
1 
 

Proteomic predic,on of common and rare diseases 1 

  2 

Julia Carrasco-Zanini PhD1,2,3,4*#, Maik Pietzner PhD2,4,3*, Jonathan Davitte PhD5*, Praveen 3 
Surendran PhD1, Damien C. Croteau-Chonka PhD6, Chloe Robins PhD5, Ana Torralbo 4 
PhD7, Christopher Tomlinson MBBS7,8, Natalie Fitzpatrick PhD7, Cai Ytsma M.Sc.7, Tokuwa 5 
Kanno PhD5, Stephan Gade PhD9, Daniel Freitag PhD1, Frederik Ziebell PhD9, Spiros Denaxas 6 
PhD7,8,10,11, Joanna C. Betts PhD1, Nicholas J. Wareham FMedSci2*, Harry Hemingway 7 
FMedSci7,8,10*, Robert A. Scott PhD1*, Claudia Langenberg FFPH2,3,4*# 8 

1Genomic Sciences, GSK Research and Development, Stevenage, UK,  9 
2MRC Epidemiology Unit, School of Clinical Medicine, Institute of Metabolic Science, 10 
University of Cambridge, Cambridge, UK,  11 
3Precision Healthcare University Research Institute, Queen Mary University of London, 12 
London, UK, 13 
4Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 14 
Berlin, Germany,  15 
5Genomic Sciences, GSK Research and Development, Collegeville, PA, USA,  16 
6Genomic Sciences, GSK Research and Development, Cambridge, MA, USA,  17 
7Institute of Health Informatics, University College London, London, UK,  18 
8National Institute for Health Research, Biomedical Research Centre, University College 19 
London Hospitals NHS Trust, London, UK,  20 
9Genomic Sciences, Cellzome GmbH, GSK Research and Development, Heidelberg, 21 
Germany,  22 
10Health Data Research UK 23 
11British Heart Foundation Data Science Centre, London, UK 24 

 25 
 26 

 27 

 28 

* These authors contributed equally 29 

# Correspondence to:  Julia Carrasco-Zanini (j.carrasco-zanini-sanchez@qmul.ac.uk) & Claudia 30 
Langenberg (claudia.langenberg@qmul.ac.uk) at the Precision Healthcare Research InsTtute, QMUL31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2023. ; https://doi.org/10.1101/2023.07.18.23292811doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.07.18.23292811
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 32 

Background: For many diseases there are delays in diagnosis due to a lack of objecTve biomarkers for 33 

disease onset. Whether measuring thousands of proteins offers predicTve informaTon across a wide 34 

range of diseases is unknown.  35 

Methods: In 41,931 individuals from the UK Biobank Pharma Proteomics Project (UKB-PPP), we 36 

integrated ~3000 plasma proteins with clinical informaTon to derive sparse predicTon models for the 37 

10-year incidence of 218 common and rare diseases (81 – 6038 cases). We compared predicTon 38 

models based on proteins with a) basic clinical informaTon alone, b) basic clinical informaTon + 37 39 

clinical biomarkers, and c) genome-wide polygenic risk scores.   40 

Results: For 67 pathologically diverse diseases, a model including as few as 5 to 20 proteins was 41 

superior to clinical models (median delta C-index = 0.07; range = 0.02 – 0.31) and to clinical models 42 

with biomarkers for 52 diseases. In mulTple myeloma, for example, a set of 5 proteins significantly 43 

improved predicTon over basic clinical informaTon (delta C-index = 0.25 (95% confidence interval 0.20 44 

– 0.29)). At a 5% false posiTve rate (FPR), proteomic predicTon (5 proteins) idenTfied individuals at 45 

high risk of mulTple myeloma (detecTon rate (DR) = 50%), non-Hodgkin lymphoma (DR = 55%) and 46 

motor neuron disease (DR = 29%). At a 20% FPR, proteomic predicTon idenTfied individuals at high-47 

risk for pulmonary fibrosis (DR= 80%) and dilated cardiomyopathy (DR = 75%).  48 

Conclusions: Sparse plasma protein signatures offer novel, clinically useful predicTon of common and 49 

rare diseases, through disease-specific proteins and protein predictors shared across mulTple diseases.  50 

 51 

(Funded by Medical Research Council , NIHR,  Wellcome Trust.)52 
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IntroducDon 56 

A central challenge in precision medicine is the development of clinically useful tools for idenTfying 57 

individuals at high risk which may enable Tmely diagnosis, early iniTaTon of treatment and improved 58 

paTent outcomes1. Clinically recommended tools for predicTng the risk of onset of diseases are widely 59 

used for heart alack and stroke (e.g., the AHA / ACC 10-year risk equaTon)2 but for very few other 60 

diseases. Across diverse diseases pathologies, diagnosTc delays of months or years are reported from 61 

the iniTal onset of symptoms3-5. Over the last decades, single plasma proteins have become 62 

established as specific, diagnosTc assays for a small number of diseases including BNP for heart failure, 63 

troponins for acute coronary syndromes and UCH-L1 and GFAP in traumaTc brain injury6.  64 

 65 

Plasma proteomics allows esTmaTon of thousands of proteins and agnosTc discovery studies not 66 

confined to a single disease of interest and represents a promising technology to accelerate progress 67 

towards this challenge. Plasma proteomic signatures capture health behaviours and current health 68 

status7, and may integrate the risk of “staTc” geneTc8,9 and dynamic environmental determinants of 69 

disease. Translatable, parsimonious models have been described. For example, a sparse protein 70 

signature, containing as few as three proteins, improved idenTficaTon of a high-risk group for diabetes 71 

which is currently missed by screening strategies.10  72 

 73 

Whether plasma proteomics may offer clinically useful predicTve or mechanisTc informaTon across a 74 

wide range of diseases, alone or in combinaTon, is unknown for several reasons. First, previous 75 

proteomic studies have had too few parTcipants to evaluate rare and common diseases. Secondly, 76 

previous studies of disease onset have focussed on a narrow set of common diseases7,11-13, rather than 77 

taking an agnosTc discovery approach. Thirdly, previous studies have not reported screening metrics 78 

compared to clinical models (without proteins) which may inform integraTon into health records and 79 

translaTonal evaluaTon.  80 

 81 

We used data from the UK Biobank Pharma Proteomics Project (UKB-PPP), the largest proteomic 82 

experiment to date, to address the following objecTves (i) to systemaTcally interrogate the 10 year 83 

predicTve potenTal of the measurable plasma proteome across 218 pathologically diverse diseases, 84 

over and above models based on informaTon obtained in usual care (without and with clinical 85 

biomarkers) and polygenic risk scores (ii) to idenTfy disease-specific protein predictors poinTng to 86 

underlying aeTological mechanisms, compared to those shared across diseases (iii) to determine 87 

whether the screening metrics of proteomic signatures for diseases meet, or exceed, those for blood 88 

biomarkers used in current clinical pracTce. 89 
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Methods  90 

Study design  91 

We carried out a cohort study in the UKB-PPP to develop, validate and compare predicTve models with 92 

and without proteins. UKB is a highly characterised longitudinal cohort of 500 000 adults. Individuals 93 

were excluded if they had missing data for age, sex and body mass index (BMI) or failed quality control 94 

(QC) criteria for proteomic measurements. The human biological samples were sourced ethically, and 95 

their research use was in accordance with the terms of the informed consent and under an IRB/EC 96 

approved protocol.  97 

Clinical risk informa5on  98 

Clinical risk informaTon (without blood biomarkers) recommended as part of usual primary care, was 99 

obtained from UKB health quesTonnaires. This included: age at baseline, self-reported ethnicity, 100 

smoking status, alcohol consumpTon, paternal or maternal history for 15 individual diseases available 101 

(data-field IDs 20197 and 20110, Table S1), and measured BMI. For clinical risk informaTon with blood 102 

biomarkers, we included 37 of the most widely performed blood tests (16 of these are based on 103 

proteins) which were assessed in all UKB parTcipants (UKB Category 17518, 100081). Quality control 104 

of these ‘clinical biomarkers’ was done based on methods previously described14,15 and imputaTon was 105 

done using the missForest R package16 including addiTonal informaTon on age and sex. 106 

Proteomic profiling  107 

Proteomic profiling was performed in EDTA-plasma samples from 54,893 UKB parTcipants obtained at 108 

baseline as part of the UK Biobank Pharma Proteomics Project (UKB-PPP), using the Olink Explore 1536 109 

and Expansion plavorms, which captured 2923 unique proteins targeted by 2941 assays. Assay 110 

details17,18, sample selecTon and handling have been previously described19. The current study is based 111 

on parTcipants from a randomly selected subset (N = 46,750). Awer quality control, we imputed 112 

missing NPX (normalised protein expression) values, using the missForest R package16, for all 113 

individuals who met the QC and inclusion criteria and had no more than 50% of missing values across 114 

all proteins, Table S1-2, Supplementary Appendix). ImputaTon was done per Olink panel, including 115 

addiTonal informaTon on age and sex.  116 

Incident disease defini5ons 117 

We developed predicTon models for 218 diseases, with more than 80 incident cases within 10 years 118 

of follow-up (censoring date was the 31st of December 2020 or death date if this occurred first) in the 119 
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random subset (N = 41,931, 193 diseases), or by including incident cases within the “consorTum-120 

selected” subset (25 diseases) (Table S1). The 218 diseases include common and rare diseases, and 121 

diseases associated with high morbidity, high mortality, or both. Disease definiTons were based on 122 

validated phenotypes described by Kuan et al.20 by integraTng data from primary care, hospital episode 123 

staTsTcs, cancer and death registries and from UKB health quesTonaries including self-reported 124 

illnesses. We excluded prevalent cases (first occurrence prior to or up to the baseline assessment visit) 125 

or incident cases recorded within the first 6 months of follow-up.  126 

Sta5s5cal analyses 127 

We adapted a 3-step machine learning framework including (1) feature selecTon, (2) hyperparameter 128 

tuning and opTmizaTon, and (3) validaTon. Individuals were divided: 50% for feature selecTon, 25% 129 

for model opTmizaTon (training), and 25% for validaTon, for diseases with more than 800 cases; 130 

otherwise, into a 70% feature selecTon and model opTmizaTon set, and 30% for validaTon. ValidaTon 131 

sets included non-overlapping individuals completely blinded to previous model development stages. 132 

We performed feature selecTon among 2941 protein targets, or among the 37 clinical biomarkers by 133 

least absolute shrinkage and selecTon operator (LASSO) regression over 200 subsamples of the feature 134 

selecTon set. In each iteraTon, we ran 5-fold cross-validaTon over 3 repeats using a grid search to tune 135 

the hyperparameter lambda. We used the ROSE R package21 to address case imbalance. SelecTon 136 

scores were computed as the absolute sum of weights from the model with the opTmal lambda from 137 

each of the 200 iteraTons and were used to idenTfy the top 20 proteins or clinical biomarkers 138 

(Supplementary Appendix).  139 

We used regularised cox regression to derive a “benchmark” clinical model, by 5-fold cross-validaTon 140 

in the opTmisaTon or training set using the features described above. We tested improvement in 141 

models by adding onto the paTent informaTon: 1) 5 – 20 proteins, 2) 5 – 20 clinical biomarkers or 3) 142 

genome-wide polygenic scores22 (PGS, UKB category 301) (Figure 1). For these comparisons, we 143 

trained and tested models including up to 5, 10 and 20 proteins or biomarkers and kept the best 144 

performing protein signature and biomarker signature. ValidaTon was performed in the held-out test 145 

set, where we computed the concordance index (C-index) over 1000 bootstrap samples. Significant 146 

improvements between models were considered as those for which the 95 % confidence interval (95% 147 

CI) of the differences in the bootstrap C-index distribuTons did not include zero.  148 

The screening metrics we calculated were: detecTon rates (DR) and likelihood raTos (LR) in the 149 

validaTon set at false posiTve rates (FPR) ranging from 5 to 40%. The FPR was calculated as FPR = false 150 

posiTves (FP) / (true negaTves (TN)+ FP); and detecTon rates were calculated as DR = true posiTves 151 
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(TP)/ (false negaTves (FN) + TP). LRs were computed as LR = DR / FPR. All analyses were performed in 152 

R sowware version 4.1.1. 153 

 154 

Results  155 

Improvement in predicDon by adding sparse protein signatures vs clinical biomarkers onto clinical 156 

models 157 

Clinical models without blood biomarkers showed a median C-index = 0.64 (interquarTle range = 0.58 158 

– 0.72), achieving the highest performance for endocrine and cardiovascular diseases (Figure S1, Table 159 

S3). For 67 rare and common diseases (Figure S2), addiTon of 5 to 20 proteins significantly improved 160 

(95% confidence intervals of improvement in C-index > 0) clinical models (median increase in C-index 161 

= 0.07, range = 0.02 – 0.31) (Figure 2a, Table S4). Diseases for which proteins improved clinical models 162 

included mulTple myeloma (delta C-index = 0.25 (95% confidence interval 0.20 – 0.29, LR = 6.55), non-163 

Hodgkin lymphoma (delta C-index = 0.21 (0.14 – 0.28), LR = 6.08), pulmonary fibrosis (delta C-index = 164 

0.09 (0.03 – 0.14), LR = 6.83), coeliac disease (delta C-index = 0.31 (0.21 – 0.38), LR=8.07), dilated 165 

cardiomyopathy (delta C-index = 0.17 (0.10 – 0.22), LR =6.97) and motor neuron disease (delta C-index 166 

= 0.11 (95% CI: 0.04 – 0.16), LR = 4.38) (Figure 2a). Across these 67 diseases, the median detecTon 167 

rate (at a 10% FPR, DR10) was 45.5% (range: 10.8 – 80.8 %), compared to 25% (range: 9.5 – 51.2%) for 168 

the clinical model (Figure 2b, Table S5). The median LR was 4.55 (range: 1.08 – 8.07) for these 67 169 

diseases, represenTng improvements ranging from 0.12 – 6.92 over the clinical models (Figure 2c). For 170 

example, applying a protein-informed test for coeliac disease (LR = 8.08) would result in detecTng 171 

80.8% of cases, while retaining an acceptable proporTon of 10% false-posiTves (Figure S3). Clinical 172 

models with blood biomarkers only significantly improved predicTon over clinical models for 28 173 

diseases (median delta C-index = 0.08, range = 0.01 – 0.28) (Figure 3, Table S6). For 52 of these 174 

diseases, protein-based models achieved higher LRs (range = 0.13 – 5.17) in comparison to clinical 175 

model with blood biomarkers (Figure S4, Table S7). Compared to the single most informaTve protein, 176 

sparse protein signatures (5-20 proteins) had an average 5.4% improvement in C-index over clinical 177 

models, across diseases that achieved significant improvements. For 64% of these, performance 178 

saturaTon was achieved by including a maximum of 5 to 10 proteins.  179 

 180 

Proteins predicDng mulDple diseases  181 

The 67 predicTon models with clinically relevant improvements, included a total of 501 protein targets, 182 

of which 147 were selected for 2 or more (range: 2 - 16) diseases (Figure S5); most of which (~89%) 183 

were selected across 2 or more clinical specialTes (range: 2 - 9) (Figure 4a). On average, these had a 184 

relaTvely lower contribuTon for predicTon of individual diseases, in comparison to highly specific 185 
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proteins (Figure 4b). Age was the major correlate of 4 out of the 5 proteins that were predicTve across 186 

more than 10 diseases and smoking status was the major correlate for CXCL17 (Figure S6), but these 187 

proteins sTll provided improvements in predicTon over and above these convenTonal risk factors.   188 

Proteins specifically predicDng one disease  189 

We idenTfied proteins solely and strongly predicTve for only one disease (Figure 4c, Table S8), 190 

including TNF receptor superfamily member 17 (TNFRSF17 or B-Cell MaturaTon anTgen), a specific 191 

predictor for mulTple myeloma; and TNFRSF13B, a strong predictor of monoclonal gammopathy of 192 

undetermined significance (MGUS), a condiTon which precedes the development of mulTple myeloma 193 

(at a rate of ~1 in 100 MGUS cases developing mulTple myeloma per year23). Here, we provide evidence 194 

that increased plasma levels of these receptors (Table S9) are strongly predicTve of future onset for 195 

these blood cancers. Previous studies have already suggested an associaTon between plasma 196 

TNFRSF17 and progression from MGUS to mulTple myeloma24. Here we idenTfied the added value of 197 

a 5-protein protein signature, which improved discriminaTon by 7% over paTent risk factors + 198 

TNFRSF17 alone. 199 

PGS compared to clinical models and protein models  200 

For 23 diseases for which PGS were available in UKB, we found that PGS significantly improved 201 

predicTon over clinical models for only 7 diseases, but with clinically negligible improvements (median 202 

delta C-index = 0.03, range = 0.01 – 0.14) (Table S10). Proteins outperformed PGS for all of these, 203 

except for breast cancer (Figure S7).  204 

Screening metrics for protein and clinical models  205 

We observed consistently superior screening metrics across all condiTons for a wide range of FPRs 206 

(5%-40%; Figure 5). At a 20% FPR, proteomic predicTon idenTfied individuals at high-risk for 207 

pulmonary fibrosis (including CA4, CEACAM6, GDF15, SFTPD and WFDC2; DR=80%) and dilated 208 

cardiomyopathy (including HRC, TNNI3, TPBGL, NPPB, NTproBNP; DR=75%). At a low FPR (5%), 209 

proteomic predicTon idenTfied individuals at high risk for mulTple myeloma (FCRLB, QPCT, SLAMF7, 210 

TNFRSF17, TNFSF13B; DR = 50%), non-Hodgkin lymphoma (BCL2, CXCL13, IL10, PDCD1, SCG3; DR = 211 

55%) and motor neuron disease (including CST5, EGFLAM, NEFL, PODXL2 and TMED10; DR = 29%).  212 

In sensiTvity analyses we found that adding a larger set of proteins included in Olink’s Explore 213 

Expansion panels (Supplementary appendix) did not generally improve model performance compared 214 

to the first release of 1463 proteins (Figure S8, Table S4). However, improvements for selected diseases 215 

were obtained by including a specific predicTve biomarker (only captured in the Expansion panels), 216 

such as TCN1 (a vitamin B12 binding protein) for vitamin B12 deficiency anaemia, KLK3 (prostate-217 
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specific anTgen) for prostate cancer or, F10 (a coagulaTon factor that converts prothrombin into 218 

thrombin) and PROS1 (an anTcoagulant protein) for thrombophilia (Figure S8). Protein-based models 219 

trained on 10-year incidence performed equally well when restricTng the follow-up Tme to 5 years 220 

(Pearson r = 0.96, Figure S9a), although paTent informaTon models appeared to have systemaTcally 221 

lower performances indices up to 5-years (Pearson r = 0.88, Figure S9b).  222 

 223 

Discussion  224 

We demonstrate the potenTal of sparse protein signatures to improve the predicTon of disease onset 225 

across common and rare diseases. By integraTng ~3000 broad capture plasma proteins with EHRs, we 226 

showed that for 52 of 218 diseases studied, adding proteins was the single best predicTon model, not 227 

only superior to commonly used paTent characterisTcs, but also to a large array of biomarkers in 228 

clinical use and PGS (where available). Broad-capture proteomic technologies offer for many diseases 229 

new possibiliTes to address delays in diagnosis, the first blood-based biomarkers and the first evidence 230 

of clinically useful predicTon models compared to current pracTce (Table S11). Plasma proteomic 231 

signatures may inform the need for, and design of, therapeuTc clinical trials.  232 

The wide spectrum of diseases that we studied enabled discovery of disease-proteomic signatures 233 

with the strongest screening metrics. The proteomic signatures that we report have screening metrics 234 

which were comparable to, or exceeded, those of blood tests currently used as diagnosTc tests (for 235 

other diseases). Previous studies in a small number of diseases have invesTgated the predicTve7,11-13 236 

or prognosTc25 potenTal of the circulaTng proteome. We found that for almost two-thirds (61%) of the 237 

superior protein models, a posiTve test, i.e., a predicted risk above the risk cut-off, translated into a 238 

four-fold increased risk of developing the disease compared to a negaTve one. Specifically, for 14 239 

diseases, the LR achieved by protein-based models was higher than for a signature including prostate 240 

specific anTgen (KLK3) for prostate cancer, which is used in currently implemented screening 241 

programs26. Sparse protein signatures (5-20 proteins) offer the opportunity to assess a limited set of 242 

proteins at a cost much below a discovery proteomic assay. The fact, that we idenTfied strong 243 

predicTve signatures in the non-fasTng UKB samples further suggested feasibility of measurement in 244 

clinical pracTce.  245 

We idenTfied specific and strongly predicTve proteins, poinTng to underlying pathways conferring 246 

disease risk. Here we show that up to 10 years prior to diagnosis, higher plasma levels of TNFRSF17 247 

and TNFRSF13B, receptors for BAFF and APRIL, were strong, specific predictors of increased risk of 248 

mulTple myeloma and MGUS, respecTvely. These signalling pathways have been shown to promote 249 

mulTple myeloma growth27,28. In turn, decreased plasma TNFSF13B, was further shown to be 250 
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predicTve of higher risk for mulTple myeloma. AnT-TNFRSF17 agents, including anTbody-drug 251 

conjugates (ADCs), T-cell engagers bispecific anTbodies and cellular therapy with chimeric anTgen 252 

receptor T cells (CAR-T), are approved for the treatment of refractory mulTple myeloma29-33 . Clinical 253 

trials exploring earlier implementaTon have started providing evidence for the safety and effecTveness 254 

of CAR-T cells in early lines of treatment34. Our results demonstrated the potenTal for implementaTon 255 

of proteomic screening, in a preventaTve manner even years before the onset of overt mulTple 256 

myeloma, to idenTfy the subgroup of individuals at highest risk, and highlight the possibility to test 257 

whether they represent those who would eventually benefit the most from anT-TNFRSF17 as earlier 258 

lines of treatment. Pulmonary fibrosis may be delayed due to misdiagnosis of other common 259 

respiratory or cardiovascular diseases35. The proteomic signature should be evaluated to idenTfy who 260 

might benefit from enhanced surveillance through lung funcTon tests and lung imaging, potenTally 261 

enabling early treatment to maximise preservaTon of lung funcTon36. For dilated cardiomyopathy, 262 

proteomic signatures could be evaluated for their potenTal to inform ECG and echo surveillance in 263 

people without a known geneTc cause (up to 60% of cases37,38). 264 

We found proteins predicTve across mulTple diseases and clinical specialTes, consistent with shared 265 

aeTologies, including adaptaTons to ageing. Gastrin, for example, is well known for its role in 266 

producTon of hydrochloric acid, gastric moTlity and associaTons with gastrointesTnal cancers and 267 

digesTve system diseases39. However, our results highlighted associaTons with a wider range of 268 

diseases, including vitamin deficiencies, osteoporosis, infecTons and acute kidney injury. Proof-of-269 

principle studies suggested that a single “omics” domain may predict risk of onset across mulTple 270 

diseases40. Therefore, our results point to the potenTal for leveraging pleiotropic proteins to develop 271 

a customized, small signature for predicTon across mulTple diseases.  272 

Our study has important limitaTons. Firstly, our results require validaTon in external studies, in 273 

ethnically diverse populaTons and in cohorts with differing pre-test probabiliTes of disease (UKB has 274 

a healthy parTcipant effect41). Secondly, although we report the largest proteomic experiment to date, 275 

larger sample sizes are required to esTmate detecTon rates for rarer diseases, and over shorter 276 

clinically relevant Tme frames (e.g., 1-5 years). Thirdly, evaluaTons against clinical diagnosTc markers 277 

not available in UK Biobank are required including M-protein for mulTple myeloma, and IgA/ IgG 278 

anTbodies and anT-transglutaminase for coeliac disease. Fourthly, clinical translaTon will require 279 

development and validaTon of absolute quanTficaTon protein assays as opposed to the relaTve 280 

quanTficaTon provided by current proteomic plavorms.   281 
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In conclusion, we demonstrated that sparse plasma protein signatures when integrated with electronic 282 

health records may offer novel, clinically useful predicTon of common and rare diseases, through 283 

disease-specific proteins and protein predictors shared across mulTple diseases.  284 

 285 

 286 

 287 
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  291 

Figure 1. Study design. This cohort study is based on a random subset of UKB-PPP individuals (N = 41,931). All 292 
individuals were divided into training (including feature selecGon and opGmisaGon steps) and validaGon sets to 293 
develop sparse protein-based predictors (including 5-20 proteins from the Olink Explore 1536 + Expansion 294 
panels) for 218 diseases defined using data from the UKB health-quesGonnaire, primary care, hospital episode 295 
staGsGcs, cancer and death registries. Performance of protein-signatures was compared to clinical models, 296 
clinical biomarkers and genome-wide polygenic risk scores (PGS). Further details of methods are in the 297 
(Supplementary Appendix). 298 
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 300 

Figure 2. Improvement in predic7ve performance by addi7on of proteins onto basic pa7ent risk factors for 67 301 
incident diseases. a, Improvement in C-index by the addiGon of 5 – 20 proteins (coloured dots) over the 302 
benchmark paGent-informaGon model (black dots). b, Comparison between detecGon rates (at a 10% false 303 
posiGve rate) achieved by protein-based and paGent-informaGon model.  c, Improvement in likelihood raGos by 304 
the addiGon of 5 – 20 proteins (orange) over the benchmark clinical model (grey). 305 
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 307 

Figure 3. Comparison of predic7ve performance between proteins-based (pa7ent informa7on + proteins) and 308 
biomarker-based (pa7ent informa7on + biomarkers) models. a, Comparison of C-index by the addiGon of 309 
protein-based (coloured dots) or biomarker-based models (black dots) onto paGent risk factors. We only show 310 
those diseases for which C-index was significantly improved by addiGon of either proteins or clinical biomarkers 311 
onto the paGent risk factors. 312 

 313 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2023. ; https://doi.org/10.1101/2023.07.18.23292811doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.18.23292811
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

 314 

Figure 4. Disease specificity of predictor proteins. a, Number of disease groups for which a protein was selected 315 
as a predictor across the 88 diseases. These were diseases for which the C-index was significantly improved or 316 
improved by more than 0.4 over the paGent informaGon model. b, Average contribuGon of proteins across 317 
diseases. Average weights (normalised to the top predictor) from the opGmised predicGon models for each 318 
protein, across diseases for which it was selected as a predictor (out of the 88 improved diseases). c, Disease-319 
specific proteins are shown as those selected for only one disease with a normalised weight > 0.6.  320 

 321 
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 323 
Figure 5. DetecDon rate curves. DetecTon rates across different false posiTve rate thresholds for 324 
selected examples idenTfied as those most likely to benefit from proteomic predicTon over paTent 325 
risk factors, clinical biomarkers and PGS. Coeliac disease (TGM2, NOS2, ITGB7, CD160, PPP1R14D, 326 
RBP2, CCL25, MLN, FGF19, HMOX1, CEND1, MILR1, CDH2, CKMT1A_CKMT1B, CPA2, GTF2IRD1, 327 
SEPTIN3, BCL2L15, FABP2, HSD17B14). Dilated Cardiomyopathy (HRC, TNNI3, TPBGL, NPPB, 328 
NTproBNP). Other interstitial pulmonary disease with fibrosis (CA4, CEACAM6, GDF15, SFTPD and 329 
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WFDC2). Multiple myeloma and malignant cell neoplasms (FCRLB, QPCT, SLAMF7, TNFRSF17, 330 
TNFSF13B). Non-Hodgkin Lymphoma (BCL2, CXCL13, IL10, PDCD1, SCG3). Motor neuron disease (CST5, 331 
EGFLAM, NEFL, PODXL2 and TMED10). Leiomyoma of uterus (BMP4, CDH3, CHRDL2, DNPEP, FGF23, 332 
GFRAL, LEFTY2, PAEP, SEZ6L2, TSPAN1). Psoriasis (DEFB4A_DEFB4B, IL19, KCTD5, PI3, PRKD2). Primary 333 
pulmonary hypertension (NPPB, NTproBNP, ROBO2, ENPEP, FGFBP2, LTBP2, SFRP1, ACP5, SPON1, 334 
CA4, SLC34A3, ACE2, AHSG, SERPINA7, SLC44A4, CDC123, SPINK8, LYPLA2, S100A3, MFAP4). Primary 335 
Malignancy Prostate (ADAMTS15, IL17A, INSL3, KLK3, LECT2, LTBP2, PRR5, SCARF2, SPINT3, TSPAN1). 336 

 337 

 338 
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