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Deriving threshold statistics from growth rate estimates 

In the main text we derived the angular reproduction number, , which responds to variations 

in transmissibility caused by changes to either or both of the effective reproduction number R, 

and the generation time distribution w. An interesting property of  is that it is consistent with 

the time-varying growth rate r (unlike R), but still possesses a useful individual-level threshold 

interpretation (unlike r). However, there are alternative ways to convert r into a threshold-like 

statistic about 1 [1]. Specifically, we may apply any of the transformations from [2], which relate 

R to r under a mean generation time, but replace the generation time with a window parameter 

⍺ that we can customise. These transformations all guarantee (at least for a constant true R) 

that the sign of r is consistent with that of R(⍺)-1, with R(⍺) as the threshold statistic. 

We investigate the most commonly used transformations in Eq. (S1). The left-side expression 

assumes a gamma distributed generation time structure with shape 𝜎 and scale ⍺𝜎-1 (this has 

mean ⍺). The right-side relation considers a normally distributed structure with mean ⍺ and 

standard deviation 𝜎. These equations are taken from [2]. 
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For an exponentially distributed generation time 𝜎=1 on the left-side equation yielding 𝑅(𝛼) =

1 + 𝑟𝛼. At the other extreme of a deterministic or fixed generation time distribution 𝜎=0 on the 

right-side expression (or 𝜎 becomes infinite on the left-side equation), resulting in 𝑅(𝛼) = 𝑒𝑟𝛼.  

We investigate if threshold statistics derived from these canonical relationships will outperform 

our proposed angular reproduction number. We repeat the simulations from Figure 3 of the 

main text, which features step-change and cyclic dynamics for Ebola virus disease (EVD) and 

COVID-19 with time-varying in mean generation times. We present mean estimates of  and 
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r from these simulations in Figure S1. The latter is computed as a smoothed log derivative of 

incidence and demonstrates one issue with these alternate metrics. Because R(⍺) relies on a 

model-agnostic estimate of r, it is sensitive to smoothing assumptions [3], which are non-trivial 

to benchmark in the absence of epidemiological knowledge. This can limit our ability to signal 

any changes in the generation time (not that these changes are only inferable when incidence 

is sufficiently large [4]). We observe this in the bottom panel of Figure S1 where  spikes in 

response to a contraction of the generation time but r shows no discernible deviation.  

 

Figure S1: Mean measures of transmissibility. We repeat the simulations in Figure 3 from 

the main text under gamma distributed generation times with changing mean (grey dashed, 

with g0 as the initial mean). We show posterior mean estimates of the angular reproduction 

number  (blue, derived using EpiFilter [5]) and the true reproduction number R (black) on left 

y-axes. We overlay estimates of the growth rate r (red, computed as the log derivative of the 

smoothed incidence using Savitzky-Golay filters [6]) on right y-axes. Crossing times between 

r and 0 and R or  and 1 should delineate between subcritical and supercritical transmission. 

We then compute R(⍺) under exponential, deterministic, gamma and normal generation time 

distribution assumptions as described above. We input our r estimates into Eq. (S1) for various 



window values ⍺ and set 𝛿=2⍺. We chose this relationship between ⍺ and 𝛿 as the first is a 

proxy for a distribution mean, while the second is a proxy for its support. Figures S2 and S3 

present the threshold statistics and  for EVD and COVID for these window or free parameter 

choices on simulated data from Figure 3 of the main text. We find the threshold statistics are 

less robust to changes in window choices than the angular reproduction number and become 

unreliable even when ⍺ closely approximates the original mean generation time g0. The choice 

of formulation of R(⍺) also strongly determines the properties of the resulting statistic.  

 

Figure S2: Relationships among transmissibility metrics for EVD. We explore threshold 

statistics computed using Eq. (S1) under structural assumptions from [2] and compare against 

the angular reproduction number  (blue) at various window sizes of ⍺ and 𝛿=2⍺ respectively. 

These EVD simulations are from Figure 3 of the main text with the true reproduction number 

(black) undergoing step dynamics. The threshold R(⍺) statistics combine mean growth rate 

estimates from Figure S1 with ⍺, which serves as a proxy for the mean generation time under 



structural assumptions of exponential (red) and deterministic (green) distributions as well as 

intermediary normal and gamma distributions (grey, with additional spread parameter 𝜎).  

 

Figure S3: Relationships among transmissibility metrics for COVID. We investigate the 

threshold statistics R(⍺) computed in Eq. (S1) under the structural assumptions from [2] and 

compare against the angular reproduction number  (blue) at various window sizes of ⍺ and 

𝛿=2⍺ respectively. These COVID simulations are from Figure 3 of the main text with cyclical 

true reproduction numbers (black). The threshold statistics combine mean estimates of growth 

rates from Figure S1 with ⍺, which acts as a proxy for the mean generation time under the 

structural assumptions of exponential (red), deterministic (green) and intermediary normal and 

gamma distributions (which require an additional spread parameter 𝜎 and are in grey). 

We observe reasonable correspondence among the arbitrary threshold statistics of R(⍺) and 

 at small window sizes but substantial discordance as those windows become larger. This 



discordance even persists for some ⍺ that are close to the true mean generation time.  Across 

many scenarios the R(⍺) statistics appreciably overestimate transmissibility and appear to be 

biased in determining the transition from subcritical to supercritical transmission. Importantly, 

, which makes fewer assumptions than R(⍺), is simpler to tune as it varies less appreciably 

than R(⍺) when its window is incorrectly specified, and it more accurately signals transitions. 

Note that under very large windows all statistics, including , do not perform well. This results 

from those windows causing extensive over-smoothing and is a problem even when inferring 

R for a disease with stationary and perfectly known generation time as shown in [7,8]. 

Understanding the inversion of growth rate and reproduction number rankings 

In Figure 4 of the main text, we demonstrated that it is possible for co-circulating epidemics 

or variants to possess inverted rankings on their reproduction numbers and growth rates due 

to the impact of transmissibility changes caused by an intervention (or any related effect). This 

phenomenon means that pre-intervention one variant may have the larger R and r, but post-

intervention it may possess the smaller r despite still having larger R. This phenomenon, as 

far as we are aware, has not been described. Here we provide mathematical arguments to 

show that inversion can be prevalent and is not simply an artefact of Figure 4. 

We consider two epidemics or variants with reproduction numbers and mean generation times 

related as 𝑅1 = 𝛼𝑅2 and 𝑔1 = 𝛽𝑔2. Assume 𝛼 > 1 so 𝑅1 > 𝑅2 and that 𝜂 > 0 describes an 

intervention (or relaxation of an intervention) that causes some multiplicative change 𝑅𝑗𝜂 =

𝜂𝑅𝑗. This intervention hence maintains the ordering 𝑅1𝜂 > 𝑅2𝜂. An inversion occurs if growth 

rates before and after the intervention are such 𝑟1 > 𝑟2 but 𝑟1𝜂 < 𝑟2𝜂. We test this possibility 

using fundamental exponential and deterministic generation time distributions, which also are 

extremes of gamma and normally distributed generation times (see Eq. (S1)).  

For the exponential case 𝑟𝑗 = 𝑔𝑗
−1(𝑅𝑗 − 1). We find 𝑟1 > 𝑟2 when 𝛽−1(𝛼𝑅2 − 1) > 𝑅2 − 1. 

This implies we need 𝑅2(𝛼 − 𝛽) > 1 − 𝛽 and hence 𝑅2 > (1 − 𝛽)(𝛼 − 𝛽)−1. We can satisfy 

the post-intervention inequality 𝑟1𝜂 < 𝑟2𝜂 if 𝛽−1(𝛼𝜂𝑅2 − 1) < 𝜂𝑅2 − 1. The algebra is similar 

here and the condition for inversion is that 𝜂𝑅2 < (1 − 𝛽)(𝛼 − 𝛽)−1. In the deterministic case 

𝑟𝑗 = 𝑔𝑗
−1 log 𝑅𝑗 so 𝑟1 > 𝑟2 implies 𝛽−1 log 𝛼𝑅2 > log 𝑅2. This leads to log 𝑅2 > −log 𝛼1−𝛽 

and the conditions 𝑅2 > 𝛼−(1−𝛽). Post-intervention 𝑟1𝜂 < 𝑟2𝜂 occurs if 𝛽−1 log 𝛼𝜂𝑅2 >

log 𝜂𝑅2. After some rearrangement this results in the analogous condition 𝜂𝑅2 < 𝛼−(1−𝛽). 



Consequently, whenever an intervention satisfies this pair of inequalities, we can expect an 

inversion. As an example, let the second variant have 50% shorter mean generation time i.e., 

𝛽 = 2. We need 𝑅2 > (2 − 𝛼)−1 and 𝜂𝑅2 < (2 − 𝛼)−1 for the exponential case or 𝑅2 >

log 𝛼 and 𝜂𝑅2 < log 𝛼 for the deterministic one. If we set 𝑅1 = 1.5𝑅2, these boundaries are 

2 and log 1.5 respectively. Many combinations of 𝑅2 and 𝜂 can achieve inversion but the 

exponential case allows 𝑅1, 𝑅2 > 1, whereas the deterministic has 𝑅1, 𝑅2 < 1. The structure 

of the generation time is also important for defining the parameter region of inversion.  

The intuition behind inversion is that changes in the reproduction numbers affect growth rates 

differently (if generation times are diverse) while also being constrained to always satisfy 𝑅𝑡 =

1 ⟺ 𝑟𝑡 = 0. Generally, it may be difficult (especially if surveillance is imperfect) to disentangle 

the impacts of interventions on reproduction numbers and generation times or to even track 

the structure of the generation time distribution. This motivates our proposed metric Ω𝑡, which 

maintains Ω𝑡 = 1 ⟺ 𝑟𝑡 = 0 and keeps the intuition of 𝑅𝑡 in terms of how much control effort 

we require but does not suffer any inversion. 
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