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Abstract 

Circulating tumor (ctDNA) can be used for sensitive detection of minimal residual disease 

(MRD). However, the probability of detecting ctDNA at low tumor burden is limited by the 

number of mutations analyzed and available plasma volume. Here we applied a tumor-

informed WGS approach for ctDNA-based MRD detection (91% sensitivity, 92% specificity) 

and treatment response evaluation in 916 longitudinally collected plasma samples from 112 

patients with localized muscle-invasive bladder cancer. We show that WGS-based ctDNA 

detection is prognostic of patient outcomes with a median lead time of 131 days over 

radiographic imaging. We performed genomic characterization of post-treatment plasma 

samples to study tumor evolution and observed acquisition of the platinum therapy-associated 

mutational signatures and copy number variations not present in the primary tumors. Our 

results support the use of WGS for ultra-sensitive ctDNA detection, and highlight how tracking 

of tumor evolution using WGS of plasma samples opens opportunities to refine precision 

oncology. 
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Introduction 

Tumor cells release cell-free DNA (cfDNA) with tumor specific molecular alterations into 

circulation (circulating tumor DNA; ctDNA) mainly by cell death1. ctDNA is cleared from 

circulation through nuclease digestion, renal clearance, or uptake by the liver and spleen2–5. 

Furthermore, the ctDNA half-life is between 15 min and 2 hours6, making it possible to use 

ctDNA for tracking of tumor burden following surgery and through oncological treatment. 

Recent studies have shown that ctDNA is a powerful biomarker for detection of minimal 

residual disease (MRD) and relapse in multiple cancer types7,8 - including bladder cancer 

(BC)9. Globally, more than 570,000 patients are diagnosed with BC each year10. Curative 

intended radical cystectomy (RC) preceded by neoadjuvant chemotherapy (NAC) is the 

standard of care for localized muscle-invasive bladder cancer (MIBC). However, nearly half of 

patients will experience metastatic relapse mainly within the first 2 years after surgery, when 

considering all stages11. Therefore, reliable diagnostic and prognostic biomarkers with high 

sensitivity and specificity are needed to improve detection of MRD for earlier initiation of 

oncological treatment and potentially improve patient outcomes. Previous ctDNA studies in 

patients with BC have demonstrated that ctDNA can be detected on average 3 months prior 

to metastatic relapse detected by radiographic imaging9. In addition, ctDNA has been 

correlated to chemo- and immunotherapy response9,12,13. The low tumor fraction typically 

observed post surgery limits the probability of detecting ctDNA-based MRD. Tumor-informed 

ctDNA detection approaches have the highest sensitivity and specificity, however, it is also 

usually more labor intensive compared to non-tumor informed detection methods. 

Furthermore, the probability of detecting ctDNA is limited by the number of mutations 

analyzed, the available plasma volume and the depth of sequencing14. Recent studies have 

demonstrated the feasibility of WGS-based analysis and the joint utilization of mutations and 

copy number alterations allows for ultra-sensitive ctDNA detection15,16. In addition, WGS-

based analysis of ctDNA also facilitates characterization of tumor biology in a metastatic 

setting enabling tracking of tumor evolution including identification of acquired treatment 

targets during surveillance and oncological treatment17.  

Here we implemented and applied a WGS approach to monitor ctDNA for sensitive MRD 

detection and treatment response prediction in 112 patients with localized MIBC. Furthermore, 

we analyzed genome-wide alterations in tumor and plasma samples to investigate tumor 

evolution and treatment resistance.  
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Results 

Patient characteristics and WGS data generation 

A total of 112 patients with localized MIBC treated with NAC before RC were prospectively 

enrolled for liquid biopsy analysis between 2014 and 2021 at Aarhus University Hospital, 

Denmark (Extended Data Table 1). Plasma samples for ctDNA analysis were procured 

before, during and after NAC, and at scheduled control visits after RC (n = 916; Fig. 1a). 110 

of the patients underwent RC with a median follow-up time of 53.6 months after RC. We 

observed a recurrence rate of 24% (26/110), pathological downstaging to a non-invasive stage 

(≤pTa,CIS,N0) for 61% (67/110) and complete pathologic response (pCR, pT0/pTIS) for 58% 

(64/110). WGS of tumor- and matched PBMC DNA was performed at a mean genome 

coverage of 59 and 33 for formalin fixed paraffin embedded (FFPE) and tumor fresh frozen 

samples, respectively, and 31 for PBMC DNA. WGS of cfDNA from plasma (n=916) was 

performed at a mean genome coverage of 28. 

ctDNA detection by tumor-informed WGS models 

For ctDNA detection we developed patient-specific, tumor-informed WGS models by 

integrating genome-wide somatic alteration patterns coupled with advanced signal processing 

and AI-based error suppression (see materials and methods; Fig. 1b). These patient-specific 

models were applied to WGS data from plasma cfDNA. For initial validation of the robustness 

of the WGS ctDNA analysis pipeline, we compared ctDNA calls by analyzing technical 

replicates (tumor-, PBMC- and plasma DNA) performed independently in two different 

laboratories (USA, DK) using similar protocols  (Fig. 1c) including 166 plasma samples from 

18 patients. Of these, 52 samples had a tumor fraction above the detection threshold in one 

or both laboratory sites. A high correlation of estimated tumor fractions between laboratory 

sites was observed, with the coefficient of determination being R2=0.8 including all samples 

and R2=0.99 restricting to samples detected positive in both laboratory sites (red circles, Fig. 

1c). 

WGS-based ctDNA detection for prognosis and metastatic relapse   

The prognostic value of ctDNA was investigated using the 916 plasma samples collected 

during the disease courses of the 112 patients: i) at diagnosis prior to NAC (preNAC), ii) after 

NAC and before RC (preRC) and iii) during disease surveillance after RC (postRC; Fig. 2, 

Extended Data Fig. 1). Detection of ctDNA was highly prognostic of patient outcomes: at 

diagnosis before NAC (Recurrence-free survival [RFS]: HR=7.7, 95%CI=2.3-26.3, p=0.0001; 

overall survival [OS]: HR=9.2, 95%CI=2.7-31.5, p=0.0001), at preRC (RFS: HR=3.4, 

95%CI=1.5-7.8, p=0.0018; OS: HR=4, 95%CI=1.8-8.8, p=0.0003), and after RC (accumulated 
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ctDNA status up to 1 year after RC; RFS: HR=21.5, 95%CI=7.4-62.6, p<0.0001; OS: HR=29.1, 

95%CI=9.9-85.7, p<0.0001; RFS: Fig. 3b,e,h; OS: Fig. 3c,f,i). 

The presence of ctDNA after RC reflecting MRD showed the highest correlation to outcome. 

Using accumulated ctDNA status up to one year after cystectomy and relapse within 18 

months of the last plasma sample, resulted in a sensitivity of 91% and a specificity of 92% 

(Fig. 3g). Using the same criteria, pathological downstaging predicted metastatic relapse with 

a sensitivity of 83% and specificity of 77% (Data not shown). In 70% of patients with metastatic 

relapse (18/26), ctDNA was detected before clinical recurrence (radiographic imaging positive; 

Fig 2). Overall, the median lead time of ctDNA detection was 131 days (−106 to 1156, 

p<0.00001) over radiographic imaging for patients with detectable ctDNA after RC (full follow-

up included; Fig 4a).  

ctDNA detection for evaluation of treatment response 

ctDNA status preNAC and preRC was significantly associated with pathological downstaging 

(p=0.00001, p=0.018, Fig. 4b,c) and pCR (p=0.00001, p=0.038, data not shown). The ctDNA 

dynamics during NAC (ctDNA either remained detectable, was cleared during NAC or 

persisted ctDNA negative) was also a predictor of pathological downstaging (p<0.00001, Fig. 

4d). Pathological downstaging was per se a strong predictor of metastatic relapse with a 

recurrence rate of 2% (1/54) for downstaging and 40% (12/30) for non-downstaging patients 

(Fig. 4e,f). While the pathological evaluation of NAC response uses  local tumor response as 

a proxy of systemic response, ctDNA status preRC provides a measurement for local 

response and metastatic burden. Thus, we investigated ctDNA as a treatment response 

parameter for distant micrometastatic disease. The analysis was restricted to patients 

receiving a minimum of 3 NAC cycles to ensure adequate treatment (Fig. 4g). Patients 

remaining ctDNA negative throughout NAC (all negative, n=38) had a very favorable outcome 

with only one patient experiencing metastatic recurrence. For patients with ctDNA clearance 

during NAC, 19% (5/26) of patients recurred. Finally, patients who remained ctDNA positive 

during NAC, had an unfavorable outcome with a recurrence rate of 55% (5/9). Plasma ctDNA 

dynamics was furthermore strongly associated with RFS with particularly poor outcome for 

patients where ctDNA remained detectable (Fig. 4h). Alluvial plots showing ctDNA status 

during the disease courses are shown in Extended Data Fig. 2.  

ctDNA detection levels of different metastatic sites 

As the level of ctDNA detected after RC varied, we hypothesized that the tumor fraction could 

be related to the metastatic site. Interestingly, significantly lower tumor fractions were detected 

for patients with lung metastasis compared to all other metastatic sites (p=0.0087, Fig. 4i) as 
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well as compared to metastases from bone (p=0.003), kidney (p=0.002), liver (p=0.035) and 

pelvis (p=0.047) individually (Fig. 4j).  

Biological characterization of primary tumors by WGS analysis 

WGS analysis of the primary tumor for 112 patients revealed a median of 23,851 single-

nucleotide variants (SNVs) and 674 indels per tumor. An overview of selected genomic 

alterations from known bladder driver genes18 is shown in Fig. 5a. TP53, RB1, KMT2D, 

ARID1A and KDM6A were the most frequently mutated genes and 55% of tumors had a TERT 

promoter mutation (Fig. 5a). In total, 16 significantly mutated genes were identified using 

dndscv19, an algorithm based on the dN/dS ratio while correcting for trinucleotide mutation 

rates to look for signals of positive selection to identify cancer driver genes (Extended Data 

Table 2). Among the most significantly mutated genes, dndscv identified TP53, RB1, KDM6A 

and ARID1A, confirming a good correlation between both approaches (highlighted with 

asterisks in Fig. 5a). Whole-genome doubling (WGD) was identified in 51% of tumors (57/112) 

by separating tumors based on ploidy and the level of heterozygosity20,21(Extended Data Fig. 

3a). WGD has previously been associated with worse prognosis22; however, we observed no 

association of WGD and worse RFS or OS (Extended Data Fig. 3b,c).  

 

De novo extraction of single-base substitutions (SBS) signatures revealed eight mutational 

signatures in the profiled tumor genomes, of which seven were decomposed to the known 

SBS1, SBS2, SBS5, SBS13, SBS17a, SBS17b, and SBS92. APOBEC-induced mutagenesis 

was identified as the primary contributor to the mutational landscape of the tumors with median 

42% of SNVs per patient being attributed to SBS2 or SBS13 mutational contexts (Fig. 5a). 

The SBS92 signature was first identified in normal bladder tissue of smokers23 and has 

subsequently been attributed to tobacco smoking mutagenesis in BC using the PCAWG 

dataset24. Here, 45 tumors had SBS92-related mutations and we observed a significantly 

higher number of SBS92-related mutations in tumors from current smokers compared to 

tumors from former- and never smokers (p<0.0001; Fig. 5b). For current or former cigarette 

smokers, the number of mutations in the SBS92 context was not associated with the number 

of cigarette pack years (Fig. 5c). The SBS92 signature was also detected in plasma samples 

collected after RC for three patients with metastatic relapse (Fig. 6a). De novo extraction of 

small insertion-and-deletion (ID) signatures revealed 10 signatures of which seven were 

decomposed to the ID signatures previously observed in BC25 (ID1, ID2, ID3, ID4, ID5, ID8, 

ID9) and the remaining to the known ID14, ID15 and ID16 (Fig. 5a). ID1, ID3 and ID8 were 

identified as the primary contributors, each accounting for >15% of all observed indels. The 

ID3 signature has previously been associated with tobacco smoking25. Here, 66 tumors had 

ID3-related indels and we observed a significantly higher number of ID3-related indels in 
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tumors from current smokers compared to tumors from former- and never smokers (p=0.0004; 

Fig. 5d). Again, the number of indels in the ID3 context was not associated with the number 

of cigarette pack years (Fig. 5e). For current smokers, 90% (44/49) showed either SBS92- or 

ID3-related alterations and 51% (25/49) showed contribution from both signatures (Extended 

Data Fig. 3d). In comparison, only 28% (5/18) of never smokers showed contribution from 

either SBS92 or ID3, highlighting the divergent mutational landscape of tumors from smoking 

and non-smoking patients. No association between smoking status and number of SNVs or 

indels was observed (Extended Data Fig. 3e,f). 

 

Of interest, patient 5350 displayed a novel SBS signature characterized by T>A and T>C 

mutations (Extended Data Fig. 4a; referred to as SBSX), which was not present in the existing 

databases26,27 and could not be reconstructed by known signatures. The same mutations 

contributing to this context were identified in a plasma sample taken 379 days after RC as 

well, thus confirming the presence of the signature (Extended Data Fig. 4b,c). The tumor 

from patient 5350 is among the most mutated in the cohort (98,036 SNVs) and the novel 

signature contributed to 80% of the total mutational burden (Fig. 5a). A deeper inspection of 

its activity showed a strong transcriptional strand bias and enrichment in intergenic regions 

(Extended Data Fig. 4d). Similar patterns are observed for transcription coupled nucleotide 

excision repair (TC-NER) processes that are involved in UV and tobacco damage repair and 

may indicate that TC-NER is associated with this signature28,29. It is noteworthy that patient 

5350 was diagnosed with a primary neuroendocrine carcinoma accounting for <1% of all BC 

cases being an aggressive tumor associated with poor prognosis, and was treated for 

esophageal cancer seven years before the bladder tumor. 

 

We compared genomic variables to chemotherapy response evaluations. We found no 

significant association between response to NAC and number of SNVs, indels or WGD 

(Extended Data Fig. 3g-i). As previously observed30, we confirmed a significant association 

between SBS5 contribution and ERCC2 mutations (p<0.0001; Extended Data Fig. 3j). 

Although neither the level of SBS5-related mutations nor ERCC2 mutations were 

independently associated with response to NAC (Extended Data Fig. 3k,l), combining 

ERCC2 mutations and the level of SBS5-related mutations showed that 77% of patients with 

an ERCC2 mutation and/or high SBS5 contribution (above median) showed pathological 

downstaging after NAC, whereas patients with ERCC2 wildtype and/or low SBS5 contribution 

had a response rate of 56% (p=0.026; Fig. 5f).  
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Tumor evolution resolved from WGS-based ctDNA analysis 

WGS of cfDNA from plasma samples with high tumor fraction allows for characterization of  

tumor evolution31,32. In 38% of patients with metastatic relapse (10/26), the detected cfDNA 

tumor fraction was sufficient (>10%) to perform a post-treatment genomic characterization 

independently of their initial tumor biopsy. In total, we performed de novo somatic calling of 

variants for 15 plasma samples from those 10 patients. 

Six plasma samples from four patients (5408, 5113, 4119 and 4105; 40% of included plasma 

samples) showed contribution of the platinum therapy-associated mutational signatures 

SBS31 or SBS35 (Fig. 6a,b). Importantly, the two chemotherapy-induced mutational 

signatures were not observed in any of the primary tumors and were only observed when 

analyzing plasma-specific mutations. For all four patients, the SBS31/35 signatures were 

observed in plasma samples collected 239-571 days after initiation of NAC (plasma samples 

collected earlier in the disease course of the patients were not characterized due to too low 

tumor fraction). None of the four patients had a pathological response to NAC; however, the 

presence of chemotherapy-induced mutational signatures in the plasma samples may indicate  

clonal expansions after the gemcitabine/cisplatin treatment.  

 

The driver mutations identified in primary tumors remained mostly identical to the mutations 

observed in post-treatment plasma samples. New driver mutations were only detected for 

patient 5350 where predicted  driver mutations in ASXL2 and NFE2L2 were observed in the 

plasma sample collected 379 days after RC. ASXL2 is involved in chromatin remodeling and 

NFE2L2 is a transcription factor involved in the regulation of oxidative stress and inflammatory 

responses and mutations in these genes have previously been observed in BC33,34.  

 

Remarkably, we observed an evolution of the CNVs detected in post-treatment plasma 

samples compared to the primary tumor for all 10 patients, suggesting that the clone 

overcoming treatment differs from the sequenced part of the primary tumor (Fig. 6c). In the 

two analyzed plasma samples collected after RC for patient 4105 (one of the patients having 

chemotherapy-induced mutational signatures), we observed a focal amplification on 

chromosome 4 affecting the primary tumor driver variant FGFR3 p.S249C, and an increase in 

copy number on chromosomes 19q and 20 not detected in the primary tumor (Fig. 6d). In the 

plasma sample collected during NAC for patient 5408, newly acquired copy number gains on 

chromosomes 17, 19p and 22 were observed (Extended Data Fig. 5). Opposite to those large 

genomic changes, the three plasma samples collected after RC for patient 5113 were all highly 

representative of the primary tumor without minor recurrent acquired variations, indicating 

limited evolution after treatment (Fig. 6d). 
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Discussion 

We applied a WGS approach to monitor ctDNA for MRD detection in patients with localized 

MIBC, and documented the prognostic role of ctDNA at diagnosis, before RC and during 

surveillance. Our findings underline a role for ctDNA in guiding treatment decisions in BC in 

line with previous findings from other patient cohorts9,12,13,35,36. An important aspect of this 

WGS approach is its high sensitivity and specificity, which is comparable to other established 

tumor-informed tests applied in this setting, matched the ease of performing WGS without any 

need for designing personalized assays. ctDNA analysis using WGS may drive the field 

forward faster and facilitate a rapid generation of test results to establish clinical utility thus 

paving the way for novel trial designs. Prospective ctDNA WGS analysis for MRD detection 

seems very promising with low false negative rates, and may soon be implemented for 

informed selection of patients for adjuvant treatments. In line with this, ongoing clinical trials 

will demonstrate if early ctDNA-guided treatment in the adjuvant setting is beneficial compared 

to treatment initiation upon detection of metastatic relapse based on radiographic imaging37,38. 

In addition, this study also supports the rationale behind investigating the benefit of NAC 

administration for ctDNA negative patients, and whether  bladder sparing approaches can be 

applied based on ctDNA testing.  

We identified significantly lower tumor fractions for patients with lung metastasis compared to 

other metastatic sites, indicating a correlation between extent of detectable ctDNA and 

location of metastasis. These findings are in accordance with a recent study on metastatic 

colorectal cancer showing that patients with lung-only and peritoneum-only metastatic disease 

had significantly lower levels of ctDNA compared to other metastatic sites39, indicating a 

decreased detection sensitivity. Early detection of MRD using WGS approaches may result in  

improved detection in BC patients with lung metastasis. 

 

When exploring mutational signatures present in primary tumor biopsies, we identified the 

contribution of SBS92 to be associated with the smoking status of patients as previously 

observed in malignant and non-malignant bladder tissue23,24. SBS92 was recently identified in 

non-small cell lung cancer using deep WES (median of 413x)40; however, SBS92 has not 

previously been identified in exome-sequenced bladder tumors as the signature is mostly 

located in intergenic regions24. This highlights the importance of using WGS data to unravel 

the full genomic landscape of BC genomes. Patient 5350 displayed a novel signature, SBSX, 

which could not be reconstructed by known public databases of  signatures. Although the 

signature was only observed in a single patient, we found the same signature in a post-

treatment plasma sample as well, thus confirming that the signature is related to biology rather 

than being technically introduced. The identification of a novel signature contributing to 80% 
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of the total mutational burden for patient 5330 claims the need for an exploration of whether 

the signature is present in larger patient cohorts.  

 

Our WGS strategy for ctDNA-based MRD detection allows for direct genomic characterization 

of plasma cfDNA independently of the initial tumor biopsy. This approach holds huge potential 

for increasing our understanding of tumor evolution and treatment resistance mechanisms. 

First, metastatic tumor biology can be fully unraveled. It has been shown that ctDNA contains 

multiple subclones and that synchronous metastatic tissue biopsies only comprise a small 

fraction of the total ctDNA17. Analysis of plasma samples can thereby overcome tissue 

sampling bias leading to clonal illusion and underestimated heterogeneity to recapitulate the 

complete metastatic disease burden of the patients41. Second, tumor evolution and therapy-

induced shifts in selection pressure can be longitudinally tracked. Tumor biology evolves over 

time and during treatment pressure, underlining the importance of having a real-time snapshot 

of the current tumor biology when making treatment decisions in the metastatic setting. 

Analysis of plasma samples during and after treatment could thereby serve as a minimally-

invasive measure of treatment response (ctDNA clearance) and provide additional information 

of possible oncological treatment options.  

Here, we observed a contribution of the platinum therapy-associated mutational signatures 

SBS31 or SBS35 in six post-treatment plasma samples from four patients, indicating cisplatin 

mutagenesis and clonal expansions after NAC. Furthermore, in the post-treatment plasma 

samples for patient 4105, we observed an acquired focal amplification of the FGFR3 gene on 

chromosome 4, indicating that Erdafitinib, a pan-FGFR inhibitor approved as second-line 

treatment for patients with advanced BC42, could be a potential treatment option for this 

patient. These observations highlight how post-treatment tumor characterization using cfDNA 

provides information on the genomic changes acquired since the initial tumor biopsy, which 

could improve identification of therapeutic targets and provide information on possible 

treatment resistance at an early time point. A previous study performed deep WGS of plasma 

samples with high ctDNA fractions (17-82%) from patients with metastatic prostate cancer 

which, amongst several findings, revealed treatment-driven selection for androgen receptor 

augmentation17. Overall, the study highlighted how deep WGS of plasma samples is a superior 

approach to achieve high resolution of treatment-associated dynamics and resistance 

mechanisms compared to analyzing metastatic tissue biopsies. To build on our findings 

presented here, WGS analysis of metastatic tissue biopsies could be performed to study 

whether ctDNA comprises additional subclones and intra-patient heterogeneity not present in 

a single metastatic tissue biopsy. Furthermore, the sequencing depth of plasma samples with 

high ctDNA fractions could be increased to study clinically actionable gene mutations and 

treatment resistance mechanisms further. The sequencing depth of 20x is a limitation for 
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studying individual sites, and acquisition of new driver mutations was only observed for patient 

5350 (tumor fraction of 50%) in our current analysis of mutational driver events in post-

treatment plasma samples. Increasing the sequencing depth may also allow for biological 

characterization of plasma samples with a tumor fraction below the currently applied cut-off of 

10%.       

 

Our study highlights that WGS-based analysis of cfDNA allows ultra-sensitive ctDNA detection 

in patients with MIBC. ctDNA testing holds huge potential to change the current clinical 

management of patients with more individualized treatment and tracking of tumor evolution 

using WGS of cfDNA opens opportunities to refine precision oncology. 

 

Materials and methods  

Patients and clinical follow-up 

In total, 112 patients diagnosed with MIBC treated with NAC and RC were enrolled between 

2013 and 2021 at Aarhus University Hospital in Denmark. Detailed follow-up data were 

available for all patients with a median follow-up of 1841 days after RC (range: 139-2810) for 

patients without clinical relapse. Recurrence data were obtained from computed tomography 

scans (CT-scans, PET/CT scans) or pathology reports and survival data were obtained from 

the nationwide civil registry. pCR to NAC was defined as pT0/pTIS/N0 and non-invasive 

downstaging after NAC was defined as pT0/pTIS/Ta/N0. All patients provided informed written 

consent, and the study was approved by The National Committee on Health Research Ethics 

(#1302183). Study data were collected and managed using REDCap hosted at Aarhus 

University43,44. 

Biological samples 

Tumor samples were procured from transurethral resection of the bladder (TURBT) at the time 

of diagnosis (n=112). DNA was extracted from sections of Tissue-Tek O.C.T Compound 

embedded tissue or punches of formalin-fixed paraffin embedded tissue (FFPE) using 

Puregene DNA purification kit (Gentra Systems). Leukocyte DNA was extracted from the buffy 

coat from all patients using the QIAsymphony DSP DNA midi kit (QIAGEN). Cell-free DNA 

(cfDNA) was extracted from 2 mL of plasma using QIAamp Circulating Nucleic Acid Kit 

(QIAGEN, Hilden, Germany) and eluated in 60 µL buffer EB (QIAGEN). Blood samples were 

collected at scheduled clinical visits. The cfDNA percentile was estimated from TapeStation 

4200 (Agilent) by size window: (100bp – 500bp) using the Cell-free DNA ScreenTape assay. 

High molecular fragments >500bp as a measure of genomic DNA contamination served as 

exclusion criteria if >30%. Total cfDNA concentration was measured using ddPCR assays for 
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2 stable regions on chromosome 16 and chromosome 345. Automated Droplet Generator (Bio-

Rad) were used for Droplet generation, and readout was performed on a QX200™ Droplet 

Reader (Bio-Rad).  

Whole Genome Sequencing 

Libraries of tumor and matching germline DNA were prepared using the Twist Library 

preparation EF kit (Twist Bioscience) with an input of 200 ng DNA. The protocol utilizes 

enzymatic fragmentation; however, the fragmentation time was decreased to 6 minutes for the 

FFPE samples to account for degraded DNA. For buffy coat DNA and DNA from fresh frozen 

tumors, a 10 minutes fragmentation time was used. The protocol was optimized using the 

xGEN™ UDI-UMI Adapters (Integrated DNA Technologies) with 7 cycles of PCR post ligation. 

The UMI part was not sequenced as UMI correction is only beneficial for deep sequencing. 

Libraries of cfDNA from plasma were prepared using the KAPA HyperPrep kit (Roche) with 

the xGEN™ UDI-UMI Adapters (Integrated DNA Technologies) using cfDNA input equal to 1-

2 mL of plasma and 7 cycles of PCR post ligation. A minimum input of 5 ng was used. All 

libraries were paired-end sequenced (2x150 bp) on the NovaSeq 6000 platform (illumina) 

using S4 flow cells. Prior to sequencing all runs were calibrated on a MiSeq Nano (2x150 bp) 

to obtain even coverage. 

Preprocessing of WGS data and quality control analysis 

WGS reads for primary tumors, matched germline and plasma samples were demultiplexed 

using Illumina’s bcl2fastq to generate FASTQ files. The genetic concordance of FASTQ files 

from the same patient was confirmed using NGSCheckMate46. FASTQ files from all three 

sample types were trimmed with Skewer v0.2.247 to remove paired-end adapter sequences. 

Both the untrimmed and trimmed FASTQ files were run through FastQC v0.11.9 to identify 

potential problems in sequencing. The trimmed FASTQ files were aligned to the reference 

genome (GRCh38) with BWA MEM v 0.7.17. The resulting aligned bam files were sorted with 

Samtools v1.14. 

Each per-lane BAM file was marked for duplicate reads using GATK48 MarkDuplicatesSpark 

v.4.1.8.0 resulting in a duplicate-marked BAM that was passed for calculation and recalibration 

of the per-read base quality score using GATK BQSRPipelineSpark. Each recalibrated BAM 

file was indexed and re-sorted by read name using Samtools v1.11. GATK 

MarkDuplicatesSpark was used to merge all BAM files from the same sample. This process 

produced the final coordinate sorted BAM file for each sample. 

Alignment quality control metrics were computed on the BAM file using Picard ( 

QualityScoreDistribution, MeanQualityByCycle, CollectBaseDistributionByCycle, 
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CollectAlignmentSummaryMetrics, CollectInsertSizeMetrics, CollectGcBiasMetrics, 

CollectOxoGMetrics) and GATK (average coverage, percentage of mapped and duplicate 

reads). These metrics were used to identify potential problems in sequencing or 

preprocessing. 

Tumor/normal somatic mutation calling  

Each tumor and matched germline BAM files were analyzed using GATK Mutect2 v4.2.4.1 

and Strelka v2.9.1049 to identify putative somatic single nucleotide variants (SNVs). These 

SNVs were filtered using GATK FilterMutectCalls to retain PASS variants and remove 

variants corresponding to known single nucleotide polymorphism sites (dbSNP v138), as 

annotated by GATK VariantAnnotator. Only SNVs detected by both Mutect2 and Stelka were 

retained. Finally, a panel of sequenced donor plasma samples was used to remove 

artifactual SNV calls from the final SNV vcf file.  

Somatic INDELs were called by SVaba v1.1.3 and Mutect2 and the final list of INDELs 

comprised those detected by both methods. In cases where INDELs overlapped with a non-

exact match, the largest INDEL was selected. 

Copy number variations (CNVs) in solid tumors were called using FACETS v0.6.250. Base 

coverage and variant allele fraction (VAF) of heterozygous SNP positions of the tumor sample 

and paired germline sample were used as input to the method. The list of germline 

heterozygous SNP positions was calculated using BCFTools mpileup51  and a reference set 

of SNPs from the HapMap Project v3.352. The output was processed to revert all subclonal 

CNV calls to the nearest clonal CNV call. 

Estimation of tumor fraction in solid tumor and cfDNA 

Tumor fraction estimations in both solid tumor samples and plasma samples were estimated 

using the in-house method C2inform which constitutes the latest version of our previous 

described method15. C2inform uses the complete set of somatic mutations found in the solid 

tumor to generate a patient-specific tumor signature which is used, in combination with 

plasma heterozygous positions, to detect the tumor presence in cfDNA and estimate its 

tumor fraction. 

Biological characterization of tumor samples 

For the purpose of tumor characterization, an in-house filtering method was applied to remove 

low-quality mutations with features characteristic of FFPE-induced artifacts. VEP v107.053 was 

applied to the final list of SNVs and INDELs to determine the affected gene and functional 

impact. We queried all non-synonymous variants of the cohort against databases of cancer 
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driver genes (Intogen18 and cancer biomarkers CGI54) to identify the somatic mutations in 

genes of biological interest. 

Similarly, genes affected by CNVs were classified as biologically relevant if present in a list of 

candidate cancer genes created by manual annotation of scientific publications55,56. 

Sigprofiler v1.1.20 was used to extract SNV and INDEL signatures in a three-step workflow: 

(I) De-novo extraction of signatures. (II) Fitting of selected signatures from COSMIC v3.325 

and artifact signatures used for the detection of spurious deviations. (III) A final fitting using 

cancer-type exclusive signatures and the manual inclusion of select signatures determined 

from steps (I) and (II), that corresponds to the final set of signatures presented in the results. 

Whole genome doubling (WGD) status was determined by separating each sample based on 

ploidy and level of heterozygosity as previously described20,21, resulting in two separate 

clusters corresponding to near-diploid samples and samples with WGD. 

De novo detection of somatic alterations in plasma samples with high tumor fraction 

Plasma samples with a tumor fraction above 10% were selected for de-novo calling of SNVs 

and CNVs (See: Biological characterization of tumor samples). SNV and INDEL results from 

the plasma samples were compared with results from the solid tumor samples to determine 

shared, tumor-unique, and plasma-unique alterations.  

Statistical analysis 

Survival curves were compared using the Kaplan-Meier method (log rank tests). Hazard ratios 

(HR) and associated 95% confidence intervals (CI) were calculated using Cox regression 

analysis (R packages survminer v0.4.9 and survival v3.2.13). Kruskal Wallis test, Wilcoxon 

rank sum test, Fisher’s exact test and Pearson’s correlation coefficient  were used to 

determine statistically significant associations. Analysis was performed using the R statistical 

environment (v4.1.2).  

 

Data availability 

The raw sequencing data generated in this study are not publicly available as this 

compromises patient consent and ethics regulations in Denmark. Processed non-sensitive 

data are available upon request from the corresponding author. 
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Figure legends 

Fig. 1: Study design and analysis scheme 

a, the study design showing scheduled CT scanning (thorax- abdomen) and clinical sample 

collection. To exclude distant metastasis full body PET/CT scans were performed after 

diagnosis. Plasma samples up to 12-months post RC were analyzed in this study. b, patient 

specific signature analysis. WGS of tumor/germline pairs followed by genome-wide integration 

of somatic mutations, structural variation and copy number alterations enriched by signal 

processing and AI-based error suppression, were used to generate patient-specific tumor 

signatures (panel 1). The patient-specific tumor signatures were used for determining 

presence or absence of ctDNA in WGS data from plasma cfDNA (panel 2 and 3). c, 

reproducibility of the method was established through independent processing of the tumor, 

germline and blood samples at two different laboratories in Denmark and The United States. 

The comparison included 52 blood samples from 18 patients. Color key, red = detected at 

both laboratories, black = detected at one of the laboratories and white = tumor fraction below 

threshold at both laboratories. The coefficient of determination was R2=0.8 (all samples), and 

R2=0.99 (samples detected at both laboratories, red circles). 

Fig. 2: Longitudinal ctDNA results for all patients 

Horizontal lines represent the disease courses of the patients, and circles represent ctDNA 

status. Treatment and imaging information are indicated for each patient (see color key). 

Patients are ordered by decreasing overall survival for patients with and without disease 

relapse. Patients 4175 and 4250 were not able to undergo RC and time zero for these patients 

is the scheduled time for surgery. 

Fig. 3: ctDNA detection for prognosis assessment 

a, association between plasma ctDNA status before NAC and recurrence status within one 

year after RC including only patients with at least two years of follow-up after RC for non-

relapse patients. b, Kaplan-Meier survival analysis of RFS and plasma ctDNA status before 

NAC. c, Kaplan-Meier survival analysis of OS and plasma ctDNA status before NAC. d, 

Association between plasma ctDNA status before RC ( after NAC) and recurrence status 

within one year after RC including only patients with at least two years of follow-up after RC 

for non-relapse patients. e, Kaplan-Meier survival analysis of RFS and plasma ctDNA status 

before RC. f, Kaplan-Meier survival analysis of OS and plasma ctDNA status before RC. g, 

Association between accumulated plasma ctDNA status up to the one year post RC visit and 

recurrence status within 18 months after the last plasma sample was analyzed for ctDNA. Only 

non-relapse patients with at least 18 months of follow-up after the last plasma sample  were 

included. h, Kaplan-Meier survival analysis of RFS and accumulated plasma ctDNA status 
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after RC. i, Kaplan-Meier survival analysis of OS and accumulated plasma ctDNA status after 

RC. Hazard ratios (HR) and associated 95% confidence intervals (CI) and p-values are 

displayed on each Kaplan-Meier plot (cox regression analysis). A significant statistical 

difference between ctDNA status and recurrence was determined using Fisher’s exact test.  

Fig. 4: ctDNA measurements for detecting disease relapse and treatment response  

a, lead time in days between molecular recurrence (ctDNA positivity) and clinical recurrence 

(radiographic imaging positive). Statistical significance was calculated using paired Wilcoxon 

Rank test. b, Association between ctDNA status before NAC and pathological downstaging. 

c, Association between ctDNA status beforeRC and pathological downstaging. d, Association 

between ctDNA clearance after NAC and pathological downstaging. e, association between 

pathological downstaging and recurrence status within one year after RC for patients who 

received minimum 3 series of NAC. f, Kaplan-Meier survival analysis of RFS and pathological 

downstaging for patients that have received minimum 3 cycles of NAC. g, Association between 

ctDNA clearance after NAC and recurrence status within one year after RC for patients who 

received minimum 3 series of NAC. h, Kaplan-Meier survival analysis of RFS and ctDNA 

clearance after NAC for patients who received minimum 3 series of NAC. Hazard ratios (HR) 

and associated 95% confidence intervals (CI) and p-values are displayed on each Kaplan-

Meier plot (cox regression analysis). Significant statistical difference between categorical 

variables was determined using Fisher’s exact test. i, tumor fraction (TF) for metastatic lesions 

divided in 2 groups, lung metastatic sites and all other metastatic sites. j, TF stratified by all 

individual metastatic sites metastatic. Only post RC cfDNA TF were included and only TF>0 

was used.  

Fig. 5: Genomic characterization of primary tumors 

a, Genomic landscape of 112 primary tumors showing the mutational load including the 

number of single-nucleotide variants and indels, alterations in bladder cancer driver genes 

having a mutation frequency above 10% in the cohort, whole-genome doubling (WGD) status, 

contribution of single base substitution (SBS) signatures,  contribution of small insertions and 

deletions (ID) signatures and clinical variables. Asterisks indicate genes significantly mutated 

in the cohort as defined by the dndscv algorithm. b, Number of mutations in the SBS92 context 

according to smoking status of the patients. c, Number of mutations in the SBS92 context 

versus the number of smoking pack years for current and former smokers. d, Number of small 

insertions and deletions in the ID3 context according to smoking status of the patients. e, 

Number of small insertions and deletions in the ID3 context versus the number of smoking 

pack years for current and former smokers. f, Association between pathological response to 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.13.23292590doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.13.23292590


17 

neoadjuvant chemotherapy (NAC) and the combination of ERCC2 mutational status and SBS5 

contribution (above or below the median SBS5 contribution). 

 

Fig. 6: Genomic evolution of bladder cancer delineated by ctDNA analysis 

a, Relative contribution of fitted bladder signatures in plasma samples with a tumor fraction 

above 10% per patient. Each patient is represented by 3 bars which are the signature activity 

corresponding to: (left) mutations present only in the primary tumor, (right) mutations present 

exclusively in the ctDNA, and (middle) mutations present both in primary tumor and ctDNA. b, 

Same representation of the bladder mutational signatures but normalizing by the total number 

of SNVs per sample. c, The percentage of the genome that has changed its copy number 

compared with the initial primary tumor sample for all plasma samples with a tumor fraction 

above 10%. d, Examples of changes in copy numbers comparing primary (top row) versus 

ctDNA (following rows) for patient 4105 and 5113. 
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