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Abstract

Background: For many diseases there are delays in diagnosis due to a lack of objective biomarkers for
disease onset. Whether measuring thousands of proteins offers predictive information across a wide

range of diseases is unknown.

Methods: In 41,931 individuals from the UK Biobank Pharma Proteomics Project (UKB-PPP), we
integrated ~3000 plasma proteins with clinical information to derive sparse prediction models for the
10-year incidence of 218 common and rare diseases (81 — 6038 cases). We compared prediction
models based on proteins with a) basic clinical information alone, b) basic clinical information + 37

clinical biomarkers, and c) genome-wide polygenic risk scores.

Results: For 67 pathologically diverse diseases, a model including as few as 5 to 20 proteins was
superior to clinical models (median delta C-index = 0.07; range = 0.02 — 0.31) and to clinical models
with biomarkers for 52 diseases. In multiple myeloma, for example, a set of 5 proteins significantly
improved prediction over basic clinical information (delta C-index = 0.25 (95% confidence interval 0.20
— 0.29)). At a 5% false positive rate (FPR), proteomic prediction (5 proteins) identified individuals at
high risk of multiple myeloma (detection rate (DR) = 50%), non-Hodgkin lymphoma (DR = 55%) and
motor neuron disease (DR = 29%). At a 20% FPR, proteomic prediction identified individuals at high-
risk for pulmonary fibrosis (DR= 80%) and dilated cardiomyopathy (DR = 75%).

Conclusions: Sparse plasma protein signatures offer novel, clinically useful prediction of common and

rare diseases, through disease-specific proteins and protein predictors shared across multiple diseases.

(Funded by Medical Research Council , NIHR, Wellcome Trust.)
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Introduction

A central challenge in precision medicine is the development of clinically useful tools for identifying
individuals at high risk which may enable timely diagnosis, early initiation of treatment and improved
patient outcomes. Clinically recommended tools for predicting the risk of onset of diseases are widely
used for heart attack and stroke (e.g., the AHA / ACC 10-year risk equation)? but for very few other
diseases. Across diverse diseases pathologies, diagnostic delays of months or years are reported from
the initial onset of symptoms3®. Over the last decades, single plasma proteins have become
established as specific, diagnostic assays for a small number of diseases including BNP for heart failure,

troponins for acute coronary syndromes and UCH-L1 and GFAP in traumatic brain injury®.

Plasma proteomics allows estimation of thousands of proteins and agnostic discovery studies not
confined to a single disease of interest and represents a promising technology to accelerate progress
towards this challenge. Plasma proteomic signatures capture health behaviours and current health
status’, and may integrate the risk of “static” genetic®® and dynamic environmental determinants of
disease. Translatable, parsimonious models have been described. For example, a sparse protein
signature, containing as few as three proteins, improved identification of a high-risk group for diabetes

which is currently missed by screening strategies.*®

Whether plasma proteomics may offer clinically useful predictive or mechanistic information across a
wide range of diseases, alone or in combination, is unknown for several reasons. First, previous
proteomic studies have had too few participants to evaluate rare and common diseases. Secondly,

71113 rather than

previous studies of disease onset have focussed on a narrow set of common diseases
taking an agnostic discovery approach. Thirdly, previous studies have not reported screening metrics
compared to clinical models (without proteins) which may inform integration into health records and

translational evaluation.

We used data from the UK Biobank Pharma Proteomics Project (UKB-PPP), the largest proteomic
experiment to date, to address the following objectives (i) to systematically interrogate the 10 year
predictive potential of the measurable plasma proteome across 218 pathologically diverse diseases,
over and above models based on information obtained in usual care (without and with clinical
biomarkers) and polygenic risk scores (ii) to identify disease-specific protein predictors pointing to
underlying aetiological mechanisms, compared to those shared across diseases (iii) to determine
whether the screening metrics of proteomic signatures for diseases meet, or exceed, those for blood

biomarkers used in current clinical practice.
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90 Methods
91  Study design

92  We carried out a cohort study in the UKB-PPP to develop, validate and compare predictive models with
93 and without proteins. UKB is a highly characterised longitudinal cohort of 500 000 adults. Individuals
94  were excluded if they had missing data for age, sex and body mass index (BMI) or failed quality control
95 (QC) criteria for proteomic measurements. The human biological samples were sourced ethically, and
96 their research use was in accordance with the terms of the informed consent and under an IRB/EC

97 approved protocol.

98  (Clinical risk information

99 Clinical risk information (without blood biomarkers) recommended as part of usual primary care, was
100 obtained from UKB health questionnaires. This included: age at baseline, self-reported ethnicity,
101 smoking status, alcohol consumption, paternal or maternal history for 15 individual diseases available
102  (data-field IDs 20197 and 20110, Table S1), and measured BMI. For clinical risk information with blood
103 biomarkers, we included 37 of the most widely performed blood tests (16 of these are based on
104 proteins) which were assessed in all UKB participants (UKB Category 17518, 100081). Quality control

d14,15

105 of these ‘clinical biomarkers’ was done based on methods previously describe and imputation was

106 done using the missForest R package!® including additional information on age and sex.

107  Proteomic profiling

108 Proteomic profiling was performed in EDTA-plasma samples from 54,893 UKB participants obtained at
109 baseline as part of the UK Biobank Pharma Proteomics Project (UKB-PPP), using the Olink Explore 1536
110  and Expansion platforms, which captured 2923 unique proteins targeted by 2941 assays. Assay
111  details!”*®, sample selection and handling have been previously described®®. The current study is based
112  on participants from a randomly selected subset (N = 46,750). After quality control, we imputed
113 missing NPX (normalised protein expression) values, using the missForest R package®®, for all
114 individuals who met the QC and inclusion criteria and had no more than 50% of missing values across
115 all proteins, Table S1-2, Supplementary Appendix). Imputation was done per Olink panel, including

116 additional information on age and sex.

117  Incident disease definitions

118  We developed prediction models for 218 diseases, with more than 80 incident cases within 10 years

119  of follow-up (censoring date was the 31 of December 2020 or death date if this occurred first) in the
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120 random subset (N = 41,931, 193 diseases), or by including incident cases within the “consortium-
121  selected” subset (25 diseases) (Table S1). The 218 diseases include common and rare diseases, and
122 diseases associated with high morbidity, high mortality, or both. Disease definitions were based on

123  validated phenotypes described by Kuan et al.?°

by integrating data from primary care, hospital episode
124  statistics, cancer and death registries and from UKB health questionaries including self-reported
125 illnesses. We excluded prevalent cases (first occurrence prior to or up to the baseline assessment visit)

126 or incident cases recorded within the first 6 months of follow-up.
127  Statistical analyses

128  We adapted a 3-step machine learning framework including (1) feature selection, (2) hyperparameter
129  tuning and optimization, and (3) validation. Individuals were divided: 50% for feature selection, 25%
130 for model optimization (training), and 25% for validation, for diseases with more than 800 cases;
131 otherwise, into a 70% feature selection and model optimization set, and 30% for validation. Validation

132 sets included non-overlapping individuals completely blinded to previous model development stages.

133  We performed feature selection among 2941 protein targets, or among the 37 clinical biomarkers by
134 least absolute shrinkage and selection operator (LASSO) regression over 200 subsamples of the feature
135 selection set. In each iteration, we ran 5-fold cross-validation over 3 repeats using a grid search to tune
136  the hyperparameter lambda. We used the ROSE R package?! to address case imbalance. Selection
137 scores were computed as the absolute sum of weights from the model with the optimal lambda from
138 each of the 200 iterations and were used to identify the top 20 proteins or clinical biomarkers

139 (Supplementary Appendix).

140  We used regularised cox regression to derive a “benchmark” clinical model, by 5-fold cross-validation
141 in the optimisation or training set using the features described above. We tested improvement in
142  models by adding onto the patient information: 1) 5 — 20 proteins, 2) 5 — 20 clinical biomarkers or 3)
143  genome-wide polygenic scores? (PGS, UKB category 301) (Figure 1). For these comparisons, we
144  trained and tested models including up to 5, 10 and 20 proteins or biomarkers and kept the best
145 performing protein signature and biomarker signature. Validation was performed in the held-out test
146 set, where we computed the concordance index (C-index) over 1000 bootstrap samples. Significant
147 improvements between models were considered as those for which the 95 % confidence interval (95%

148  ClI) of the differences in the bootstrap C-index distributions did not include zero.

149  The screening metrics we calculated were: detection rates (DR) and likelihood ratios (LR) in the
150 validation set at false positive rates (FPR) ranging from 5 to 40%. The FPR was calculated as FPR = false

151  positives (FP) / (true negatives (TN)+ FP); and detection rates were calculated as DR = true positives
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152  (TP)/ (false negatives (FN) + TP). LRs were computed as LR = DR / FPR. All analyses were performed in
153 R software version 4.1.1.

154

155  Results

156 Improvement in prediction by adding sparse protein signatures vs clinical biomarkers onto clinical

157 models

158 Clinical models without blood biomarkers showed a median C-index = 0.64 (interquartile range = 0.58
159  —-0.72), achieving the highest performance for endocrine and cardiovascular diseases (Figure S1, Table
160  S3). For 67 rare and common diseases (Figure S2), addition of 5 to 20 proteins significantly improved
161  (95% confidence intervals of improvement in C-index > 0) clinical models (median increase in C-index
162  =0.07,range =0.02 - 0.31) (Figure 2a, Table S4). Diseases for which proteins improved clinical models
163  included multiple myeloma (delta C-index = 0.25 (95% confidence interval 0.20 —0.29, LR = 6.55), non-
164  Hodgkin lymphoma (delta C-index = 0.21 (0.14 — 0.28), LR = 6.08), pulmonary fibrosis (delta C-index =
165 0.09 (0.03 — 0.14), LR = 6.83), coeliac disease (delta C-index = 0.31 (0.21 — 0.38), LR=8.07), dilated
166  cardiomyopathy (delta C-index =0.17 (0.10 — 0.22), LR =6.97) and motor neuron disease (delta C-index
167 =0.11 (95% Cl: 0.04 — 0.16), LR = 4.38) (Figure 2a). Across these 67 diseases, the median detection
168  rate (at a 10% FPR, DR1o) was 45.5% (range: 10.8 — 80.8 %), compared to 25% (range: 9.5 — 51.2%) for
169  the clinical model (Figure 2b, Table S5). The median LR was 4.55 (range: 1.08 — 8.07) for these 67
170  diseases, representing improvements ranging from 0.12 — 6.92 over the clinical models (Figure 2c). For
171 example, applying a protein-informed test for coeliac disease (LR = 8.08) would result in detecting
172 80.8% of cases, while retaining an acceptable proportion of 10% false-positives (Figure S3). Clinical
173 models with blood biomarkers only significantly improved prediction over clinical models for 28
174  diseases (median delta C-index = 0.08, range = 0.01 — 0.28) (Figure 3, Table S6). For 52 of these
175 diseases, protein-based models achieved higher LRs (range = 0.13 — 5.17) in comparison to clinical
176 model with blood biomarkers (Figure S4, Table $7). Compared to the single most informative protein,
177 sparse protein signatures (5-20 proteins) had an average 5.4% improvement in C-index over clinical
178 models, across diseases that achieved significant improvements. For 64% of these, performance
179 saturation was achieved by including a maximum of 5 to 10 proteins.

180

181 Proteins predicting multiple diseases

182  The 67 prediction models with clinically relevant improvements, included a total of 501 protein targets,
183  of which 147 were selected for 2 or more (range: 2 - 16) diseases (Figure S5); most of which (~89%)
184  were selected across 2 or more clinical specialties (range: 2 - 9) (Figure 4a). On average, these had a

185 relatively lower contribution for prediction of individual diseases, in comparison to highly specific
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186 proteins (Figure 4b). Age was the major correlate of 4 out of the 5 proteins that were predictive across
187 more than 10 diseases and smoking status was the major correlate for CXCL17 (Figure S6), but these

188 proteins still provided improvements in prediction over and above these conventional risk factors.
189 Proteins specifically predicting one disease

190 We identified proteins solely and strongly predictive for only one disease (Figure 4c, Table S8),
191 including TNF receptor superfamily member 17 (TNFRSF17 or B-Cell Maturation antigen), a specific
192 predictor for multiple myeloma; and TNFRSF13B, a strong predictor of monoclonal gammopathy of
193 undetermined significance (MGUS), a condition which precedes the development of multiple myeloma
194 (atarate of ~1in 100 MGUS cases developing multiple myeloma per year?®). Here, we provide evidence
195 that increased plasma levels of these receptors (Table S9) are strongly predictive of future onset for
196  these blood cancers. Previous studies have already suggested an association between plasma
197  TNFRSF17 and progression from MGUS to multiple myeloma?*. Here we identified the added value of
198 a 5-protein protein signature, which improved discrimination by 7% over patient risk factors +

199  TNFRSF17 alone.
200 PGS compared to clinical models and protein models

201 For 23 diseases for which PGS were available in UKB, we found that PGS significantly improved
202 prediction over clinical models for only 7 diseases, but with clinically negligible improvements (median
203  delta C-index = 0.03, range = 0.01 — 0.14) (Table S10). Proteins outperformed PGS for all of these,

204  except for breast cancer (Figure S7).

205  Screening metrics for protein and clinical models

206  We observed consistently superior screening metrics across all conditions for a wide range of FPRs
207  (5%-40%; Figure 5). At a 20% FPR, proteomic prediction identified individuals at high-risk for
208  pulmonary fibrosis (including CA4, CEACAM6, GDF15, SFTPD and WFDC2; DR=80%) and dilated
209 cardiomyopathy (including HRC, TNNI3, TPBGL, NPPB, NTproBNP; DR=75%). At a low FPR (5%),
210 proteomic prediction identified individuals at high risk for multiple myeloma (FCRLB, QPCT, SLAMF7,
211 TNFRSF17, TNFSF13B; DR = 50%), non-Hodgkin lymphoma (BCL2, CXCL13, IL10, PDCD1, SCG3; DR =
212 55%) and motor neuron disease (including CST5, EGFLAM, NEFL, PODXL2 and TMED10; DR = 29%).
213 In sensitivity analyses we found that adding a larger set of proteins included in Olink’s Explore
214 Expansion panels (Supplementary appendix) did not generally improve model performance compared
215  tothefirstrelease of 1463 proteins (Figure S8, Table S4). However, improvements for selected diseases
216  were obtained by including a specific predictive biomarker (only captured in the Expansion panels),

217  such as TCN1 (a vitamin B12 binding protein) for vitamin B12 deficiency anaemia, KLK3 (prostate-
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218  specific antigen) for prostate cancer or, F10 (a coagulation factor that converts prothrombin into
219  thrombin) and PROS1 (an anticoagulant protein) for thrombophilia (Figure S8). Protein-based models
220  trained on 10-year incidence performed equally well when restricting the follow-up time to 5 years
221 (Pearson r = 0.96, Figure S9a), although patient information models appeared to have systematically

222 lower performances indices up to 5-years (Pearson r = 0.88, Figure S9b).

223

224 Discussion

225  We demonstrate the potential of sparse protein signatures to improve the prediction of disease onset
226 across common and rare diseases. By integrating ~3000 broad capture plasma proteins with EHRs, we
227 showed that for 52 of 218 diseases studied, adding proteins was the single best prediction model, not
228 only superior to commonly used patient characteristics, but also to a large array of biomarkers in
229 clinical use and PGS (where available). Broad-capture proteomic technologies offer for many diseases
230 new possibilities to address delays in diagnosis, the first blood-based biomarkers and the first evidence
231 of clinically useful prediction models compared to current practice (Table $11). Plasma proteomic

232 signatures may inform the need for, and design of, therapeutic clinical trials.

233  The wide spectrum of diseases that we studied enabled discovery of disease-proteomic signatures
234  with the strongest screening metrics. The proteomic signatures that we report have screening metrics
235  which were comparable to, or exceeded, those of blood tests currently used as diagnostic tests (for
236 other diseases). Previous studies in a small number of diseases have investigated the predictive”!'3
237  or prognostic®® potential of the circulating proteome. We found that for almost two-thirds (61%) of the
238 superior protein models, a positive test, i.e., a predicted risk above the risk cut-off, translated into a
239  four-fold increased risk of developing the disease compared to a negative one. Specifically, for 14
240  diseases, the LR achieved by protein-based models was higher than for a signature including prostate
241 specific antigen (KLK3) for prostate cancer, which is used in currently implemented screening
242 programs?®. Sparse protein signatures (5-20 proteins) offer the opportunity to assess a limited set of
243 proteins at a cost much below a discovery proteomic assay. The fact, that we identified strong

244 predictive signatures in the non-fasting UKB samples further suggested feasibility of measurement in

245 clinical practice.

246  We identified specific and strongly predictive proteins, pointing to underlying pathways conferring
247 disease risk. Here we show that up to 10 years prior to diagnosis, higher plasma levels of TNFRSF17
248  and TNFRSF13B, receptors for BAFF and APRIL, were strong, specific predictors of increased risk of
249 multiple myeloma and MGUS, respectively. These signalling pathways have been shown to promote

250 multiple myeloma growth?” %, In turn, decreased plasma TNFSF13B, was further shown to be
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251 predictive of higher risk for multiple myeloma. Anti-TNFRSF17 agents, including antibody-drug
252 conjugates (ADCs), T-cell engagers bispecific antibodies and cellular therapy with chimeric antigen

2933 (Clinical

253  receptor T cells (CAR-T), are approved for the treatment of refractory multiple myeloma
254  trials exploring earlier implementation have started providing evidence for the safety and effectiveness
255 of CAR-T cells in early lines of treatment®*. Our results demonstrated the potential for implementation
256 of proteomic screening, in a preventative manner even years before the onset of overt multiple
257 myeloma, to identify the subgroup of individuals at highest risk, and highlight the possibility to test
258  whether they represent those who would eventually benefit the most from anti-TNFRSF17 as earlier
259 lines of treatment. Pulmonary fibrosis may be delayed due to misdiagnosis of other common
260 respiratory or cardiovascular diseases®>. The proteomic signature should be evaluated to identify who
261 might benefit from enhanced surveillance through lung function tests and lung imaging, potentially
262 enabling early treatment to maximise preservation of lung function®®. For dilated cardiomyopathy,
263 proteomic signatures could be evaluated for their potential to inform ECG and echo surveillance in

264  people without a known genetic cause (up to 60% of cases®”3%).

265  We found proteins predictive across multiple diseases and clinical specialties, consistent with shared
266 aetiologies, including adaptations to ageing. Gastrin, for example, is well known for its role in
267 production of hydrochloric acid, gastric motility and associations with gastrointestinal cancers and
268 digestive system diseases®. However, our results highlighted associations with a wider range of
269 diseases, including vitamin deficiencies, osteoporosis, infections and acute kidney injury. Proof-of-
270  principle studies suggested that a single “omics” domain may predict risk of onset across multiple
271 diseases®. Therefore, our results point to the potential for leveraging pleiotropic proteins to develop

272 a customized, small signature for prediction across multiple diseases.

273 Our study has important limitations. Firstly, our results require validation in external studies, in
274  ethnically diverse populations and in cohorts with differing pre-test probabilities of disease (UKB has
275 a healthy participant effect*!). Secondly, although we report the largest proteomic experiment to date,
276 larger sample sizes are required to estimate detection rates for rarer diseases, and over shorter
277 clinically relevant time frames (e.g., 1-5 years). Thirdly, evaluations against clinical diagnostic markers
278 not available in UK Biobank are required including M-protein for multiple myeloma, and IgA/ 1gG
279 antibodies and anti-transglutaminase for coeliac disease. Fourthly, clinical translation will require
280 development and validation of absolute quantification protein assays as opposed to the relative

281 guantification provided by current proteomic platforms.

10
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282 In conclusion, we demonstrated that sparse plasma protein signatures when integrated with electronic
283 health records may offer novel, clinically useful prediction of common and rare diseases, through

284  disease-specific proteins and protein predictors shared across multiple diseases.

285
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Figure 1. Study design. This cohort study is based on a random subset of UKB-PPP individuals (N = 41,931). All
individuals were divided into training (including feature selection and optimisation steps) and validation sets to
develop sparse protein-based predictors (including 5-20 proteins from the Olink Explore 1536 + Expansion
panels) for 218 diseases defined using data from the UKB health-questionnaire, primary care, hospital episode
statistics, cancer and death registries. Performance of protein-signatures was compared to clinical models,
clinical biomarkers and genome-wide polygenic risk scores (PGS). Further details of methods are in the

(Supplementary Appendix).
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Figure 2. Improvement in predictive performance by addition of proteins onto basic patient risk factors for 67
incident diseases. a, Improvement in C-index by the addition of 5 — 20 proteins (coloured dots) over the
benchmark patient-information model (black dots). b, Comparison between detection rates (at a 10% false
positive rate) achieved by protein-based and patient-information model. ¢, Improvement in likelihood ratios by

the addition of 5 — 20 proteins (orange) over the benchmark clinical model (grey).
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Figure 3. Comparison of predictive performance between proteins-based (patient information + proteins) and
biomarker-based (patient information + biomarkers) models. a, Comparison of C-index by the addition of
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Figure 4. Disease specificity of predictor proteins. a, Number of disease groups for which a protein was selected
as a predictor across the 88 diseases. These were diseases for which the C-index was significantly improved or
improved by more than 0.4 over the patient information model. b, Average contribution of proteins across
diseases. Average weights (normalised to the top predictor) from the optimised prediction models for each
protein, across diseases for which it was selected as a predictor (out of the 88 improved diseases). ¢, Disease-
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specific proteins are shown as those selected for only one disease with a normalised weight > 0.6.
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Figure 5. Detection rate curves. Detection rates across different false positive rate thresholds for
selected examples identified as those most likely to benefit from proteomic prediction over patient
risk factors, clinical biomarkers and PGS. Coeliac disease (TGM2, NOS2, ITGB7, CD160, PPP1R14D,
RBP2, CCL25, MLN, FGF19, HMOX1, CEND1, MILR1, CDH2, CKMT1A_CKMT1B, CPA2, GTF2IRD1,
SEPTIN3, BCL2L15, FABP2, HSD17B14). Dilated Cardiomyopathy (HRC, TNNI3, TPBGL, NPPB,
NTproBNP). Other interstitial pulmonary disease with fibrosis (CA4, CEACAM6, GDF15, SFTPD and
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330 WFDC2). Multiple myeloma and malignant cell neoplasms (FCRLB, QPCT, SLAMF7, TNFRSF17,
331  TNFSF13B). Non-Hodgkin Lymphoma (BCL2, CXCL13, IL10, PDCD1, SCG3). Motor neuron disease (CST5,
332 EGFLAM, NEFL, PODXL2 and TMED10). Leiomyoma of uterus (BMP4, CDH3, CHRDL2, DNPEP, FGF23,
333  GFRAL, LEFTY2, PAEP, SEZ6L2, TSPAN1). Psoriasis (DEFB4A_DEFB4B, IL19, KCTDS5, PI3, PRKD2). Primary
334 pulmonary hypertension (NPPB, NTproBNP, ROBO2, ENPEP, FGFBP2, LTBP2, SFRP1, ACP5, SPON1,
335  CA4,SLC34A3, ACE2, AHSG, SERPINA7, SLC44A4, CDC123, SPINKS8, LYPLA2, S100A3, MFAP4). Primary
336 Malignancy Prostate (ADAMTS15, IL17A, INSL3, KLK3, LECT2, LTBP2, PRR5, SCARF2, SPINT3, TSPAN1).
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