
Appendix

The Pearson-Aitken Family Genetic Risk Score (PA-FGRS) is a novel estimator for the expected genetic

liability to disease carried by a proband given the pattern of diseases in an arbitrarily structured

pedigree of relatives that may be only partially observed. This estimator is derived under a modified

version of the liability threshold model for disease 1. The method first estimates an initial liability for

each relative and then uses the Pearson-Aitken selection formula to sequentially update the

expected liability in the proband conditional on each relative.1,2

First, as outlined in the main text, we assume that a disease is defined as:𝐷
𝑖

Where such that the prevalence in the population is given by the cumulative𝐿 ∼  𝑁(0, 1) 𝐾
𝑝𝑜𝑝

distribution function of the standard normal distribution .𝐾
𝑝𝑜𝑝

= 1 − Φ(𝑇)

However, if the disease has age of onset later than at birth, the observed disease status can be𝑌
𝑖

different from (i.e. ), when an individual has only been observed for a fraction of the risk𝐷
𝑖

𝑌 ≤ 𝐷

window. We can express this as:

(Eq. S1)

Where is the prevalence of the disease at age of individual and is the population lifetime𝐾
𝑖

𝑖 𝐾
𝑝𝑜𝑝

prevalence of the disease. Our aim is to estimate the expected liability of an individual given the

observed disease status of a number of relatives and their age at the end of follow-up.

Covariance matrix of liabilities

For an individual with relatives, we assume that the covariance matrix ) of the random vector𝑝 𝑛 (Σ

of liabilities, , is given by the heritability of the phenotype ( ) and the ( +2𝐿 = 𝐿
1
,  ...  ,  𝐿

𝑛
,  𝐿

𝑝
, 𝐺

𝑝[ ]𝑇 ℎ2 𝑛

by +2) genetic relatedness matrix, , such that: 𝑛 𝑟
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Conditional liability distribution:

Let and denote the expected mean vector and variance covariance matrix of conditional onµ𝑖* Ω𝑖* 𝐿

disease status of relatives . Such that:1,  ...,  𝑖

µ
𝑗
𝑖* = 𝐸(𝐿

𝑗
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1
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, Σ)

Ω
𝑗,𝑘
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The algorithm we use to estimate genetic liability works by conditioning on each of the relatives in

turn. We start by setting the and . Below we derive the necessary steps forµ0* = [ 0,..., 0]
𝑇

Ω0* = Σ

estimating the conditional liabilities.

We assume that the posterior liability of the ith individual is a mixture of two truncated normal

distributions:

𝐿
𝑖
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,..., 𝑌
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𝑖
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𝑖
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𝑖
(𝑖−1)*, Ω
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(Eq. S2)

where denotes a truncated normal normal distribution with left-truncation at andψ(µ , σ , 𝑎, 𝑏) 𝑎

right-truncation at .𝑏
Note that while this (Eq. S2) is strictly true for , it is only an approximation for , since the𝑖 = 1 𝑖 > 1
conditional distributions are no longer exactly Gaussian. 3 However, unless the disease is rare and the

off-diagonal elements of are high (which will only occur for high in MZ-twins3) the deviationΣ ℎ2

from normality is minor. We refer to this assumption as conditional normality.

Deriving the mixture parameter

The mixture parameter is given by the probability of being a case conditional on observed diseaseπ
𝑖

status of relatives 1 to i: = . In the case of weπ
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From our assumption that depends only on and (Eq.S1), it follows that𝑃(𝑌
𝑖

= 1|𝐷
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We can use this and the law of total probability to split up the denominator:
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assuming conditional normality we can replace the probabilities with the cumulative distribution

function of the normal distribution:
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Expected liability conditional on disease status

Having derived the mixture parameter ( ), we can obtain the expected value conditional onπ
𝑖

𝐿
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and as the expected value of the mixture distribution:𝑌
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assuming conditional normality, and inserting the expected value of a truncated normal, this can be

approximated by:
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Expected variance conditional on disease status



The expected variance of conditional on and is obtained as the expected variance𝐿
𝑖
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Expected liability conditional on disease status of relatives

To obtain the conditional expectation and variance of the other liabilities, we use the Pearson-Aitken
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Example

For an individual (3) with two family members (1 and 2) of which one is affected and the(𝑌
1

= 1) 

other is unaffected we can calculate the expected liability of individual 3,(𝑌
2

= 0)

by the following procedure:𝐸(𝐺
3
|𝑌

1
= 1, 𝑌

2
= 0, 𝐾

1
,  𝐾

2
, 𝐾

𝑝𝑜𝑝
, Σ),

We start by setting the vector of liabilities,

µ0* =  [ 𝐸(𝐿
1
), 𝐸(𝐿

2
), 𝐸(𝐺

3
)]𝑇 = [ 0, 0, 0]

𝑇

with covariance matrix

Next, we obtain the expected liability of relative 1, conditional on that individual being a case,
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Now we update the vector of liabilities (Eq.S6):
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And the covariance matrix (Eq.S7):
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Having obtained the estimated liability conditional on the status of the first relative, we now

condition on the status of the second relative, to estimate and .µ2* Ω2*

First, the expected liability of relative 2 is:
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(Eq.S3):
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the conditional variance of the liability of relative 2 is:
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Again we update the vector of liabilities (Eq.S6):
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And the covariance matrix (Eq.S7):
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