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ABSTRACT

In early 2020, the Coronavirus Disease 19 (COVID-19) rapidly spread across the United States, exhibiting significant geographic
variability. While several studies have examined the predictive relationships of differing factors on COVID-19 deaths, few have
looked at spatiotemporal variation at refined geographic scales. The objective of this analysis is to examine spatiotemporal
variation of COVID-19 deaths in association with socioeconomic, health, demographic, and political factors, using regionalized
multivariate regression as well as nationwide county-level geographically weighted random forest (GWRF) models. Analyses
were performed on data from three sepearate timeframes: pandemic onset until May 2021, May 2021 through November 2021,
and December 2021 until April 2022.Regionalized regression results across three time windows suggest that existing measures
of social vulnerability for disaster preparedness (SVI) are associated with a higher degree of mortality from COVID-19. In
comparison, GWRF models provide a more robust evaluation of feature importance and prediction, exposing the importance of
local features, such as obesity, which is obscured by regional delineation. Overall, GWRF results indicate a more nuanced
modeling strategy is useful for capturing the diverse spatial and temporal nature of the COVID-19 pandemic.

Introduction
The burden of COVID-19 in the United States has not been distributed evenly, either geographically or from a population
distribution perspective1, 2. As well as the elderly5, 6, groups most vulnerable to COVID-19 include those with co-morbid
conditions such as obesity, diabetes, heart disease, and hypertension3, 4. Social determinants of health have also been shown to
correlate with increased risk and morbidity. Further disparities in COVID-19 hospitalizations and deaths have been observed
across racial and ethnic groups7, with differences varying by geographic region8, 9 and socioeconomic status10, 11. Adoption
of protective behaviors, including non-pharmaceutical interventions like masks and vaccine uptake, has been affected by a
patchwork of federal, state, and local policies12 as well as individual responses to these policies13. In this study, we analyze the
importance of social vulnerability, demographic and health parameters, and political geography in predicting COVID-19 deaths
for the United States using novel, spatially explicit modeling techniques which incorporate the spatial and temporal variation of
these potential predictive factors.

Certain communities were identified early in the pandemic as being more prone to high disease burden. For example, rural
communities were identified by the World Health Organization (WHO) as skewing towards having a larger population of
residents 65 or older and having fewer healthcare resources14. Similarly, these communities have increased rates of poverty,
with 15.4 percent of rural populations living below the federal poverty line, versus 11.9 percent in urban areas15. Such spatial
divergence across economic and social factors can also be seen with insurance access16, telecommunications/broadband
access17, housing18, and political ideology19. An additional complication in understanding the relationship between these
risk factors and local pandemic outcomes is the varying collective (via government policies) and individual responses as the
pandemic progressed.

Political ideology in particular has been identified as an unexpected and problematic predictor for COVID-19 mortality20. The
importance of this spatially heterogeneous variable may be explained in part by the enhanced the ability of ideological groups
to recruit followers and refine messaging as a result of the wide adoption of social media via mobile devices and the increase
of virtual/remote engagement for work, school, and social activities21. When social and political polarization combine with
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the aforementioned spatial divergence across health and demographic factors, a magnifying effect can be seen in terms of
health vulnerability. The study of cognitive dissonance in relationship to new and challenging scientific information22 and
self-justification of belief structures as a protective behavior23 provide valuable context for understanding the influence of
ideology on COVID-19 beliefs and behavioral responses which may help to explain the usefulness of political ideology as an
epidemiological predictor. If group messaging reinforces actions counter to recommended health behavior, populations which
are most at risk bear the brunt of these consequences.

Modeling predictive and correlative features for COVID-19 across space and time has proven to be a difficult problem. There
have been a number of efforts to model COVID-19 by incorporating spatial characteristics: Anderson et al.24 used cluster
analysis to evaluate spatial patterns of transmissibility, and their relationships to social health parameters; similarly, Sun et
al.25 looked at spatial lag aspects of COVID-19 in the United States, compared to county-level demographic variables. Adding
to model complexity are the effects of several COVID-19 waves, which differed by location and time. As such, a number
of research efforts have been conducted to explore such spatial and temporal variability of COVID-19, including disease
spread and associations with social determinants of health. Andersen et al.26 utilized a cluster analysis, in combination with a
three-stage regression technique, to explore impacts to mortality and morbidity. Similarly, Mollalo et al.27, 28 evaluated differing
regression-based approaches to examine spatial heterogeneity, while Xie et al.29 applied exploratory spatial analysis methods to
analyze spatial and temporal differentiation in relationship to demographic and social variables. A common theme for all of the
above research efforts were the difficulties in optimizing spatial interactions, in combination with time scales.

To address these concerns, we use a strategy (Figure 1) which compares more traditional linear modeling to geographically
weighted random forest (GWRF) modeling. GWRF is a statistical model that combines the strengths of two well-established
techniques: Geographically Weighted Regression (GWR) and Random Forest (RF). GWR is a spatial regression model that
allows the estimation of regression coefficients that vary spatially. This permits the model to capture local patterns in the data,
which is particularly useful when dealing with data that exhibit spatial heterogeneity30. However, GWR is limited in its ability
to handle complex nonlinear relationships between variables. Comparatively, RF is an ensemble machine learning model that
can handle complex nonlinear relationships between variables and has the ability to capture variable interactions31, and is a
popular choice for large data sets due to low computational costs. The GWRF modeling approach combines the strengths of
GWR and RF by weighting the RF model locally, allowing it to capture local patterns in the data while also handling complex
nonlinear relationships32. GWRF modeling additionally has the ability to handle spatial heterogeneity in data and to provide
predictions that are locally accurate. The value of the GWRF approach lies in its ability to provide accurate and locally relevant
predictions for complex spatial data, and is particularly useful for environmental and geographical applications where spatial
heterogeneity is a major concern, such as the COVID-19 pandemic data33.

Methods and Data
We initially performed exploratory data analyses of fatality rates and deaths across time, for the entire United States, as well as
by region. Based on this review of the data, we developed a set of modeling frameworks for three time frames, approximately
corresponding to the Alpha, Delta, and Omicron waves in the United States. For our analyses, we define: the Alpha wave as the
period from the beginning of the pandemic through the universal availability of COVID-19 vaccines to adults in the United
States (January 2020–April 2021); the Delta wave as the period from May 2021–November 2021; and lastly, the Omicron
wave as the shortest period December 2021–April 2022. The response variable in all of our analyses is the cumulative US
county-level COVID-19 deaths, adjusted for population, for the full time period of interest. Fifteen (15) predictor variables
are evaluated as county-level measures: socioeconomic status, household composition and disability, minority status and
language, housing type and transportation, voting percentage, vaccination rate estimates as of April 2022, population density,
obesity, unemployment, uninsured adults, social associations, diabetes, food insecurity, broadband access, and the percentage
of population over 65.

We first evaluate spatial autocorrelation of all variables, for all three time frames, using Moran’s I. We then use two different
modeling approaches in our analyses. The first approach uses multilinear Poisson regression for nine (9) regional areas of the
United States, plus the entire United States as a singular model, for a total of ten (10) distinct county groupings. Regional models
are based on Health and Human Services (HHS) divisions, which were selected as a generalized policy/funding separation
(HHS, http://hhs.gov). Regions 1 and 2 are combined into one region because of the small number of states in Region 2. The
second approach is a more novel geographically weighted random forest modeling technique for the United States as a whole.
Each model is evaluated for each of the pandemic time periods, for a total of thirty-three (33) models (Fig.1). The full set of
these analyses can be seen in the associated supplemental materials.
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Figure 1. Analysis scheme. Our approach examines fifteen (15) different county-level independent variables, in relationship
to cumulative population adjusted deaths during a pandemic wave. We regress our variables at the regional level, and
subsequently use them for spatially weighted random forest models. In total, thirty-three (33) models were run (a national
regression model, nine regional regression models, and a national GWRF model for each of the three time periods). We
additionally assess spatial heterogeneity at a county level by using local and global Moran’s I values, with Monte Carlo
simulations performed to minimize error34, 35.

Data Assembly
Predictor data are collected from a number of sources: variable descriptions and sources are listed in Table 1. All data were
normalized based on a 0 to 1 scaling structure. Figure 2 shows the spatial distributions of a select set of independent variables.
Of particular note are issues of missing data related to vaccinations. Early in the pandemic, a number of states (Texas, New
Hampshire) failed to report vaccination data: as such, assessing vaccination rates early on (2020) is not possible for the entire
United States. Because of this, we use county-level vaccination rates (defined as the percentage of individuals receiving at
least one dose of a vaccine) as of April 2022; thus our vaccination measure reflects the portion of the population willing to
(eventually) seek out a vaccine, rather than the portion of the population actually immunized at a particular time. Additionally,
a number of sparsely populated counties (<20) have reporting errors with regards to deaths and case counts. In order to
appropriately fit our models, these counties are excluded from our analyses.
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Variable Name Description Source
Deaths Cumulative deaths in time period per population New York Times36

Socioeconomic Status Employment, Income, Education Standardized composite
measures calculated at the
census tract level for
emergency management

CDC SVI 201837Household Composition & Disability Age, Disability, Single Parent
Minority Status & Language Race, English Proficiency

Housing Type & Transportation
Mobile Homes, Multi-Unit
No Vehicle, Crowding, Group

Obesity Incidence per population via CDC Behavioral Risk Factors Surviellance System
(BRFSS) U Wisconsin

Population Institute
County Health
Ranking Model38

Diabetes
Unemployment Incidence per population via Bureau Labor & Statistics

Uninsured
Incidence per population via Census Small Area Health Insurance Estimates
Program (SAHIE)

Social Associations Incidence per population of membership in clubs, churches, etc.
Food Insecurity Relative index via Feeding America

Broadband Access
Incidence per population with no access via Census American Community
Survey 2020

Population Density Relative population per unit area, normalized 2020 US Census39

Voting Percent 2020 Presidential vote for Biden MIT Election Lab40

Vaccination Incidence per population of at least one vaccination by April 2022 CDC41

Age Over 65 County level population over age 65 US Census39

Table 1. Description and Sources of Model Variables
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(a) Socioeconomic Status (b) Household Composition

(c) Democratic Voting Pct (d) Vaccination Rate

(e) Food Insecurity (f) Uninsured Adults

(g) Age over 65 (h) Diabetes

Figure 2. Select predictor variables mapped for the entire United States. a) Socioeconomic status: SVI representing income,
poverty, employment, and education. b) Household composition: SVI representing levels of single parent households,
disabilities, or those with children or the elderly. c) Democratic voting percentage: Percentage of democratic vote from the
2020 general presidential election. d) Vaccination rate: Percentage of individuals in a county with at least one vaccine dose, as
of April 1, 2022. e) Food insecurity: Percentage of households with insufficient access to food, or food of an adequate quality.
f) Uninsured adults: Percentage of adults that are uninsured. g) Age over 65: Percentage of individuals over age 65. h)
Diabetes. Percentage of adults that have diabetes. Maps for all fifteen predictor variables can be found in the associated
supplemental materials.
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Spatial Autocorrelation
The Moran’s I statistic,

I =
n

W

(
n

∑
i=1

n

∑
j=1

wi j (xi − x)(x j − x)

)(
n

∑
i=1

(xi − x)2

)−1

measures spatial autocorrelation34, 35, 42. Here n is the number of spatial units, wi j are spatial weights, x is the variable being
tested for autocorrelation with mean x, and W = ∑i, j wi j. The Moran’s I weight matrix specifies the degree of spatial proximity
between pairs of spatial units, and can be calculated using contiguity-based weighting, network-based weighting, or distance-
based weighting. Here we use contiguity-based weighting, which can be described as a n × n positive symmetric matrix W,
where the element of this matrix is wi j at location i, j for n locations. There are a number of contiguity weight approaches,
including linear contiguity, rook contiguity, bishop contiguity, and queen contiguity43. Here we use queen contiguity, which
creates a neighborhood list based on a common edge or a common vertex. Queen contiguity is recommended when irregular
polygons (e.g. counties) are used44. This provides a method to evaluate spatial patterns in terms of positive (clustering),
negative (dispersion), or neutral (random) spatial autocorrelation, with a range from -1 to 1. By examining Local Moran’s
I values for each observation (in this instance, an individual county), we can look at clustering in combination with other
factors (i.e. voting). Such comparisons across differing time frames give insight into how COVID-19 deaths may be spatially
correlating with covariates45.

Regression Analysis and Geographically Weighted Random Forest
We construct regionalized Poisson regression models (with population as an offset) for each of the three time windows (Alpha,
Delta, and Omicron), using all fifteen variables, with cumulative county-level death counts as the dependent variable. Normality
assumptions are evaluated, including residual and partial residual/component residual plots, as well as standardized beta
coefficients.

To address some of the limitations of the regression analysis, a modified novel approach of ensembled regression decision
trees (random forest) were used. Regression decision trees are a method of constructing a set of decision rules on a predictor
variable46–48 that is continuous (versus categorical). These rules are constructed by recursively partitioning the data into
successively smaller groups with binary splits based on a single predictor variable, with the goal of encapsulating the training
data in the smallest possible tree49. Random forest, or ensembled decision trees, are a combination of many decision tree
predictors, where each tree depends on the values of a random vector, sampled independently and with the same distribution for
all trees in the forest31. Random forest modeling reduces the potential for over-fitting through the use of bootstrap aggregation,
averaging across many trees, and provides a level of feature importance for assessing predictor power46, 50.

Geographically weighted random forest (GWRF) is a modified version of the classic random forest approach, which incorporates
spatial non-stationarity, as part of spatially weighted regression (SWR) techniques32. GWRF fits a sub-model for each
observation in space, taking into account neighboring observations (in this instance, observations are represented as counties),
and is based on Fotheringham, Yang and Kang’s30 work on spatially-explicit coefficient modeling. The main difference between
a traditional (linear) SWR and GWRF is that we can model non-stationarity within a non-linear model, which minimizes
over-fitting and thus relaxes the assumptions of traditional Gaussian statistics. As part of our GWRF construction, we utilized
10-fold cross validation, a model validation technique used to assess the generalizability of the model. Model construction for
this analysis used the recursive partitioning and regression trees package (rpart), as well as the gfr package within R46, 50. For
the three sets of models developed (Alpha, Delta, and Omicron wave time periods), external cross validation was performed,
using an adaptive kernel distance weighting function across a range of bandwidth values (number of surrounding counties,
which ranged from 3 to 30).
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The adaptive kernel function as part of the GWRF model is defined as:

Wi j = exp
(
−
|di j|
bw

)

where wi j is the weight assigned to the observation j for the estimation of i, and di j is the distance between j and i, and
bw is the bandwidth (number of surrounding counties). Each variant model was run for progressively larger bandwidths, in
combination with inversely varying global and local model weighting (local weighting at .25, .50, .75, and 1, combined with
global weighting at 1, .75, .50, .25), to evaluate both root mean square error (RMSE) as well as mean absolute errors (MAE).
Using this optimization method, we were able to select the model parameters which minimized error for each variant window
(Supplemental Figures S23, S27, S31).

Results
All timeframes (Alpha, Delta and Omicron) indicated an overall positive spatial clustering, with moderate outliers, for COVID-
19 deaths (localized Moran’s I, M = 0.462). By plotting deaths vs spatially lagged values (Fig. 3a) we see a progression from
negative spatial autocorrelation for more liberal counties (blue counties, lower left quadrant) to positive spatial autocorrelation
for more conservative counties (red counties, upper right quadrant). Outliers were overwhelmingly conservative-voting counties,
which suggests that conservative counties are having a stronger influence over model fit. In addition, Monte Carlo simulations
confirmed strong positive spatial autocorrelation (spatial clustering), with a density peak to the left of mean cumulative deaths
values, for all three time windows. When examining the clustering behavior for independent variables, we see varying degrees
of positive spatial clustering, as measured by the Moran’s I statistic. Fig. 3b shows that household composition is spatially
correlated and that increased death rates were observed in poorer counties. Similar effects can be seen for the other SVI
measures (Fig. 3c) as well as known health risk factors, such as diabetes (Fig. 3d) A number of variables—uninsured adults,
social associations, unemployment—show no consistent pattern of deaths in relation to spatial clustering. See Part 4 of the
supplementary materials for Moran’s scatterplots for each of the variables in all three waves.

Regression analysis results were performed for the coterminous United States, as well as by region, with full results found in the
provided supplemental materials. The R2 for regional US regression models varied across the differing variant windows (Alpha
R2 = 0.41 (Region 7) to R2 = 0.83 (Region 9); Delta R2 = 0.65 (Region 6) to R2=0.90 (Region 3); Omega R2=0.47 (Region
7) to R2 = 0.90 (Region 9). Overall, regional R2 were moderately higher than national regression model values (US Alpha
R2 = 0.416; US Delta R2 = 0.675; US Omicron R2 = 0.505). Across all variant windows, region 10, regions 1 and 2 and region
9 consistently performed best, with region 4, region 8 and region 7 having the lowest R2 values (Fig. 4). Which predictors were
significant varied considerably by region and time window, but several patterns were seen. For example, uninsured adults and
housing composition were significant for all time windows for region 6; diabetes was significant across all time windows for
region 4; voting was significant for singular time windows for a number of regions, with regions 9 and 10 having two time
windows that were significant; and vaccination rate, as a proxy for protective health behaviors, became non-significant across
most regions as the pandemic progressed, except for region 5.

Geographically weighted random forest outputs for the three models in question (Alpha, Delta, Omicron), optimized for
bandwidth selection using local/global model root mean square errors (RMSE), performed well in tracking general spatial
trends, while overestimating extreme values (Fig. 5). Global out of bag (OOB) R2 for the three models were 0.40 (Alpha), 0.45
(Delta), and 0.34 (Omicron), while localized R2 by county indicated a clear variation in predictive power, with values as high
as 0.90. The R2 values in this instance are generated by dividing the vector of mean square errors by the variance of y, then
subtracting from 1. Given that the GWRF model approach permutes across a large number (500+) of decision trees based on
an adaptive kernel function, there is the possibility of models performing worse than a random outcome (resulting in some
R2 values below zero)51. Predictive strength for early in the pandemic (Alpha) was strongest in coastal Eastern regions, the
Southwest, as well as Pacific Northwest coastal regions. We see a shift of model performance during the Delta wave, with the
west coast regions, the Midwest, and Colorado being highest in terms of predictive power. For Omicron, predictive strength had
a more varied spatial distribution, with clusters in Southern California and Arizona. Optimized bandwidth selection (number of
counties included in individual county RF model runs) ranged from as high as 24 (Alpha), to 12 (Omicron).

For GWRF, mapped feature importance values (Fig. 6) provide spatial patterns for predictor variables across all time variant
models. For this analysis, feature importance is defined as the average increase in squared residuals of the test dataset, as
variables are randomly permuted46. Higher values indicate a greater importance of the variable on the model performance.
Given this random permutation, there can be instances where the mean square error of a random variable may be higher
than a selected variable, generating a negative value. Model results indicate that diabetes feature importances were highly
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Delta Wave: Moran Scatterplots

(a) Population Adjusted Deaths (b) Household Composition

(c) Minority Status and Language (d) Diabetes

Figure 3. Select spatial autocorrelation Moran’s scatterplots for the Delta wave time window. Each point represents an
individual county value. a) COVID-19 Population adjusted deaths Moran’s scatterplot. Color range depicts voting. b)
Household Composition Moran’s scatterplot. Color range depicts COVID-19 population adjusted deaths. c) Minority Status
and Language Moran’s scatterplot. Color range depicts COVID-19 population adjusted deaths. d) Diabetes Moran’s scatterplot.
Color range depicts COVID-19 population adjusted deaths. Below each Moran plot is a loess plot of the main variable (x-axis)
in comparison to the categorized variable (y-axis). Moran’s plots for all variables are available in the supplemental materials.

impactful for predicting COVID-19 death in the southwestern portion of the United States across all three time windows;
similarly, vaccination rates were impactful in the northern Utah region, across both Alpha and Delta time windows. Household
composition influence were high in the Utah/Colorado region for Alpha and Delta time windows as well, while voting was
variable across all three variants, with small hotspots in many rural communities. Obesity also provided interesting spatial
patterns, with uniquely high feature importance values in the northeastern portions of the United States (Maine). All feature
importance plots can be found in the attached supplemental materials (Supplementary Figures S26, S30, and S34).

Comparisons of regression results with random forest outputs suggest that regional boundaries in the linear model may be
limiting predictive capabilities, given its artificial geographic structure. While a number of the regional outputs indicate
moderately performing models (region 10 (Pacific Northwest), region 1 and 2 (Northeast), region 9 (West)), a majority of the
regional regression models had moderate to poor predictive power. Temporal patterns of model performance show higher R2

values in the Alpha and Delta waves. This suggests that early in the pandemic, typical sociological, economic, political, and
health parameters had a greater effect on predicting deaths—yet over time, external effects became more influential. Such
effects might include: varying policy response, changing economic factors, social media misinformation, and increasing
population immunity either through exposure to the virus, vaccination, or a combination. Conversely, our customized GWRF
nationwide model performed considerably better, with feature importance at a county level indicating clustering patterns which
do not conform to HHS regional boundaries. Global model results had R2 values between 0.88 and 0.90. Out of bag R2 values
for GWRF outputs ranged from 0.34 to 0.45, suggesting that, while general trends can be seen, the the model is not able to
accurately predict the cumulative deaths for counties in the tails of the distribution. Feature importance rankings displayed
interesting spatial patterns (See Supplementary Figs. S26, S30 and S34). Urbanized centers showed higher model influence for
minority status and language across all three time windows; socioeconomic measures had the most effect on model performance
in rural areas, particularly in the western portions of the United States. Voting showed considerable heterogeneity in terms of
model influence, with small pockets of increase in rural regions as well.
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Figure 4. Significant variables for each regional model, as well as R2 values, per variant time window.
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GWRF Model Results

(a) Alpha wave - local R2 (b) Alpha wave - global prediction (c) Alpha wave - actual values

(d) Delta wave - local R2 (e) Delta wave - global prediction (f) Delta wave - actual values

(g) Omicron wave - local R2 (h) Omicron wave - global prediction (i) Omicron wave - actual values

Figure 5. Geographically weighted random forest model results for Alpha, Delta, and Omicron wave time windows. Each
panel indicates localized R2 values, global prediction results, and observed cumulative deaths by county (adjusted for
population). a) thru c): Panel plot of Alpha wave results. d) thru f): Panel plot of Delta wave results. g) thru i): Panel plot of
Omicron wave results. Full model results for all waves can be seen as part of the supplemental materials.

Discussion
The United States recorded over 1.1 million excess deaths during the period of the COVID-19 pandemic from January 2020
through March 202252, with some communities experiencing much greater losses than others. While our regional regression
models were able to explain a large portion of the variation in many cases, this did not always result in the identification
of significant features. For example, in Region 3 not a single variable was significant despite the high R2 values (Figure 4).
Applying spatial modeling methods exposes relationships among predictor variables which are not evident through more
traditional modeling techniques. Geographic weighting approaches applied with non-parametric random forest methods better
capture variation corresponding with geographic heterogeneity than our regional regression models.

Political ideology was identified early in the pandemic as an atypical predictor of deaths due to COVID-1953. Our work
supports the finding that political ideology, as measured by voting data, serves as an important feature for explaining variation
in COVID-19 deaths in some areas and at certain time intervals, such as the western United States during the Delta wave
(Figure 6). Population adjusted deaths for all three time frames show positive spatial autocorrelation—with conservative voting
from the 2020 general election aligned with higher deaths, and democratic voting aligned with lower deaths (Fig. 3a). This
reinforces previous research which indicates that stronger exposure to conservatism increases age-standardized COVID-19
mortality rates54. Results of our GWRF modeling additionally indicate progressively increasing importance of voting on model
performance, with Delta and Omicron waves showing strong regionalized influences in the western United States as well as the
northeast, indicating a increasing interaction between political ideology and the changing COVID-19 climate over time.

We expected that measures of obesity and diabetes would be important for predicting deaths, as these health factors are known
to be strongly associated with increase risk of morbidity and mortality from COVID-1955. Indeed, spatial trends for both
obesity and diabetes in all waves indicate that increasing spatial autocorrelation corresponds to a higher COVID-19 death rate,
as seen for the Delta wave in Figure 3d. However, the only region for which one or both of these variables was significant
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Delta Wave: Random Forest Feature Importance

(a) Democratic Voting Percentage (b) Housing Composition

(c) Minority Status and Language (d) Diabetes

Figure 6. Delta wave random forest feature importance for housing composition, diabetes, minority status and language, and
democratic voting percentages (2020 US presidential election). Other feature importance maps can be found in the associated
supplemental materials.

in all waves was the southeast (Region 4). This demonstrates that important vulnerabilities are not captured by the regional
regression but are detected by our GWRF feature importance plots.

All of the composite SVI measures, which were constructed for use by FEMA for responding to disasters56, showed a positive
association with deaths in the Moran’s I plots in the first two waves. This relationship was less marked for the Omicron period,
with only the measures corresponding to socioeconomic status and minority populations continuing the pattern. This supports
previous findings57, 58 that these measures are also useful for predicting clusters of counties with high vulnerability to pandemic
threat. Additionally, spatial autocorrelation of both dependent and independent variables show clustering patterns which suggest
that particular factors may have differing spatial influences on deaths on whole. For example, for vaccination rates we see
decreasing spatial autocorrelation with increasing deaths. Overall, spatial lag variations between independent variables is
reflective of local socioeconomic and cultural views which can dampen (or exacerbate) the effects of COVID-19 associated
factors (e.g. deaths)59.

Select regional analyses provide insights into the value of a spatially explicit modeling approach. For example, variable
importance values for obesity across the Delta and Omicron waves show a unique hotspot for the state of Maine. Given
Maine’s demographics as older, rural, yet politically progressive, model results suggest that obesity has a uniquely strong
influence on predicting COVID-19 associated deaths, which have associations with statewide policy or regulatory components60.
Comparatively, older populations (over 65) had a moderately stronger influence on model performance in southeastern rural
areas (northeastern Georgia, northern Mississippi) across all three variant time windows. This pattern was similar to other
regions of the United States, where older populations in rural regions showed higher levels of model influence (central Texas,
northeastern Pennsylvania). Such patterns reinforce understandings of rurality on health outcomes, which may be interrelated
to poverty and preventative care access6.

One limitation of the GWRF models appears in their limited ability to predict high and low levels of deaths. This may be due
to confounding variables which are not included in the model which could include, but are not limited to, health parameters
(hypertension, cardiovascular disease) and hospitalization effectiveness. Limiting model time windows to the three main
variant waves could also be a concern. Future analyses could address these issues by incorporating autoreggressive integrated
moving average (ARIMA) techniques, in combination with spatially-focused random forest, or potentially other spatiotemporal
algorithms (or an ensemble of multiple algorithmic techniques)61.
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Early in the pandemic, deaths were generally higher in more liberal, population dense regions of the United States. Over time,
we see a shift in deaths to more conservative, rural communities, which is likely a combination of vaccination rates and the
overall spread of COVID-19 to lesser populated regions. We further see focused regions within the United States (southern
Mississippi Delta region, southwestern portions of Arizona, Colorado, and New Mexico) that show variable clustering as
well as high levels of model predictive power (Fig. 5). These clusters span multiple HHS boundaries, which helps to explain
the weaker regression modeling performance for sections of the country. Given spatial and temporal variation of deaths and
the inability for linear modeling techniques to effectively perform, policy decisions for future pandemic responses should
consider spatially and temporally sensitive modeling efforts to assess public need33. In particular, collaboration across fixed
boundaries for health regions, which may be used for funding allocations and policy decision, may be necessary for successful
interventions. Our GWRF results indicate a considerable difference in spatial feature importance patterns between all three
wave events, which align with more qualitative examinations of the pandemic response in the United States.
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