Supplementary Material

Contents

Question Type	Questions N	GPT-3·5 Correct N (%)	GPT-4 Correct N (%)	Adj P Value GPT-3·5 vs GPT-4
All Questions	19	10 (52.6)	14 (73.7)	0.31
Order of thinking				
Higher	14	7 (50)	11 (78.6)	0.47
Lower	5	3 (60)	3 (60)	1

Supplementary Table 1: Performance of GPT-3.5 and GPT-4 on the EBN question samples cohort

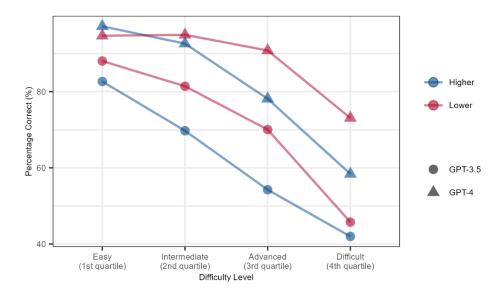
Chi-squared test was used to calculate p-values. P-values were adjusted for multiple testing using the *Bonferroni* correction.

Supplementary Figure 1: Example of a correctly, answered lower-order question and answers by GPT-3.5 and GPT-4

Figure 1: Example of a lower-order question, answer	ure 1: Example of a lower-order question, answered correctly		
Question	Explanation by GPT-4		
What kind of identification inability does	B: Familiar faces		
prosopagnosia reflect?	Prosopagnosia, also known as face blindness, is a		
	cognitive disorder that affects the ability to recognize		
A: Facial expression.	familiar faces, including one's own face (self-		
B: Familiar faces.	recognition). It does not affect a person's ability to		
C: Melody in language.	recognize and interpret facial expressions, sounds, or		
D: Non-musical sounds.	melodies. It is typically associated with damage to the		
E: Pitch of a melody.	right fusiform gyrus, a region of the brain that is		
	believed to be critical for face perception.		

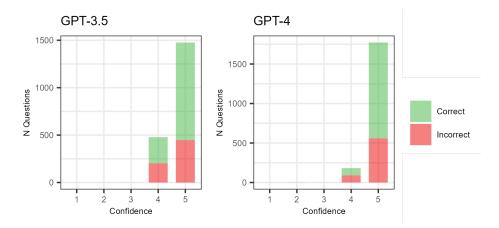
Supplementary Figure 2: Example of a correctly, answered higher-order question and answers by GPT-3.5 and GPT-4

Question	Explanation by GPT-4	
A 51-year-old male, with a history of herpetic shingles	A: Neuroborreliosis.	
in dermatomes T7-10 three years ago complains about	Neuroborreliosis is a complication of Lyme disease	
pain in the back side of his right leg. He mentioned that	(caused by the bacterium Borrelia burgdorferi), where	
there has been some red discoloration of the skin on	the bacteria infect the nervous system. The features o	
his right lower leg, but definitely no shingles. On	this case that suggest neuroborreliosis include the pair	
physical examination, he demonstrated normal tone	in the right leg, the lymphocytic pleocytosis and raised	
and full strength in all muscle groups bilaterally;	protein level in the cerebrospinal fluid, and the	
reflexes were normal apart from the knee-reflex being	evidence of intrathecal Ig-synthesis, which indicate	
somewhat decreased on the right; the adductor reflexes	an immune response within the central nervou	
were symmetric. MRI of the lumbal spine showed	system.	
degenerative disc disease at all lumbar levels, with	Postherpetic neuralgia is a complication of shingle	
slight bilateral foraminal stenosis at L3 and L4, but no	and would typically present with pain in the area of th	
herniated disc. Results of an electromyogram were	previous shingles rash, which does not appear to be th	
normal. His cerebrospinal fluid showed a	case here. Neurosarcoidosis, inflammator	
predominantly lymphocytic pleocytosis (110 cells/L),	plexopathy, and Wartenberg syndrome would likely	
a raised protein level (570mg/L) and intrathecal Ig-	present with different clinical and diagnostic findings	
synthesis. Which diagnosis most likely explains the	It's worth noting that Lyme disease is often associated	
clinical features of this patient?	with a characteristic "bull's-eye" rash (erythem	
	migrans), but it may not appear in all cases, and th	
A: Neuroborreliosis.	disease can still progress to neuroborreliosis without i	
B: Neurosarcoidosis.	Further diagnostic testing, such as serological tests for	
C: Inflammatory plexopathy.	antibodies against Borrelia burgdorferi, would b	
D: Postherpetic neuralgia.	needed to confirm the diagnosis.	
E: Wartenberg syndrome.		

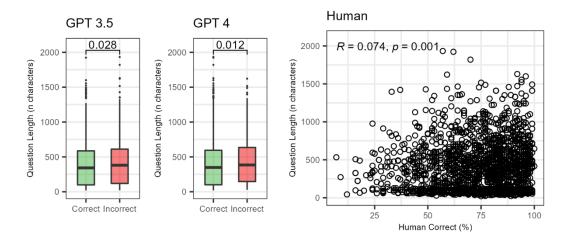

Supplementary Figure 3: Example of an incorrectly, answered lower-order question and answers by GPT-3.5 and GPT-4

Question	Explanation by GPT-4	
Which of the following symptoms is found with	B: Lancinating pain.	
increased frequency in patients with neuropathic pain	Lancinating pain is a symptom that is found with	
as compared with patients with nociceptive pain?	increased frequency in patients with neuropathic pain	
	as compared with patients with nociceptive pain. This	
A: Deep aching pain.	type of pain is characterized by the sudden, sharp,	
B: Lancinating pain.	electric shock-like sensation. The other options may	
C: Pain evoked by local pressure.	also be experienced by patients with neuropathic pain,	
D: Pain on exercise.	but they are not specific to this type of pain.	
E: Sensation of pins and needles.		

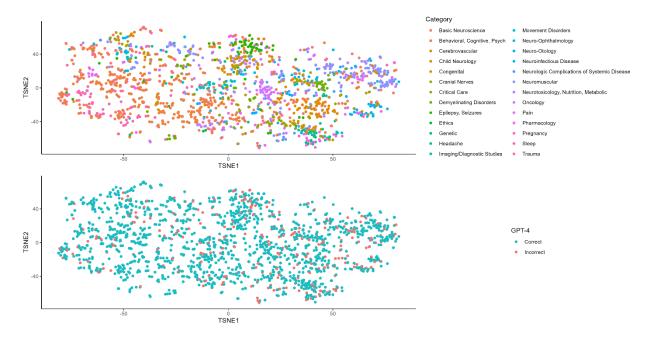
Supplementary Figure 4: Example of an incorrectly, answered higher-order question and answers by GPT-3.5 and GPT-4


Question	Explanation by GPT-4	
A 35-year-old male was involved in a minor car	B: Migrainous infarction.	
accident when returning home after a tennis match,	The term "migrainous infarction" describes a rare type	
and attended hospital because of not being aware of	of ischemic stroke that occurs during a migraine with	
objects on his left side. There was no head injury but	aura. Given this patient's history of severe, unilateral,	
nevertheless he felt a throbbing right occipital	pulsatile headaches with nausea and photophobia	
headache, with no other symptoms. On clinical	(typical features of migraines), and the current	
examination, two hours after the accident, there was a	presentation with headache and visual disturbance	
left hemianopia. Eye movements and pupillary	(hemianopia), migrainous infarction is a plausible	
function were normal. Blood pressure was 160/95	diagnosis.	
mmHg. No abnormalities were found on a cranial CT-		
scan. He reported previous attacks of severe unilateral	The onset of visual symptoms after a minor accident	
pulsatile headache with nausea and photophobia	could be coincidental, but it's also possible that the	
between the ages of 15 and 35 years. The frequency of	stress of the accident triggered a migraine attack. The	
headache was about once in 6 months, with a duration	normal CT-scan findings don't exclude migrainous	
of up to 24 hours. Which diagnosis applies best to this	infarction, as the changes associated with this	
case?	condition may not be visible on imaging, especially in	
	the early stages.	
A: Internal carotid artery stenosis.		
B: Migrainous infarction.	The other options (internal carotid artery stenosis,	
C: Reversible vasoconstriction syndrome.	reversible vasoconstriction syndrome, posterior	
D: Posterior reversible encephalopathy syndrome.	reversible encephalopathy syndrome, and vertebral	
E: Vertebral artery dissection.	artery dissection) could potentially cause similar	
	symptoms, but they don't align as closely with this	
	patient's history and presentation. For example,	
	vertebral artery dissection would typically cause	
	symptoms related to the posterior circulation, such as	
	vertigo, imbalance, or difficulty speaking or	
	swallowing, which this patient doesn't have.	

Supplementary Figure 5: Performance of GPT-3.5 and GPT-4 based on difficulty levels, with difficulty being assessed by the percentage of human users who answered correctly


Based on human user performance, questions are categorized into easy: 1st quartile, intermediate: 2nd quartile, advanced: 3rd quartile and difficult: 4th quartile questions. For each group of question, the percentage of correctly answered questions per LLM (symbol) and question type (color) is visualized.

Supplementary Figure 6: Confidence of language in correctly and incorrectly answered questions



Bar plot visualizing self-assessed confidence on a Likert scale by GPT-3.5 and GPT-4. Questions are colored based on whether they were answered correctly. (N=1956)

Supplementary Figure 7: Length of question between incorrectly and correctly answered questions between GPT 3.5, GPT 4 and question bank users separately, primary vs high-order question percentage

Left: Comparison of Question Length between correctly and incorrectly answered questions for GPT3.5 and GPT4 (N=1956 questions). Right: Correlation plot between the percentage of correctly answering users per question and the question length, one dot representing a single question. (N=1956).

Supplementary Figure 8: High-dimensional tSNE analyses of question and answer embeddings

T-SNE analysis of calculated embeddings of questions, each question represented by a single dot and colored based on their related topic.