>81.9 | 92.3         | 103.7        | 94.0  |
| R5       |       |       | 96.1  | 42.8         | 92.3         | 68.6         | 62.7  |
| ко<br>S1 |       |       | 00.0  | 42.8         | 105.6        | 93.2         | 98.0  |
| \$2      |       |       |       | 78.4         | 86.0         | 99.7         | 88.0  |
| 32<br>T1 |       | 129.5 | 91.3  | 102.2        | 77.7         | 100.1        | 100.2 |
| T2       |       | 69.6  | 73.3  | 93.1         | 84.7         | 95.1         | 83.2  |
| U1       |       |       | 63.1  | 51.1         | 77.3         | 65.0         | 64.1  |
| U2       |       |       |       | 78.1         | 79.5         | 87.6         | 81.7  |
| V1       | 100.0 | 100.0 | 100.0 | 100.0        | 100.0        | 100.0        | 100.0 |
| V2       |       |       |       | 93.0         | 98.1         | 107.1        | 99.4  |
| W1       |       |       | 105.0 | 94.9         | 91.2         | 92.2         | 95.8  |
| W2       |       | 111.0 | 62.2  | 103.1        | 99.2         | 75.4         | 90.2  |

#### Table 6

### Regression coefficients from univariable analysis of MDMX protein band intensity (relative to internal reference individual Q1)

|                                       | Regression              |                    |
|---------------------------------------|-------------------------|--------------------|
| Covariate                             | Coefficient (95% CI)    | P-value            |
| Age                                   | 1.94 (-0.79, 4.67)      | 0.17               |
| Gravidity                             | 9.66 (3.59, 15.70)      | 3x10 <sup>-3</sup> |
| Gestational Age                       | -1.79 (-12.40, 8.86)    | 0.74               |
| Body Mass Index in Labor and Delivery |                         |                    |
| Suite                                 | 0.97 (-0.18, 2.13)      | 0.11               |
| Race                                  |                         |                    |
| White                                 | (REF)                   |                    |
| Black                                 | 22.20 (-14.85, 59.26)   | 0.24               |
| Asian                                 | -32.49 (-133.62, 68.64) | 0.53               |
| Unknown                               | -3.74 (-77.21, 69.73)   | 0.92               |
| Hispanic                              | -0.66 (-37.72, 36.39)   | 0.97               |
| Preeclampsia                          |                         |                    |
| No                                    | (REF)                   | -                  |
| Yes                                   | -44.13 (-71.63, -16.64) | 3x10 <sup>-3</sup> |
| Diabetes                              |                         |                    |
| No                                    | (REF)                   |                    |
| Туре II                               | 47.63 (14.27, 90.00)    | 8x10 <sup>-3</sup> |
| GDM                                   | 47.91 (5.51, 90.32)     | 0.03               |
| Mode of Delivery                      |                         |                    |
| SVD                                   | (REF)                   | -                  |
| CD prior to onset of Labor            | 56.16 (24.13, 88.18)    | 1x10 <sup>-3</sup> |
| CD after onset of Labor               | 34.80 (-4.46, 74.07)    | 0.09               |
| VBAC                                  | 5.55 (-85.70, 96.79)    | 0.91               |
| Neonate Sex                           |                         |                    |
| Female                                | (REF)                   |                    |
| Male                                  | 5.04 (-24.35, 34.43)    | 0.74               |
| Neonatal Weight (g)                   | 0.03 (0.01, 0.06)       | 3x10 <sup>-3</sup> |

#### Table 7

### Regression coefficients from univariable analysis of PICALM protein band intensity (relative to internal reference individual Q1)

| Covariate                             | Regression<br>Coefficient (95% CI) | P-value            |
|---------------------------------------|------------------------------------|--------------------|
| Age                                   | 3.68 (0.28, 7.08)                  | 0.04               |
| Gravidity                             | 7.64 (-0.68, 15.95)                | 0.08               |
| Gestational Age                       | 6.88 (-6.62, 20.37)                | 0.32               |
| Body Mass Index in Labor and Delivery |                                    |                    |
| Suite                                 | 2.06 (0.66, 3.45)                  | 6x10 <sup>-3</sup> |
| Race                                  |                                    |                    |
| White                                 | (REF)                              |                    |
| Black                                 | 17.33 (-24.11, 60.77)              | 0.44               |
| Asian                                 | 17.49 (-101.07, 136.05)            | 0.77               |
| Unknown                               | -75.81 (-161.94, 10.32)            | 0.09               |
| Hispanic                              | -46.39 (-89.82, -2.95)             | 0.04               |
| Preeclampsia                          |                                    |                    |
| No                                    | (REF)                              |                    |
| Yes                                   | -35.60 (-73.25, 2.04)              | 0.07               |
| Diabetes                              |                                    |                    |
| No                                    | (REF)                              |                    |
| Type II                               | 23.28 (-23.57, 70.13)              | 0.34               |
| GDM                                   | 38.05 (-21.50, 97.60)              | 0.22               |
| Mode of Delivery                      |                                    |                    |
| SVD                                   | (REF)                              |                    |
| CD prior to onset of Labor            | 59.96 (19.24, 100.68)              | 6x10 <sup>-3</sup> |
| CD after onset of Labor               | 5.69 (-44.23, 55.62)               | 0.82               |
| VBAC                                  | -50.27 (-166.29, 65.75)            | 0.40               |
| Neonate Sex                           |                                    |                    |
| Female                                | (REF)                              |                    |
| Male                                  | 19.10 (-18.16, 56.37)              | 0.32               |
| Neonatal Weight (g)                   | 0.03 (7x10 <sup>-7</sup> , 0.06)   | 0.06               |

### Table 8

### Regression coefficients from univariable analysis of OT-R protein band intensity (relative to internal reference individual T1)

| Covariate                             | Regression                          | P-value |
|---------------------------------------|-------------------------------------|---------|
|                                       | Coefficient (95% CI)                |         |
| Age                                   | 1.56 (0.13, 2.99)                   | 0.04    |
| Gravidity                             | 1.02 (-2.60, 4.64)                  | 0.58    |
| Gestational Age                       | 1.73 (-4.00, 7.45)                  | 0.56    |
| Body Mass Index in Labor and Delivery |                                     |         |
| Suite                                 | 0.55 (-0.07, 1.17)                  | 0.09    |
| Race                                  |                                     |         |
| White                                 | REF                                 | REF     |
| Black                                 | -10.77 (-30.15, 8.61)               | 0.28    |
| Asian                                 | -6.04 (-58.92, 46.85)               | 0.82    |
| Unknown                               | -27.94 (-66.36, 10.49)              | 0.16    |
| Hispanic                              | -19.53 (-38.90, -0.15)              | 0.06    |
| Preeclampsia                          |                                     |         |
| No                                    | REF                                 | REF     |
| Yes                                   | -15.28 (-31.12, 0.54)               | 0.07    |
| Diabetes                              |                                     |         |
| No                                    | REF                                 | REF     |
| Туре 2                                | 24.16 (5.47, 42.85)                 | 0.02    |
| GDM                                   | 15.32 (-8.44, 39.07)                | 0.21    |
| Mode of Delivery                      |                                     |         |
| SVD                                   | REF                                 | REF     |
| CD prior to onset of Labor            | 21.82 (4.09, 39.55)                 | 0.02    |
| CD after onset of Labor               | 0.55 (-21.19, 22.29)                | 0.96    |
| VBAC                                  | -19.308 (-69.60, 31.44)             | 0.46    |
| Neonatal Sex                          |                                     |         |
| Female                                | REF                                 | REF     |
| Male                                  | 8.56 (-7.11, 24.23)                 | 0.29    |
| Neonatal Weight (g)                   | 0.01 (8.36x10 <sup>-4</sup> , 0.03) | 0.04    |

#### Table 9

# Regression coefficients from univariable analysis of V1aR protein band intensity (relative to internal reference individual T1)

|                                       | ,                                                    |                    |
|---------------------------------------|------------------------------------------------------|--------------------|
| Covariate                             | Regression<br>Coefficient (95% CI)                   | P-value            |
| Age                                   | 0.63 (-0.30, 1.56)                                   | 0.19               |
| Gravidity                             | 1.84 (-0.38, 4.07)                                   | 0.11               |
| Gestational Age                       | -0.72 (-4.34, 2.90)                                  | 0.70               |
| Body Mass Index in Labor and Delivery |                                                      |                    |
| Suite                                 | 0.20 (-0.20, 0.60)                                   | 0.34               |
| Race                                  |                                                      |                    |
| White                                 | REF                                                  | REF                |
| Black                                 | 7.77 (-4.51, 20.04)                                  | 0.22               |
| Asian                                 | -15.55 (-49.05, 17.94)                               | 0.37               |
| Unknown                               | -13.74 (-38.07, 10.60)                               | 0.28               |
| Hispanic                              | -0.24 (-12.52, 12.03)                                | 0.97               |
| Preeclampsia                          |                                                      |                    |
| No                                    | REF                                                  | REF                |
| Yes                                   | -5.17 (-15.46, 5.12)                                 | 0.33               |
| Diabetes                              |                                                      |                    |
| No                                    | REF                                                  | REF                |
| Туре 2                                | 11.84 (-0.34, 24.03)                                 | 0.06               |
| GDM                                   | 7.67 (-7.82, 23.16)                                  | 0.34               |
| Mode of Delivery                      |                                                      |                    |
| SVD                                   | REF                                                  | REF                |
| CD prior to onset of Labor            | 20.36 (10.58, 30.13)                                 | 6x10 <sup>-3</sup> |
| CD after onset of Labor               | -1.05 (-13.04, 10.93)                                | 0.86               |
| VBAC                                  | -9.60 (-18.26, 37.44)                                | 0.50               |
| Neonatal Sex                          |                                                      |                    |
| Female                                | REF                                                  | REF                |
| Male                                  | -4.53 (-14.46, 5.40)                                 | 0.38               |
| Neonatal Weight (g)                   | 5x10 <sup>-3</sup> (-3.00x 10 <sup>-3</sup> , 0.013) | 0.23               |

#### Table 10

### Regression coefficients from multivariable analysis of MDMX protein band intensity (relative to internal reference individual Q1)

| Covariate                  | Regression<br>Coefficient (95% CI) | P-value            |
|----------------------------|------------------------------------|--------------------|
| Gravidity                  | 7.19 (1.24, 13.14)                 | 0.02               |
| Preeclampsia               |                                    |                    |
| No                         | (REF)                              |                    |
| Yes                        | -40.61 (-66.18, -15.04)            | 3x10 <sup>-3</sup> |
| Diabetes                   |                                    |                    |
| No                         | (REF)                              |                    |
| Туре II                    | 20.10 (-16.80, 57.00)              | 0.29               |
| GDM                        | 31.20 (-8.81, 71.22)               | 0.14               |
| Mode of Delivery           |                                    |                    |
| SVD                        | (REF)                              |                    |
| CD prior to onset of Labor | 9.05 (-26.72, 44.83)               | 0.62               |
| CD after onset of Labor    | 27.22 (-8.08, 62.52)               | 0.14               |
| VBAC                       | -15.92 (-93.98, 62.13)             | 0.69               |
| Neonatal Weight (g)        | 0.01 (-0.01, 0.04)                 | 0.37               |

### Table 11

### Regression coefficients from multivariable analysis of PICALM protein band intensity (relative to internal reference individual Q1)

| Covariate                             | Regression<br>Coefficient (95% CI) | P-value |
|---------------------------------------|------------------------------------|---------|
| Age                                   | 1.73 (-1.64, 5.09)                 | 0.32    |
| Body Mass Index in Labor and Delivery |                                    |         |
| Suite                                 | 1.35 (-0.07, 2.77)                 | 0.07    |
| Mode of Delivery                      |                                    |         |
| SVD                                   | (REF)                              |         |
| CD prior to onset of Labor            | 40.00 (-3.85, 83.85)               | 0.08    |
| CD after onset of Labor               | 0.82 (-48.29, 49.93)               | 0.97    |
| VBAC                                  | -37.87 (-151.23, 75.48)            | 0.52    |

### Table 12

### Regression coefficients from multivariable analysis of OT-R protein band intensity (relative to internal reference individual T1)

| Covariate                  | Regression<br>Coefficient (95% CI)   | P-value |
|----------------------------|--------------------------------------|---------|
| Age                        | 0.71 (-0.83, 2.35)                   | 0.39    |
| Diabetes                   |                                      |         |
| No                         | REF                                  | REF     |
| Туре 2                     | 14.0 (-11.14, 37.70)                 | 0.27    |
| GDM                        | 5.64 (-21.43, 32.00)                 | 0.68    |
|                            |                                      |         |
| Mode of Delivery           |                                      |         |
| SVD                        | REF                                  | REF     |
| CD prior to onset of Labor | 13.25 (-7.83, 34.33)                 | 0.23    |
| CD after onset of Labor    | -1.04 (-23.92, 21.84)                | 0.93    |
| VBAC                       | -0.17 (-68.44, 34.32)                | 0.52    |
| Neonatal Weight (g)        | 4.05x 10 <sup>-4</sup> (-0.02, 0.02) | 0.96    |

#### Table 13

### Regression coefficients from bootstrapped replicates of univariable analysis of MDMX protein band intensity (relative to internal reference individual Q1)

|                            | (95% quantiles of point    | Percentage of replicates          |
|----------------------------|----------------------------|-----------------------------------|
| Covariate                  | estimate from bootstrapped | <0.05 (95% quantiles of P-        |
| Covariate                  | replicates)                | value)                            |
|                            | • • •                      | /                                 |
| Age                        | (0.43, 2.90)               | 1.7% (0.05, 0.77)                 |
| Gravidity                  | (6.82, 12.15)              | 95.5% (8x10 <sup>-4</sup> , 0.06) |
| Gestational Age            | (-6.88, 1.78)              | 0% (0.25, 0.97)                   |
| Body Mass Index in Labor   |                            |                                   |
| and Delivery Suite         | (0.60, 1.50)               | 12.6% (0.03, 0.34)                |
| Race                       |                            |                                   |
| White                      | (REF)                      |                                   |
| Black                      | (5.10, 39.4)               | 0.9% (0.07, 0.80)                 |
| Asian                      | (-53.55, -6.43)            | 0% (0.33, 0.91)                   |
| Unknown                    | (-30.86, 17.09)            | 0% (0.46, 0.99)                   |
| Hispanic                   | (-19.69, 13.18)            | 0% (0.32, 0.99)                   |
| Preeclampsia               |                            |                                   |
| No                         | (REF)                      |                                   |
| Yes                        | (-54.91, -28.15)           | 91.2% (9x10 <sup>-4</sup> , 0.08) |
| Diabetes                   |                            |                                   |
| No                         | (REF)                      |                                   |
| Type II                    | (24.47, 60.41)             | 60% (2x10 <sup>-3</sup> , 0.23)   |
| GDM                        | (24.83, 67.47)             | 44.8% (7x10 <sup>-3</sup> ,0.30)  |
| Mode of Delivery           |                            |                                   |
| SVD                        | (REF)                      |                                   |
| CD prior to onset of Labor | (38.96, 67.36)             | 98.6% (5x10 <sup>-4</sup> , 0.04) |
| CD after onset of Labor    | (17.16, 55.75)             | 15.5% (0.18, 0.46)                |
| VBAC                       | (-25.22, 55.19)            | 0% (0.28, 0.99)                   |
| Neonate Sex                |                            |                                   |
| Female                     | (REF)                      |                                   |
| Male                       | (-10.62, 15.81)            | 0% (0.32, 0.99)                   |
| Neonatal Weight (g)        | (0.02, 0.05)               | 85.8% (3x10 <sup>-4</sup> , 0.14) |

#### Table 14

### Regression coefficients from bootstrapped replicates of univariable analysis of PICALM protein band intensity (relative to internal reference individual Q1)

| FICALM protein band intensity (relative to internal reference individual QT) |                          |                                   |  |  |
|------------------------------------------------------------------------------|--------------------------|-----------------------------------|--|--|
|                                                                              | (95% quantiles of point  | Percentage of replicates          |  |  |
| Covariate                                                                    | estimate from            | <0.05 (95% quantiles of P-        |  |  |
|                                                                              | bootstrapped replicates) | value)                            |  |  |
| Age                                                                          | (2.19, 5.17)             | 41% (7.1x10 <sup>-3</sup> , 0.27) |  |  |
| Gravidity                                                                    | (3.42, 11.80)            | 22% (0.01, 0.46)                  |  |  |
| Gestational Age                                                              | (1.82, 11.72)            | 0.1% (0.11, 0.82)                 |  |  |
| Body Mass Index in Labor                                                     |                          |                                   |  |  |
| and Delivery Suite                                                           | (1.41, 2.66)             | 90% (8x10 <sup>-4</sup> , 0.09)   |  |  |
| Race                                                                         |                          |                                   |  |  |
| White                                                                        | (REF)                    |                                   |  |  |
| Black                                                                        | (-7.10, 40.07)           | 0% (0.12, 0.97)                   |  |  |
| Asian                                                                        | (-40.69,111.00)          | 0% (0.9, 0.99)                    |  |  |
| Unknown                                                                      | (-96.07, -53.30)         | 2% (0.05, 0.28)                   |  |  |
| Hispanic                                                                     | (-64.85, -29.39)         | 40% (0.01, 0.24)                  |  |  |
| Preeclampsia                                                                 |                          |                                   |  |  |
| No                                                                           | (REF)                    |                                   |  |  |
| Yes                                                                          | (-52.30, -18.88)         | 20.3% (0.01, 0.37)                |  |  |
| Diabetes                                                                     |                          |                                   |  |  |
| No                                                                           | (REF)                    |                                   |  |  |
| Туре II                                                                      | (2.82, 45.52)            | 0.6% (0.08, 0.91)                 |  |  |
| GDM                                                                          | (23.35, 56.54)           | 0.6% (0.08, 0.51)                 |  |  |
| Mode of Delivery                                                             |                          |                                   |  |  |
| SVD                                                                          | (REF)                    |                                   |  |  |
| CD prior to onset of Labor                                                   | (41.39, 79.89)           | 88.5% (9x10 <sup>-4</sup> , 0.08) |  |  |
| CD after onset of Labor                                                      | (-17.08, 31.02)          | 0% (0.26, 0.99)                   |  |  |
| VBAC                                                                         | (-82.60, -27.18)         | 0% (0.22, 0.67)                   |  |  |
| Neonate Sex                                                                  |                          |                                   |  |  |
| Female                                                                       | (REF)                    |                                   |  |  |
| Male                                                                         | (3.42, 35.19)            | 0.3% (0.10, 0.84)                 |  |  |
| Neonatal Weight (g)                                                          | (0.01, 0.05)             | 35.1% (3x10-3, 0.40)              |  |  |

#### Table 15

# Regression coefficients from bootstrapped replicates of univariable analysis of OT-R protein band intensity (relative to internal reference individual T1)

| OT-K protein band intensity (relative to internal relefence individual 11) |                             |                            |  |  |
|----------------------------------------------------------------------------|-----------------------------|----------------------------|--|--|
|                                                                            | (95% quantiles of point     | Percentage of replicates   |  |  |
| Covariate                                                                  | estimate from               | <0.05 (95% quantiles of P- |  |  |
|                                                                            | bootstrapped replicates)    | value)                     |  |  |
| Age                                                                        | (1.17, 2.01)                | 54.7% (0.01, 0.14)         |  |  |
| Gravidity                                                                  | (0.15, 2.08)                | 0% (0.29, 0.93)            |  |  |
| Gestational Age                                                            | (-0.00, 3.40)               | 0% (0.26, 0.96)            |  |  |
| Body Mass Index in Labor                                                   |                             |                            |  |  |
| and Delivery Suite                                                         | (0.34, 0.77) 15% (0.02, 0.3 |                            |  |  |
| Race                                                                       |                             |                            |  |  |
| White                                                                      | REF                         | REF                        |  |  |
| Black                                                                      | (-17.36, -3.71)             | 0% (0.09, 0.74)            |  |  |
| Asian                                                                      | (-13.48, 1.09)              | 0% (0.62, 0.99)            |  |  |
| Unknown                                                                    | (-33.74, -21.97)            | 0% (0.10, 0.30)            |  |  |
| Hispanic                                                                   | (-24.88, -14.18)            | 32% (0.02, 0.18)           |  |  |
| Preeclampsia                                                               |                             |                            |  |  |
| No                                                                         | REF                         | REF                        |  |  |
| Yes                                                                        | (-20.16, -10.62)            | 24% (0.02, 0.22)           |  |  |
| Diabetes                                                                   |                             |                            |  |  |
| No                                                                         | REF                         | REF                        |  |  |
| Туре 2                                                                     | (17.21, 31.63)              | 84% (0.00, 0.10)           |  |  |
| GDM                                                                        | (8.96, 22.63)               | 1% (0.07, 0.48)            |  |  |
|                                                                            |                             |                            |  |  |
| Mode of Delivery                                                           |                             |                            |  |  |
| SVD                                                                        | REF                         | REF                        |  |  |
| CD prior to onset of Labor                                                 | (16.54, 27.71)              | 83% (0.01, 0.09)           |  |  |
| CD after onset of Labor                                                    | (-5.28, 6.19)               | 0% (0.57, 0.99)            |  |  |
| VBAC                                                                       | (-29.34, -2.46)             | 0% (0.27, 0.93)            |  |  |
| Neonatal Sex                                                               |                             |                            |  |  |
| Female                                                                     | REF                         | REF                        |  |  |
| Male                                                                       | (4.20, 13.13)               | 0% (0.11, 0.62)            |  |  |
| Neonatal Weight (g)                                                        | (0.01, 0.02)                | 49% (0.01, 0.17)           |  |  |

#### Table 16

# Regression coefficients from bootstrapped replicates of univariable analysis of V1aR protein band intensity (relative to internal reference individual T1)

| viak protein band intensity (relative to internal reference individual 11) |                                                  |                                                 |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--|--|
|                                                                            | (95% quantiles of point                          | Percentage of replicates                        |  |  |
| Covariate                                                                  | estimate from                                    | <0.05 (95% quantiles of P-                      |  |  |
|                                                                            | bootstrapped replicates)                         | value)                                          |  |  |
| Age                                                                        | (0.17, 1.12)                                     | 6% (0.03, 0.74)                                 |  |  |
| Gravidity                                                                  | (0.48, 3.04)                                     | 14% (0.02, 0.71)                                |  |  |
| Gestational Age                                                            | (-2.20, 0.98)                                    | 0% (0.30, 0.98)                                 |  |  |
| Body Mass Index in Labor                                                   |                                                  |                                                 |  |  |
| and Delivery Suite                                                         | (-0.03, 0.43) 2% (0.07, 0.93                     |                                                 |  |  |
| Race                                                                       |                                                  |                                                 |  |  |
| White                                                                      | REF                                              | REF                                             |  |  |
| Black                                                                      | (1.07, 14.58)                                    | 3% (0.04, 0.88)                                 |  |  |
| Asian                                                                      | (-32.74, -3.26)                                  | 0% (0.09, 0.87)                                 |  |  |
| Unknown                                                                    | (-24.28, -1.85)                                  | 0% (0.09, 0.89)                                 |  |  |
| Hispanic                                                                   | (-7.10, 7.06)                                    | 0% (0.26, 0.99)                                 |  |  |
| Preeclampsia                                                               |                                                  |                                                 |  |  |
| No                                                                         | REF                                              | REF                                             |  |  |
| Yes                                                                        | (-11.01, 0.40)                                   | 2% (0.07, 0.94)                                 |  |  |
| Diabetes                                                                   |                                                  |                                                 |  |  |
| No                                                                         | REF                                              | REF                                             |  |  |
| Туре 2                                                                     | (5.78, 19.09)                                    | 23% (9x10 <sup>-3</sup> , 0.41)                 |  |  |
| GDM                                                                        | (-4.01, 18.40)                                   | 4% (0.04, 0.95)                                 |  |  |
| Mode of Delivery                                                           |                                                  |                                                 |  |  |
| SVD                                                                        | REF                                              | REF                                             |  |  |
| CD prior to onset of Labor                                                 | (14.50, 26.60)                                   | 100% (4x10 <sup>-5</sup> , 2x10 <sup>-2</sup> ) |  |  |
| CD after onset of Labor                                                    | (-7.93, 5.70)                                    | 0% (0.26, 0.99)                                 |  |  |
| VBAC                                                                       | (-7.09, 23.62)                                   | 0% (0.16, 0.97)                                 |  |  |
| Neonatal Sex                                                               |                                                  |                                                 |  |  |
| Female                                                                     | REF                                              | REF                                             |  |  |
| Male                                                                       | (-9.92, 0.86)                                    | 0% (0.11, 0.93)                                 |  |  |
| Neonatal Weight (g)                                                        | (1.0x 10 <sup>-3</sup> , 9.0x 10 <sup>-3</sup> ) | 2% (0.05, 0.82)                                 |  |  |

#### Table 17

### Regression coefficients from bootstrapped replicates of multivariable analysis of MDMX protein band intensity (relative to internal reference individual Q1)

| (95% quantiles of point  | Percentage of replicates                                                                                                                                                                        |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| estimate from            | <0.05 (95% quantiles of P-                                                                                                                                                                      |
| bootstrapped replicates) | value)                                                                                                                                                                                          |
| (4.17, 9.81)             | 44% (0.01, 0.28)                                                                                                                                                                                |
|                          |                                                                                                                                                                                                 |
| REF                      |                                                                                                                                                                                                 |
| (-54.42, -22.05)         | 80% (1x10 <sup>-3</sup> , 0.17)                                                                                                                                                                 |
|                          |                                                                                                                                                                                                 |
| (REF)                    |                                                                                                                                                                                                 |
| (-7.15, 35.26)           | 1% (0.10, 0.97)                                                                                                                                                                                 |
| (7.02, 50.01)            | 5% (0.04, 0.78)                                                                                                                                                                                 |
|                          |                                                                                                                                                                                                 |
| (REF)                    |                                                                                                                                                                                                 |
| (-7.87, 27.66)           | 0% (0.22, 0.98)                                                                                                                                                                                 |
| (7.62, 49.52)            | 8% (0.03, 0.69)                                                                                                                                                                                 |
| (-45.98, 36.55)          | 0% (0.32, 0.86)                                                                                                                                                                                 |
| (-0.002, 0.03)           | 2% (0.07, 0.96)                                                                                                                                                                                 |
|                          | estimate from<br>bootstrapped replicates)<br>(4.17, 9.81)<br>REF<br>(-54.42, -22.05)<br>(REF)<br>(-7.15, 35.26)<br>(7.02, 50.01)<br>(REF)<br>(-7.87, 27.66)<br>(7.62, 49.52)<br>(-45.98, 36.55) |

#### Table 18

### Regression coefficients from bootstrapped replicates of multivariable analysis of PICALM protein band intensity (relative to internal reference individual Q1)

| · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                                     |  |
|---------------------------------------|---------------------------------------|-----------------------------------------------------|--|
| Covariate                             | (95% quantiles of point estimate from | Percentage of replicates <0.05 (95% quantiles of P- |  |
| Cevaliate                             |                                       |                                                     |  |
|                                       | bootstrapped replicates)              | value)                                              |  |
| Age                                   | (0.09, 3.35)                          | 1% (0.07, 0.93)                                     |  |
| Body Mass Index in Labor              |                                       |                                                     |  |
| and Delivery Suite                    | (0.55, 2.11)                          | 26% (0.008, 0.54)                                   |  |
| Mode of Delivery                      |                                       |                                                     |  |
| SVD                                   | REF                                   |                                                     |  |
| CD prior to onset of Labor            | (17.36, 62.80)                        | 20% (0.02, 0.48)                                    |  |
| CD after onset of Labor               | (-23.42, 26.23)                       | 0% (0.31, 0.99)                                     |  |
| VBAC                                  | (-70.17, -12.72)                      | 0% (0.29, 0.84)                                     |  |

#### Table 19

### Regression coefficients from bootstrapped replicates of multivariable analysis of OT-R protein band intensity (relative to internal reference individual T1)

| (95% quantiles of point                       | Percentage of replicates                                                                                                                                        |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| estimate from                                 | <0.05 (95% quantiles of P-                                                                                                                                      |
| bootstrapped replicates)                      | value)                                                                                                                                                          |
| (0.27, 1.17)                                  | 0% (0.17, 0.76)                                                                                                                                                 |
|                                               |                                                                                                                                                                 |
| REF                                           | REF                                                                                                                                                             |
| (6.09, 21.30)                                 | 0% (0.10, 0.65)                                                                                                                                                 |
| (-1.66, 14.21)                                | 0% (0.32, 0.99)                                                                                                                                                 |
|                                               |                                                                                                                                                                 |
|                                               |                                                                                                                                                                 |
| REF                                           | REF                                                                                                                                                             |
| (7.33, 19.97)                                 | 0% (0.09, 0.51)                                                                                                                                                 |
| (-6.97, 4.89)                                 | 0% (0.55, 0.99)                                                                                                                                                 |
| (-27.20, -0.44)                               | 0% (0.32, 0.98)                                                                                                                                                 |
| (-4x 10 <sup>-3</sup> , 5x 10 <sup>-3</sup> ) | 0% (0.52, 0.99)                                                                                                                                                 |
|                                               | estimate from<br>bootstrapped replicates)<br>(0.27, 1.17)<br>REF<br>(6.09, 21.30)<br>(-1.66, 14.21)<br>REF<br>(7.33, 19.97)<br>(-6.97, 4.89)<br>(-27.20, -0.44) |

Table 20

Table 20

Autoantigens listed by Neiman et al. among the proteins in VEGFR2, MDMX, and PICALM immunoprecipitations (IP).

|           | Uniprot | Gene   | Protein name                           | Autoimmune disease                               |
|-----------|---------|--------|----------------------------------------|--------------------------------------------------|
| VEGFR2 IP | P01023  | A2M    | Alpha-2-macroglobulin (Alpha-2-M)      | Sjögren's syndrome                               |
|           | E7EVS6  | ACTB   | Actin, cytoplasmic 1 (Beta-actin)      | Autoimmune hemolytic anemia                      |
|           | P07355  |        | Annexin A2 (Annexin II) (Annexin-2)    | Antiphospholipid syndrome                        |
|           | P08758  | ANXA5  | Annexin A5 (Anchorin CII)              | Antiphospholipid syndrome                        |
|           | P11182  | DBT    | Lipoamide acyltransferase BCOADC-E2    | Primary biliary cholangitis                      |
|           | P17661  | DES    | Desmin                                 | Sjögren's syndrome                               |
|           | P10515  | DLAT   | PDC-E2                                 | Primary biliary cirrhosis                        |
|           | Q02413  | DSG1   | Desmoglein-1                           | Pemphigus foliaceus                              |
|           | P19474  |        | E3 ubiquitin-protein ligase TRIM21     | Sjögren's syndrome; Systemic Lupus Erythematosus |
|           | Q8WZ42  | TTN    | Titin                                  | Myasthenia gravis                                |
|           | P08670  | VIM    | Vimentin                               | Rheumatoid arthritis                             |
| MDMX IP   | P01023  | A2M    | Alpha-2-macroglobulin (Alpha-2-M)      | Sjögren's syndrome                               |
|           | P68133  | ACTA1  | Actin, alpha skeletal muscle           | Autoimmune hemolytic anemia; myashenia gravis    |
|           | P07355  | ANXA2  | Annexin A2 (Annexin II) (Annexin-2)    | Antiphospholipid syndrome                        |
|           | P08758  | ANXA5  | Annexin 5                              | Antiphospholipid syndrome                        |
|           | P11182  | DBT    | Lipoamide acyltransferase BCOADC-E2    | Primary biliary cirrhosis                        |
|           | Q6P0N6  | DST    | Dystonin                               | Bollous pemphigoid                               |
|           | P06733  | ENO1   | α-Enolase                              | Multiple sclerosis                               |
|           | P35579  | MYH9   | Myosin-9                               | Multiple sclerosis                               |
|           | P08559  | PDHA1  | Pyruvate dehydrogenase E1-A type 1     | Primary biliary cholangitis                      |
|           | P21980  | TGM2   | Isopeptidase TGM2                      | Celiac's disease                                 |
|           | Q08188  | TGM3   | Transglutaminase-3                     | Dermatitis herpetiformis                         |
|           | P29401  | TKT    | Transketolase                          | Multiple sclerosis                               |
|           | P19474  | TRIM21 | E3 ubiquitin-protein ligase TRIM21     | Sjögren's syndrome; Systemic Lupus Erythematosus |
|           | P18206  | VCL    | Vinculin                               | Myasthenia gravis                                |
| PICALM IP | P01023  | A2M    | Alpha-2-macroglobulin (Alpha-2-M)      | Sjögren's syndrome                               |
|           | E7EVS6  | ACTB   | Actin, cytoplasmic 1 (Beta-actin)      | Autoimmune hemolytic anemia                      |
|           | P63261  | ACTG1  | Actin, cytoplasmic 2/γ-actin           | Autoimmune hemolytic anemia; myashenia gravis    |
|           | P63267  | ACTG2  | Alpha-actin-2                          | Autoimmune hemolytic anemia; myashenia gravis    |
|           | P07355  | ANXA2  | Annexin A2 (Annexin II) (Annexin-2)    | Antiphospholipid syndrome                        |
|           | P08758  | ANXA5  | Annexin A5 (Anchorin CII)              | Antiphospholipid syndrome                        |
|           | P17661  | DES    | Desmin                                 | Sjögren's syndrome                               |
|           | P36957  | DLST   | 2-oxoglutarate dehydrogenase E2        | Pernicuous anemia                                |
|           | Q08554  | DSC1   | Desmocollin-1                          | IgA pemphigus                                    |
|           | Q02413  | DSG1   | Desmoglein-1                           | Pemphigus foliaceus                              |
|           | Q9Y285  | FARSA  | Phenylalanyl-tRNA synthetase α-subunit | Schizophrenia                                    |
|           | Q02218  | OGDH   | 2-oxoglutarate dehydrogenase E1        | Pernicuous anemia                                |
|           | Q5JPU3  | PDHA1  | Pyruvate dehydrogenase E1-A type 1     | Primary biliary cholangitis                      |
|           | P21980  | TGM2   | Isopeptidase TGM2                      | Celiac's disease                                 |
|           | P29401  | ткт    | Transketolase                          | Multiple sclerosis                               |
|           | P19474  |        | E3 ubiquitin-protein ligase TRIM21     | sjögren's syndrome; Systemic Lupus Erythematosus |
|           | Q13263  |        | E3 SUMO-protein ligase TRIM28          | Myositis                                         |
|           | Q8WZ42  | TTN    | Titin                                  | Myasthenia gravis                                |
|           | P08670  | VIM    | Vimentin                               | Rheumatoid arthritis                             |
|           |         |        |                                        |                                                  |

#### Table 21

Patient demographics

| Clinical characteristics    | Study subjects (n=44) | % of n |
|-----------------------------|-----------------------|--------|
| Maternal Age                |                       |        |
| 18-34                       | 40                    | 91%    |
| ≥35                         | 4                     | 9%     |
| BMI                         |                       |        |
| Underweight (<18.5)         | 0                     | 0%     |
| Normal (18.5-24.9)          | 3                     | 7%     |
| Overweight (25-29.9)        | 9                     | 20%    |
| Obesity I (30-34.9)         | 12                    | 27%    |
| Obesity II (35-35.9)        | 5                     | 11%    |
| Extreme Obesity (≥40)       | 15                    | 34%    |
| Parity                      |                       |        |
| Nulliparous                 | 11                    | 25%    |
| Multiparous                 | 33                    | 75%    |
| Gestational Age at Delivery |                       |        |
| < 37 weeks                  | 4                     | 9%     |
| ≥ 37 weeks                  | 40                    | 91%    |
| Race                        |                       |        |
| White                       | 17                    | 39%    |
| African American            | 12                    | 27%    |
| Hispanic                    | 12                    | 27%    |
| Other                       | 3                     | 7%     |
| Diabetes                    | 14                    | 32%    |
| Type 1                      | 0                     | 0%     |
| Туре 2                      | 9                     | 20%    |
| Gestational                 | 5                     | 11%    |
| Chronic Hypertension        | 6                     | 14%    |
| Normotensive                | 28                    | 64%    |
| Preeclampsia                | 16                    | 36%    |
| Preeclampsia and Diabetes   | 4                     | 9%     |