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Definitions:

𝐺 random variable of true genetic liability of the probands

𝐿 random variable of true total liability of the probands

𝐺
^

𝑃𝐴−𝐹𝐺𝑅𝑆
random variable of estimated genetic liability. Estimated from phenotypes in
relatives.

𝐺
^

𝑃𝐺𝑆
random variable of estimated genetic liability. Estimated from genotypes.

ℎ
𝑙
2 heritability on the liability scale.

𝐾
𝑝𝑜𝑝

prevalence of the disease in the population

t liability threshold

𝐠 vector of of true genetic liabilities of the probands

𝐋 an x matrix with the liabilities of the relatives of each of the m probands(𝑚   𝑛) 𝑛

𝐃 an x matrix with the disease status of the relatives of each of the m(𝑚   𝑛) 𝑛

probands

(i.e. 𝑑
𝑖𝑗

=  1 ,  𝑙
𝑖𝑗

 >  𝑡 ;  0 ,  𝑙
𝑖𝑗

 <  𝑡  )

𝐑 an x genetic relatedness matrix.(𝑚 𝑚) 

𝐏 an x phenotypic covariance matrix of the relatives.(𝑛 − 1 𝑛 − 1) 

𝑝
𝑖𝑗

= 𝙲𝚘𝚟(𝑑
,𝑖
, 𝑑

,𝑗
) { ρ,  𝑖 ≠ 𝑗 ; 𝐾(1 − 𝐾), 𝑖 = 𝑗   

𝐜 an ( ) vector denoting the covariance between the genetic value of the𝑛 − 1

proband and the liability of each of relatives (i.e. )𝑛 − 1 𝑐
𝑖

= 𝙲𝚘𝚟(𝐠, 𝐋
,𝑖
)
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S.1 A note on liability transformations of variance explained

In order to model expectations and compare magnitudes across instruments and studies,

genetic effects must be estimated accurately and on an objective scale. In human genetics, this

means reporting effects on the liability scale37,38, typically by mathematical transformations of effects

estimated on other scales (e.g., from linear or logistic regression)38. These common transformations

are based on assumptions of one-stage case-control sampling (i.e., complete ascertainment) and

well-behaved (e.g., Gaussian, exogenous error) genetic instruments like PGS, but have not been

shown to be valid under two-stage case-control sampling typical in molecular genetics studies (e.g.,

sampling unrelated cases; akin to observing relatives conditional on their relationship to an affected

proband as common in twin register studies39) and less well-behaved (i.e., non-Gaussian,

endogenous error) genetic instruments (e.g., FH, PA-FGRS). In Supplementary Figure S1, we

observed qualitatively different estimates of variance explained by our instruments, depending on

transformation. In our simulations (described in detail below) we observe that proposed

transformations of variance explained by a linear model (observed scale) to the liability scale are

biased for FH and PA-FGRS, but not for PGS (Supplementary Figures 2A-C; Supplementary Table S3).

This resulted in overestimating the variance explained by more than 500% in some scenarios and

produced bias in all scenarios where the trait prevalence was less than 50% (Supplementary Figures

2A-C; Supplementary Table S3). Directly estimating variance explained on the liability scale using a

weighted probit regression as described by Lee et al38 reduced this bias under population sampling

(Supplementary Figures 2D; Supplementary Table S3) and complete case-control sampling

(Supplementary Figures 2E; Supplementary Table S3), but introduced a downward bias of nearly 40%

when unrelated case-control sampling was applied (Supplementary Figures 2F; Supplementary Table

S3). A weighted probit regression with two-stage sampling weights to account for this second

selection, namely, removing all but one member of a relative cluster, produces the most reliable

estimates of variance explained on the liability scale, but could not eliminate completely small

downward bias (5–15%) for rarer traits (Supplementary Figures 2G-I; Supplementary Table S3).

Estimating objective, liability scale variance components when sampling is complex (i.e., multi-stage)

and instruments are not well-behaved (e.g., FH, PA-FGRS, or other liability scores) is difficult and

direct approaches incorporating appropriate sampling weights producing the most reliable estimates.

Lee et al.1 proposed several ways to estimate liability variance explained ( ) including a𝑅
𝑙
2

transformation of the variance explained in a linear regression onto the liability scale, , given𝑅
𝑜𝑏𝑠
2 𝑅

𝑙
𝑐𝑐

2

the population prevalence of the trait and case sampling proportion. Briefly, Dempster and Lerner4

showed that for population studies, where the proportion of cases, , corresponds to the 𝑤

https://paperpile.com/c/NezWve/Wmqq+X2osy
https://paperpile.com/c/NezWve/X2osy
https://paperpile.com/c/NezWve/AcRw
https://paperpile.com/c/NezWve/X2osy
https://paperpile.com/c/04Tfpk/yEfmI
https://paperpile.com/c/04Tfpk/g7p4
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prevalence, , can be estimated as where is the density of the standard𝐾 𝑅
𝑙
2 𝑅

𝑙
2 = 𝑅

𝑜𝑏𝑠
2 𝐾(1−𝐾)

ϕ 𝑡( )2 ,  ϕ 𝑡( )

normal distribution af the threshold, . Lee et al.1 proposed an extension for case control studies (𝑡

), such that:𝑤 > 𝐾

, (Eq. S1)𝑅
𝑙

𝑐𝑐

2 =
𝑅

𝑜𝑏𝑠
2 𝐶

1+𝑅
𝑜𝑏𝑠
2 θ𝐶

where and𝐶 = 𝐾(1−𝐾)

ϕ 𝑡( )2
𝐾(1−𝐾)
𝑤(1−𝑤) θ = ϕ 𝑡( )(𝑤−𝐾)

𝐾(1−𝐾)
ϕ 𝑡( )(𝑤−𝐾)

𝐾(1−𝐾) − 𝑡( )

Alternatively, they proposed that can be estimated using a weighted probit model with the𝑅
𝑙
2

weights for cases and 1 for controls. To see this, let denote an indicator variable of being in
𝐾(1−𝑤)
𝑤(1−𝐾) 𝑆

the case control set, denote the case status, is the proportion of cases in the study, and the𝑌 𝑤 𝐾

prevalence in the population.

By Bayes theorem we have:

𝑃(𝑆 = 1|𝑌 = 0) = 𝑃(𝑌=0|𝑆=1)𝑃(𝑆=1)
𝑃(𝑌=0) = (1−𝑤)𝑃(𝑆=1)

1−𝐾  

and similarly,

𝑃(𝑆 = 1|𝑌 = 1) = 𝑃(𝑌=1|𝑆=1)𝑃(𝑆=1)
𝑃(𝑌=1) = 𝑤𝑃(𝑆=1)

𝐾  

Thus the ratio between and is: 𝑃(𝑆 = 1|𝑌 = 1) 𝑃(𝑆 = 1|𝑌 = 0)

𝑃(𝑆=1|𝑌=1)
𝑃(𝑆=1|𝑌=0) = 𝑤(1−𝐾)

𝐾(1−𝑤)

rearranging gives us:

(Eq. S2)𝑃(𝑆 = 1|𝑌 = 1) = 𝑤(1−𝐾)
𝐾(1−𝑤) 𝑃(𝑆 = 1|𝑌 = 0)

Lee et al.1 used simulated data to show this was robust when the predictor was a Polygenic Score

(PGS), however, the equations were not validated for phenotype-based genetic instruments such as

family history indicators (FH) or family genetic risk scores (FGRS), which can have very different

distributional properties.

https://paperpile.com/c/04Tfpk/yEfmI
https://paperpile.com/c/04Tfpk/yEfmI
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In Supplementary Figure S1, we show how the choice of model and scale-transformation impacts on

our real results such that the estimated and transformed variance in liability are not consistent across

models, particularly for the FH and PA-FGRS estimates. This is critical because, e.g., the

transformation of the Pearson correlation used by Hujoel et al.2 and Lee et al1 can provide

nonsensical values ( ) if applied when .𝑅
𝑙
2 > 1 𝑅

𝑜𝑏𝑠
2 > ϕ 𝑡( )2

𝐾 1−𝐾( )

An additional issue that can arise then estimating is if relatives have been excluded from a case𝑅
𝑙
2

control study. To see this, we can can introduce a second selection which forms a subset of (i.e.𝑆
2

𝑆

). If is independent of both outcome and predictors, it can be ignored, but in𝑃(𝑆
2,𝑖

= 0|𝑆
𝑖

= 0) 𝑆
2

other cases, including the case of ‘relative pruning’ to obtain a case control study of unrelated

individuals, it may impact on our estimate of variance explained. For this we introduce a second set

of weights. Let denote that the ith individual has a relative in , and that only one relative per𝑍
𝑖

= 1 𝑆

family is included in , the the conditional probability of being sampled in if sampled in is:𝑆
2

𝑆
2

𝑆

𝑃(𝑆
2,𝑖

= 1|𝑆
𝑖

= 1, 𝑍
𝑖

= 1) = 𝑖

𝑛

∑𝑆
2𝑖

𝑍
𝑖

𝑖

𝑛

∑𝑍
𝑖

 = µ
(𝑆

2
,𝑍=1)

and

(Eq.S3)𝑃(𝑆
2,𝑖

= 1|𝑆
𝑖

= 1,  𝑍
𝑖

= 0) = 1 

thus our two stage weights are the inverse of product of the case control probabilities (Eq S2), and

the relatedness probabilities (Eq.S3):

(Eq.S4)

To investigate the properties of the two transformation approaches suggested by Lee et al1 and our

two-stage weighting, when estimating for PA-FGRS, FH and PGS, we performed a simulation𝑅
𝑙
2

https://paperpile.com/c/04Tfpk/5LLqy
https://paperpile.com/c/04Tfpk/yEfmI
https://paperpile.com/c/04Tfpk/yEfmI
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experiment. First, we simulated a simplified population consisting of 500,000 families each with

three children and two parents. For each family, the liabilities were drawn from a multivariate normal

distribution, , where𝑀𝑉𝑁([0, 0, 0, 0, 0]𝑇, Σ
𝑙
)

We defined cases if and controls otherwise, where . We𝐿
𝑖
= 𝐺

𝑖
+ 𝑒

𝑖
>  𝑡 𝑡 =  Φ−1(1 − 𝐾)

investigated three different scenarios: (1) an unrelated population sample where we

randomly selected one child from each family (e.g. 5K cases and 495K controls if K=0.01), (2)

a complete case-control sample where we sampled all the cases and the same number of

controls (e.g. 15K cases and 15K controls for K=0.01), or (3) an unrelated case control sample

where only one child was retained from each family (e.g. ~14K cases and ~15K controls for

K=0.01). We computed FH variables and PA-FGRS (see Online Methods and below) from the

case status of the four relatives and we generated PGS-like predictor generated as the sum

of the true genetic value noise sampled from where:𝑀𝑉𝑁([0, 0, 0, 0, 0]𝑇, Σ
ϵ
)

We then compared the true to the estimated and transformed using the transformations (𝑅
𝑙
2  𝑅

𝑙
2̂  𝑅

𝑙
𝑐𝑐

2

and ) mentioned by Lee et al.1 , and our proposed two-stage weighted extension 𝑅
𝑙

𝑝𝑟𝑜𝑏𝑖𝑡

2  𝑅
𝑙

𝑝𝑟𝑜𝑏𝑖𝑡,2𝑠𝑡𝑎𝑔𝑒

2 .

This was repeated for four classes of traits and 10 times for each set of parameters. The mean and

https://paperpile.com/c/04Tfpk/yEfmI
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standard error of the estimates are reported in Supplementary Figure S2 and Supplementary Table

S4.

S.2 Defining accuracy, reliability, and performance

We use the term accuracy to refer the correlation between an estimated genetic value, , and the𝐺
^

true genetic value, , and reliability to refer to the square of the accuracy.𝐺

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝚌𝚘𝚛𝚛 𝐺
^
, 𝐺( )

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝚌𝚘𝚛𝚛 𝐺
^
, 𝐺( )

2

We define the performance to be the liability variance explained, , or the squared correlation𝑅
𝑙
2

between the total liability, , and the estimated genetic value which we can write as :𝐿

𝑅
𝑙
2 = 𝚌𝚘𝚛𝚛 𝐺

^
, 𝐿( )

2
= 𝙲𝚘𝚟 𝐺

^
,𝐿( )

2

𝚅𝚊𝚛 𝐺
^( )𝚅𝚊𝚛 𝐿( )

= 𝙲𝚘𝚟 𝐺
^
,𝐺( )

2

𝚅𝚊𝚛 𝐺
^( )

= 𝚌𝚘𝚛𝚛 𝐺
^
, 𝐺( )

2
𝚅𝚊𝚛 𝐺( ) = 𝚌𝚘𝚛𝚛 𝐺

^
, 𝐺( )

2
ℎ

𝑙
2

This reminds us that the liability scale heritability, , and the reliability of our genetic value estimateℎ
𝑙
2

will, under an additive polygenic liability model, describe the asymptote for , which will be equal𝑅
𝑙
2

to when there is no error in (i.e., ). While can be obtained for monogenic traitsℎ
𝑙
2 𝐺

^
𝐺
^

= 𝐺 𝑅
𝑙
2 = ℎ

𝑙
2

and from phenotype information on an identical twins for perfectly heritable phenotypes, is only aℎ
𝑙
2̂

theoretical limit of the maximal achievable value of and, as we show, is typically unachievable in𝑅
𝑙
2

practice. In this paper we do not consider the performance of binary classifiers based on the PGS or

FGRS (such as sensitivity, specificity, or AUC), but note that these are expected to improve

monotonically with accuracy5.

S.3 The accuracy of PA-FGRS

The expected accuracy of PA-FGRS has not previously been described. However, estimated breeding

values (EBV)6 for quantitative traits, i.e., linear combinations of phenotypes of proband relatives, are

well studied in animal breeding and can be thought of as achieving the same goal as PA-FGRS in the

hypothetical scenario where latent liability was directly observable. We can find guidance by

https://paperpile.com/c/04Tfpk/URzau
https://paperpile.com/c/04Tfpk/OWetD
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considering as the residual phenotypic value of the th relative of individual after(𝑦
𝑖𝑗

− µ
𝑖𝑗

) 𝑗 𝑖

subtraction of fixed effects ( ) and define a simple EBV as the weighted sum,µ
𝑖𝑗

𝐺
^

𝑖,𝐸𝐵𝑉
=  𝑏

1,𝐸𝐵𝑉
(𝑦

𝑖1
− µ

𝑖1
) +  ···  + 𝑏

𝑛,𝐸𝐵𝑉
(𝑦

𝑖𝑛
− µ

𝑖𝑛
)

Where are the weights of the measurement on the th relative, defined as𝑏
𝑗,𝐸𝐵𝑉

𝑗

. For simplicity, we can consider the expected𝑏
𝐸𝐵𝑉

 = 𝙲𝚘𝚟(𝑦
1
, ···, 𝑦

𝑛
)−1𝙲𝚘𝚟([𝑦

1
,  ···,  𝑦

𝑛
], 𝑦

𝑖
)

accuracy of when all relatives are equally related to the index person and to each other, e.g.,𝐺
^

𝑖,𝐸𝐵𝑉

when considering a large sibship (See Hazel 19416, equation 16) the expected accuracy of this :𝐺
^

𝐸𝐵𝑉

(Eq. S5)𝚌𝚘𝚛𝚛 𝐺
𝐸𝐵𝑉

^
, 𝐺( ) =

𝑛
𝑟𝑒𝑙

𝑟
𝑝𝑟
2

1

ℎ2 + 𝑛
𝑟𝑒𝑙

−1( )𝑟
𝑟𝑟( )

For PA-FGRS, which is a non-linear combination of binary traits observed in relatives, we

need a new equation, and what we are looking for is an estimate of:

(Eq. S6)𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐴−𝐹𝐺𝑅𝑆
, 𝐺( ) =

𝙲𝚘𝚟 𝐺
^

𝑃𝐴−𝐹𝐺𝑅𝑆
,𝐺( )

𝚅𝚊𝚛 𝐺
^

𝑃𝐴−𝐹𝐺𝑅𝑆( )𝚅𝚊𝚛 𝐺( )
=

𝙲𝚘𝚟 𝐺
^

𝑃𝐴−𝐹𝐺𝑅𝑆
,𝐺( )

𝚅𝚊𝚛 𝐺
^

𝑃𝐴−𝐹𝐺𝑅𝑆( )ℎ
𝑙
2

Under the simple polygenic liability threshold model, we have a vector of of true genetic liabilities of

the probands, , an x matrix with the liabilities of the relatives of each of the m probands𝐠 (𝑚   𝑛) 𝐋 𝑛

and a corresponding x matrix with the disease status of the relatives (i.e.(𝑚   𝑛)  𝐃

. The covariance among the liabilities of the relatives is given by 𝑑
𝑖𝑗

=  1 ,  𝑙
𝑖𝑗

 >  𝑡 ;  0 ,  𝑙
𝑖𝑗

 <  𝑡  )

, where is the relatedness coefficient for th and the𝙲𝚘𝚟(𝐋
,𝑖
, 𝐋

,𝑗
) =    { 𝑟

𝑖𝑗
ℎ

𝑙
2,  𝑖 ≠ 𝑗 ;  1,  𝑖 = 𝑗  𝑟

𝑖𝑗
𝑖 𝑗

the relative and , and the covariance between the liabilities of the relatives and theℎ2 = 𝚅𝚊𝚛 𝐺( )

genetic liability of the proband is given by , where is relatedness𝙲𝚘𝚟(𝐋
,𝑖
, 𝐠)  =   𝑟

𝑝𝑖
ℎ

𝑙
2;  𝑖 ≠ 𝑝  𝑟

𝑝𝑖

coefficient for th relative and the proband ( ).𝑖 𝑝

We could propose a simple linear predictor of from the observed diseases in relatives.𝐠

That could be , where , in which and𝐺
^

𝑙𝑖𝑛𝑒𝑎𝑟
= 𝐃𝐛 𝐛 = 𝐏−1𝐜 𝐏

𝑖𝑗
= 𝙲𝚘𝚟(𝐷

𝑖
, 𝐷

𝑗
)

https://paperpile.com/c/04Tfpk/OWetD
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. When, as following the intuition in equation Eq. S5, all relatives are𝐜
𝑖

= 𝙲𝚘𝚟(𝐺
𝑝
, 𝐷

𝑖
) = ℎ

𝑙
2 𝑟

𝑝𝑖
ϕ(𝑡) 

equally related to the index person, and equally related to each other, (i.e. is constant) then we can𝐛

define a random variable ’ , where is the unit 1-vector of size , such that is a𝐷‾ = 1
𝑛 𝐃 𝟏 𝟏 𝑛 𝐷‾

vector with corresponds to the mean status of relatives. We can take the correlation between the𝑛

mean of disease statuses in the relatives ( and as one potential (simplified) estimator for the𝐷 )‾ 𝐺

accuracy of PA-FGRS.

(Eq. S7)𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐴−𝐹𝐺𝑅𝑆
, 𝐺( ) ≈ 𝚌𝚘𝚛𝚛 𝐺

^

𝑙𝑖𝑛𝑒𝑎𝑟
, 𝐺( ) = 𝚌𝚘𝚛𝚛 𝐷‾ , 𝐺( ) =

𝙲𝚘𝚟 𝐷‾ ,𝐺( )
𝚅𝚊𝚛 𝐷‾( )ℎ

𝑙
2

 

We note that this is an approximation since when > 1. For a detailed𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐴−𝐹𝐺𝑅𝑆
, 𝐷‾( ) < 1  𝑛

𝑟𝑒𝑙

discussion of this difference see Supplementary Note S10 below.

Treating and as random variables and and as vectors of random variables we can𝐺 𝐷‾ 𝐿 𝐷

estimate the expected accuracy, , using that in th relative :the covariance between the𝚌𝚘𝚛𝚛 𝐷‾ , 𝐺( ) 𝑖

random variables of disease status and liability is:𝐷
𝑖

𝐿
𝑖

𝙲𝚘𝚟 𝐿
𝑖
, 𝐷

𝑖( ) =  𝙴(𝐿
𝑖
𝐷

𝑖
) − 𝙴(𝐿

𝑖
)𝙴(𝐷

𝑖
) = 𝙴(𝐷

𝑖
𝐿

𝑖
) = 𝐾𝙴(𝐿

𝑖
|𝐿

𝑖
> 𝑡) = φ 𝑡( )

Then by the additive law of covariance we have

𝙲𝚘𝚟 𝐷‾, 𝐺( ) = 𝙲𝚘𝚟 𝐺, 1
𝑛

𝑟𝑒𝑙 𝑖=1

𝑛
𝑟𝑒𝑙

∑ 𝐷
𝑖( ) = 1

𝑛
𝑟𝑒𝑙 𝑖=1

𝑛
𝑟𝑒𝑙

∑ 𝙲𝚘𝚟 𝐺, 𝐷
𝑖( ) =

1
𝑛

𝑟𝑒𝑙 𝑖=1

𝑛
𝑟𝑒𝑙

∑ 𝙲𝚘𝚟 𝐺, 𝐿
𝑖( )𝙲𝚘𝚟 𝐿

𝑖
, 𝐷

𝑖( ) = ℎ
𝑙
2𝑟

𝑝𝑟
φ 𝑡( )

Then

𝚅𝚊𝚛 𝐷‾( ) = 𝚅𝚊𝚛 1
𝑛

𝑟𝑒𝑙 𝑖=1

𝑛
𝑟𝑒𝑙

∑ 𝐷
𝑖( )( )

= 1

𝑛2
𝑟𝑒𝑙

𝑛
𝑟𝑒𝑙

𝐾 1 − 𝐾( ) + 𝑛
𝑟𝑒𝑙

𝑛
𝑟𝑒𝑙

− 1( )ρ 𝐾 1 − 𝐾( )( )

=
1+ 𝑛

𝑟𝑒𝑙
−1( )ρ

𝑛
𝑟𝑒𝑙

𝐾 1 − 𝐾( )
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where denotes the Pearson correlation of the disease status of the relatives.ρ

Inserting these into Eq.S7 we have:

𝚌𝚘𝚛𝚛 𝐷
𝑟

‾ , 𝐺( ) =
𝑛

𝑟𝑒𝑙
𝑟

𝑝𝑟
2 φ 𝑡( )2

1+ 𝑛
𝑟𝑒𝑙

−1( )ρ( )𝐾 1−𝐾( )

can be estimated by a first order approximation (see Golan et al3 as the expected intraclassρ

correlation of disease status among relatives as: ρ
1𝑠𝑡

ρ ≈ ρ
1𝑠𝑡

=
φ 𝑡( )2𝑟

𝑟𝑟
ℎ

𝑙
2

𝐾 1−𝐾( )

Plugging this in provides a ‘first order’ estimator of the expected accuracy for a PA-FGRS computed

from equally related relatives as,

(Eq. S8)𝚌𝚘𝚛𝚛 𝐷
𝑟

‾ , 𝐺( ) ≈
𝑛

𝑟𝑒𝑙
ℎ

𝑙
2𝑟

𝑝𝑟
2 φ 𝑡( )2

1+ 𝑛
𝑟𝑒𝑙

−1( ) φ 𝑡( )2𝑟
𝑟𝑟

ℎ
𝑙
2

𝐾 1−𝐾( )( )𝐾 1−𝐾( )
=

𝑛
𝑟𝑒𝑙

𝑟
𝑝𝑟
2

𝐾 1−𝐾( )

φ 𝑡( )2ℎ
𝑙
2 + 𝑛

𝑟𝑒𝑙
−1( )𝑟

𝑟𝑟

A better approximation can be obtained plugging in a second order Taylor approximation for , asρ

described by Golan et al3:

ρ ≈ ρ
2𝑛𝑑

=
φ 𝑡( )2𝑟

𝑟𝑟
ℎ

𝑙
2

𝐾 1−𝐾( ) +
𝑡2φ 𝑡( )2ℎ

𝑙
4𝑟

𝑟𝑟
2

2𝐾 1−𝐾( )

Rearranging this gives us:

ρ
2𝑛𝑑

=
φ 𝑡( )2𝑟

𝑟𝑟
ℎ

𝑙
2

𝐾 1−𝐾( ) 1 +
𝑟

𝑟𝑟
ℎ

𝑙
2𝑡2

2( )
Providing a ‘second order’ estimator of the expected accuracy for a PA-FGRS computed from equally

related relatives,

https://paperpile.com/c/04Tfpk/zH87p
https://paperpile.com/c/04Tfpk/zH87p
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(Eq. S9)𝚌𝚘𝚛𝚛 𝐷
𝑟

‾ , 𝐺( ) ≈
𝑛

𝑟𝑒𝑙
ℎ

𝑙
2𝑟

𝑝𝑟
2 φ 𝑡( )2

1+ 𝑛
𝑟𝑒𝑙

−1( ) φ 𝑡( )2𝑟
𝑟𝑟

ℎ
𝑙
2

𝐾 1−𝐾( ) 1+
𝑟

𝑟𝑟
ℎ

𝑙
2𝑡2

2( )( )𝐾 1−𝐾( )
=

𝑛
𝑟𝑒𝑙

𝑟
𝑝𝑟
2

𝐾 1−𝐾( )

φ 𝑡( )2ℎ
𝑙
2 + 𝑛

𝑟𝑒𝑙
−1( )𝑟

𝑟𝑟
1+

𝑟
𝑟𝑟

ℎ
𝑙
2𝑡2

2( )

Where, nrel is the number of relatives, rpr is the relatedness between the index individual and the

relatives, rrr is the fixed relatedness among relatives, K the population prevalence of the disease, ℎ
𝑙
2

the heritability, , the liability threshold, and the density of the standard normal distribution at𝑡 φ(𝑡) 

the threshold. In simulations this second order estimator adequately approximates expected

accuracy (Supplementary Figure S14). However, in the case of ,𝑟
𝑟𝑟

= 0. 5, ℎ2 > 0. 75,  𝐾 = 0. 01

the approximation becomes inaccurate indicating that the equation will not hold for highly heritable,

rare phenotypes with many related individuals in the pedigree which can also be seen from the

accuracy of the approximation (Supplementary Figure S13).ρ ≈ ρ
2𝑛𝑑

An exact estimator for can be obtained by taking the double integral of the bivariate normalρ

distribution.

ρ = ρ
𝑒𝑥𝑎𝑐𝑡

= 𝑡

∞

∫
𝑡

∞

∫ϕ
2
( 𝑥,𝑦, 𝑟

𝑟𝑟
ℎ

𝑙
2 ) 𝑑𝑥 𝑑𝑦 − 𝐾2 

𝐾 1−𝐾( )

where is the pdf for the bivariate standard normal distribution with
𝑡

∞

∫
𝑡

∞

∫ φ
2
( 𝑥, 𝑦,  𝑟

𝑟𝑟
ℎ2 ) 𝑑𝑥 𝑑𝑦

correlation .𝑟
𝑟𝑟

ℎ2

Inserting this gives us,

(Eq. S10)𝚌𝚘𝚛𝚛 𝐺
^

𝑙𝑖𝑛𝑒𝑎𝑟
, 𝐺( ) =

𝑛
𝑟𝑒𝑙

ℎ
𝑙
2𝑟

𝑝𝑟
2 φ 𝑡( )2

𝐾 1−𝐾( )+ 𝑛
𝑟𝑒𝑙

−1( )
𝑡

∞

∫
𝑡

∞

∫ϕ
2
( 𝑥,𝑦, 𝑟

𝑟𝑟
ℎ

𝑙
2 ) 𝑑𝑥 𝑑𝑦− 𝐾2( )

Eq. S10 suggests several intuitions about the expected accuracy of PA-FGRS.

First, if based on single relative, e.g., a family history indicator, the expected accuracy reduces to,
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𝚌𝚘𝚛𝚛 𝐺
^

𝐿𝑖𝑛𝑒𝑎𝑟−1𝑟𝑒𝑙
, 𝐺( ) =

𝑟
𝑝𝑟

φ 𝑡( ) ℎ
𝑙
2

𝐾 1−𝐾( )

Second, if the relatives are not related to each other, the reliability (squared accuracy) increases

linearly with the number of relatives (i.e. two parents explain twice the variance of one parent).

Third, the same accuracy is achieved by one parent ) and four unrelated(0. 5
ℎ

𝑙
2φ 𝑡( )2

𝐾 1−𝐾( ) (ρ = 0)

grandparents ), illustrating that the higher relatedness (of a parent) outweighs the (0. 25 4
ℎ

𝑙
2φ 𝑡( )2

𝐾 1−𝐾( )

higher number of individuals (grandparents). Fourth, the accuracy will increase with increasing ℎ
𝑙
2

and prevalence up to 0.5 where is maximized.
φ(𝑡)

𝐾 1−𝐾( ) =
φ(Φ−1(𝐾))

𝐾 1−𝐾( )( )

S.4 The asymptotic accuracy of from one class of relatives𝐺
^

𝑙𝑖𝑛𝑒𝑎𝑟

For certain types of relatives, i.e., those where there is no constraint on the number an index

individual can have (where ), such as when estimating liabilities only from siblings ( 𝑟
𝑟𝑟

> 0

), only from cousins ( ), or only from off-spring ( or𝑟
𝑝𝑟

= 𝑟
𝑟𝑟

= 0. 5 𝑟
𝑝𝑟

= 𝑟
𝑟𝑟

= 0. 125 𝑟
𝑝𝑟

= 𝑟
𝑟𝑟

= 0. 5

) , we can get a theoretical upper limit of accuracy by:𝑟
𝑝𝑟

= 0. 5 , 𝑟
𝑟𝑟

= 0. 25

𝑛
𝑟𝑒𝑙

∞
lim

→
𝚅𝚊𝚛 𝐷‾( ) =

𝑛
𝑟𝑒𝑙

∞
lim

→

1+ 𝑛
𝑟𝑒𝑙

−1( )ρ

𝑛
𝑟𝑒𝑙

𝐾 1 − 𝐾( ) 

=
𝑛

𝑟𝑒𝑙
∞

lim
→

( 1
𝑛

𝑟𝑒𝑙
+

𝑛
𝑟𝑒𝑙

−1( )ρ

𝑛
𝑟𝑒𝑙

)𝐾 1 − 𝐾( )

=
𝑛

𝑟𝑒𝑙
∞

lim
→

𝑛
𝑟𝑒𝑙

−1( )ρ

𝑛
𝑟𝑒𝑙

𝐾 1 − 𝐾( )

= ρ𝐾 1 − 𝐾( )

𝑛
𝑟𝑒𝑙

∞
lim

→
 𝚌𝚘𝚛𝚛 𝐷‾, 𝐺( ) ≈

𝑛
𝑟𝑒𝑙

∞
lim

→

ℎ
𝑙
2𝑟

𝑝𝑟
φ 𝑡( )

1+ 𝑛
𝑟𝑒𝑙

−1( )ρ

𝑛
𝑟𝑒𝑙

𝐾 1−𝐾( )ℎ
𝑙
2

=
ℎ

𝑙
2𝑟

𝑝𝑟
φ(𝑡)

ρ 𝐾(1−𝐾)ℎ
𝑙
2 
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=
ℎ

𝑙
2𝑟2

𝑝𝑟
φ(𝑡)2

ρ  𝐾(1−𝐾)    

(Eq. S11)=
ℎ

𝑙
2𝑟2

𝑝𝑟
φ(𝑡)2

𝑡

∞

∫
𝑡

∞

∫φ
2
( 𝑥,𝑦, 𝑟

𝑟𝑟
ℎ

𝑙
2 ) 𝑑𝑥 𝑑𝑦 − 𝐾2

replacing the integral with the second order Taylor approximation ( ) gives us a closed formρ ≈ ρ
2𝑛𝑑

approximation:

≈
ℎ

𝑙
2 𝑟

𝑝𝑟
φ(𝑡)

ϕ 𝑡( )2𝑟
𝑟𝑟

ℎ
𝑙
2

𝐾 1−𝐾( ) 1+
𝑟

𝑟𝑟
ℎ

𝑙
2𝑡2

2( )ℎ
𝑙
2 𝐾(1−𝐾) 

 

= (Eq. S12)
𝑟

𝑝𝑟

𝑟
𝑟𝑟

1

1+
𝑟

𝑟𝑟
ℎ

𝑙
2𝑡2

2

Supplementary Figure S16 show that Eq.S8 provides reasonable estimates of the asymptotic accuracy

of a linear predictor . Demonstrating that the further the prevalence is from 0.5 and the𝚌𝚘𝚛𝚛 𝐷‾, 𝐺( )
higher the heritability, the more will the asymptotic accuracy at an infinite number of relatives be

lower than , which is the maximum accuracy that can be achieved by a non-linear predictor (see
𝑟

𝑝𝑟

𝑟
𝑟𝑟

section S.10).

S.5 Accuracy in an arbitrarily structured pedigree

As in Eq.S6 above, we are looking for is an estimate of

𝚌𝚘𝚛𝚛 𝐺
^

𝐹𝐺𝑅𝑆
, 𝐺( ) =

𝙲𝚘𝚟 𝐺
^

𝐹𝐺𝑅𝑆
,𝐺( )

𝚅𝚊𝚛 𝐺
^

𝐹𝐺𝑅𝑆( )𝚅𝚊𝚛 𝐺( )
=

𝙲𝚘𝚟 𝐺
^

𝐹𝐺𝑅𝑆
,𝐺( )

𝚅𝚊𝚛 𝐺
^

𝐹𝐺𝑅𝑆( )ℎ
𝑙
2

But one that does not rely on the simplifying assumption of one relative class. If do, however, again

consider the linear predictor of defined as , where , in which𝐠 𝐺
^

𝑙𝑖𝑛𝑒𝑎𝑟
= 𝐃𝐛 𝐛 = 𝐏−1𝐜

𝐏
𝑖𝑗,𝑖≠𝑗

= 𝙲𝚘𝚟(𝑑
𝑖
, 𝑑

𝑗
) = ρ

𝑖𝑗
𝐾(1 − 𝐾)

𝐏
𝑖𝑗, 𝑖=𝑗

= 𝑉𝑎𝑟(𝐷
𝑖
) = 𝐾

𝑃𝑜𝑝
1 − 𝐾

𝑃𝑜𝑝( )
.𝐜

𝑗
= 𝙲𝚘𝚟(𝐺

𝑝
, 𝐷

𝑗
) = 𝐸(𝐷

𝑗
)𝐸(𝐺

𝑝
|𝐷

𝑗
= 1) = ℎ

𝑙
2 𝑟

𝑝𝑗
φ(𝑡)
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and where can be estimated as described in section S.3 ( ). Then we can write,ρ ρ = ρ
𝑒𝑥𝑎𝑐𝑡

𝙲𝚘𝚟 𝐺
𝑙𝑖𝑛𝑒𝑎𝑟

^
, 𝐺( ) = 𝐜' 𝐛 = 𝐜' 𝐏−1𝐜

We can also get the variance of as,𝐺
^

𝑙𝑖𝑛𝑒𝑎𝑟

𝚅𝚊𝚛 𝐺
^

𝑙𝑖𝑛𝑒𝑎𝑟( ) = 𝚅𝚊𝚛
𝑗=1

𝑛
𝑟𝑒𝑙

∑ 𝑏
𝑗
𝐷

𝑗( )( ) =
𝑗=1

𝑛
𝑟𝑒𝑙

∑ 𝑏
𝑗
2𝑝

𝑗𝑗( ) +
𝑗=1

𝑛
𝑟𝑒𝑙

∑
𝑘=1

𝑛
𝑟𝑒𝑙

∑ 𝑏
𝑗
𝑏

𝑘
𝑝

𝑖𝑗
;  𝑗≠𝑘( )

Which can be equivalently written in matrix notation,

𝚅𝚊𝚛 𝐺
^

𝑙𝑖𝑛𝑒𝑎𝑟( ) = 𝐛' 𝐏 𝐛 = (𝐏−1𝐜)' 𝐏 (𝐏−1𝐜) = 𝐜' 𝐏−1𝐜

Plugging this back into equation Eq.S7, gives

(Eq. S9)𝚌𝚘𝚛𝚛 𝐺
^

𝑙𝑖𝑛𝑒𝑎𝑟
, 𝐺( ) = 𝐜' 𝐏−1𝐜

𝐜' 𝐏−1𝐜 ℎ
𝑙
2

= 𝐜' 𝐏−1𝐜

ℎ
𝑙
2

where is a column vector of covariances between the phenotype of the relatives and the genetic𝐜

value of the index individual, and is the phenotypic covariance matrix of the relatives. Since Eq. S13𝐏

involves the inverse of , it is harder to get an intuitive sense of this expression than Eq. S9, but this𝐏

can be used to estimate the expected accuracy in more complex pedigrees.

S.6 Accuracy of linear predictor under censoring

If the phenotype status for the relatives is not the true disease status , but the observed disease𝐷

status (as defined in Online Methods). This changes to where𝑌 𝐜 𝐜
~

 

𝐜
~

 
𝑖

= 𝙲𝚘𝚟(𝐺, 𝑌
𝑖
) = 𝐸(𝑌

𝑖
)𝐸(𝐷

𝑖
|𝑌

𝑖
= 1)𝐸(𝐺|𝐷

𝑖
= 1) + (1 − 𝐸(𝑌

𝑖
))𝐸(𝐷

𝑖
|𝑌

𝑖
= 0)𝐸(𝐺|𝐷

𝑖
= 0) =
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= 𝐸(𝑌
𝑖
)𝐸(𝐺|𝐷

𝑖
= 1) =

𝐾
𝑖

𝐾
𝑝𝑜𝑝

ℎ
𝑙
2 𝑟

𝑝𝑖
φ(𝑡)

then we can define,

𝙲𝚘𝚟 𝐺
^

𝑙𝑖𝑛𝑒𝑎𝑟−𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑
, 𝐺( ) = 𝐜

~
 ' 𝐏

~−1
𝐜
~

 

Where is (nrel by nrel) covariance matrix of the observed phenotypes in the relatives such that,𝐏
~

  

S.7 The expected accuracy of PGS

The accuracy of a PGS, has previously been shown to be a function of the and the statisticalℎ
𝑆𝑁𝑃
2

power of the discovery study 7. Given a discovery study cases and controls and𝑁
𝑐𝑎𝑠𝑒

 𝑁
𝑐𝑡𝑟𝑙

𝑀

independent predictors (genotypes):

(Eq. S14) 𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐺𝑆
, 𝐺( )2

=
λ𝑤ℎ

𝑙
2(𝑖

𝑞
−𝑖‾)

2

λ𝑤ℎ
𝑙
2(𝑖

𝑞
−𝑖‾)

2
+(1−𝑤)

𝑣𝑎𝑟*(𝑥
𝑗
 )

𝑣𝑎𝑟(𝑥
𝑗
 )

in which , , , . is theλ =
𝑁

𝑐𝑎𝑠𝑒
+𝑁

𝑐𝑡𝑟𝑙

𝑀 𝑤 =
𝑁

𝑐𝑎𝑠𝑒

𝑁
𝑐𝑎𝑠𝑒

+𝑁
𝑐𝑡𝑟𝑙

𝑖
𝑞

= φ(𝑡)
𝐾 𝑖‾ = 𝑤 φ(𝑡)

𝐾 − (1 − 𝑤) −φ(𝑡)
1−𝐾

𝚅𝚊𝚛*(𝑥
𝑗
 )

𝚅𝚊𝚛(𝑥
𝑗
 )

ratio of the expected variance of a genotype in the ascertained sample to that in a population

sample.

𝚅𝚊𝚛*(𝑥
𝑗
 ) = 𝚅𝚊𝚛(𝑥

𝑗
 ) −

ℎ
𝑙
2

𝑀 𝑖‾(𝑖‾ − 𝑡)𝚅𝚊𝚛(𝑥
𝑗
 )

https://paperpile.com/c/04Tfpk/ws983
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Dudbrigde et al.8 ignored this difference, as for polygenic traits can be assumed to be very close
ℎ

𝑙
2

𝑀

to 0. Note that the derivations in Daewtyler 7 suggest ,𝑣𝑎𝑟 * (𝑥
𝑗
 ) = 𝑣𝑎𝑟(𝑥

𝑗
 ) − ℎ

𝑙
2𝑖‾ (𝑖‾ − 𝑡)𝑣𝑎𝑟(𝑥

𝑗
 )

omitting the factor M and thereby implying the contribution of ascertainment would have a

non-negligible effect on the genetic variance, but we believe this to be an error.

This expectation can be written equivalently, as shown in Wu et al 9, by defining,

𝑁
𝑞

= (𝑁
𝑐𝑎𝑠𝑒

+ 𝑁
𝑐𝑡𝑟𝑙

)𝑤(1 − 𝑤) φ(𝑡)
𝐾*(1−𝐾)( )2

which gives,

(Eq.15)𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐺𝑆
, 𝐺( )2

=
ℎ

𝑙
2𝑁

𝑞

ℎ
𝑙
2𝑁

𝑞
+𝑀

S.8 The expected accuracy of shrinkage PGS

Eq. S14 and Eq. S15 work under the assumption that PGS includes all markers (i.e. no p-value

thresholding). Recently PGS methods that apply a bayesian shrinkage to the effect size estimates

have been shown to be more efficient. If the true effect sizes have a pointnormal distribution:

β ∼  (1 − 𝑝) 𝑁(0,  0) +  𝑝 𝑁(0,  
ℎ

𝑙,𝑆𝑁𝑃
2

𝑀𝑝 ) 

Typically , will be estimated on the observed scale such that8 ,β
^

β
^

𝑖
 ≈ β

𝑖
+

𝑗

𝑀

∑ 𝑟
𝑖𝑗

β
𝑗( ) 𝑤(1−𝑤)

𝐾(1−𝐾)φ(𝑡) + ϵ

where . This gives gives us the well know relationship between the𝚅𝚊𝚛(ϵ) ≈ 𝑤(1−𝑤)
𝑁

SNP-heritability and observed scale10 ( ) and the liability scale ( ):ℎ
𝑜,𝑆𝑁𝑃
2 ℎ

𝑙,𝑆𝑁𝑃
2

ℎ
𝑜,𝑆𝑁𝑃
2 = 𝑀 𝚅𝚊𝚛 β 𝑤(1−𝑤)

𝐾(1−𝐾)φ(𝑡)( )/𝑤(1 − 𝑤) = 𝑤(1−𝑤)

𝐾(1−𝐾)φ(𝑡)( )2 𝑀 𝚅𝚊𝚛 β( ) = 𝑤(1−𝑤)

𝐾(1−𝐾)φ(𝑡)( )2 ℎ
𝑙,𝑆𝑁𝑃
2

Since the SNP-heritability is on the liability scale, we transform toℎ
𝑙,𝑆𝑁𝑃
2 β

^

. This transformation changes the residual varianceβ
^

𝑙
= β

^ 𝐾(1−𝐾)φ(𝑡)
𝑤(1−𝑤) = β

𝑖
+

𝑗

𝑀

∑ 𝑟
𝑖𝑗

β
𝑗( ) + ϵ 𝐾(1−𝐾)φ(𝑡)

𝑤(1−𝑤)

to:

https://paperpile.com/c/04Tfpk/mNbTo
https://paperpile.com/c/04Tfpk/ws983
https://paperpile.com/c/04Tfpk/c3O7C
https://paperpile.com/c/04Tfpk/mNbTo
https://paperpile.com/c/04Tfpk/KeVO9
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𝚅𝚊𝚛(ϵ 𝐾(1−𝐾)φ(𝑡)
𝑤(1−𝑤) ) ≈ 𝑤(1−𝑤)

𝑁
𝐾(1−𝐾)φ(𝑡)

𝑤(1−𝑤)( )2
= 1

𝑁
𝐾(1−𝐾)φ(𝑡)( )2

𝑤(1−𝑤) = 1
𝑁

𝑞

Under this model can be shrunk11 to , where:β
^

β
^

𝑗
𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒

=𝐸(β
𝑗
|β

^

𝑗,𝑙
) = β

^

𝑗,𝑙
𝑝

𝑗
‾ 1

1+ 𝑀𝑝

ℎ
𝑙,𝑆𝑁𝑃
2 𝑁

( )

𝑝
𝑗

‾ =  𝑃(β
𝑗

≠ 0| β
^

𝑗,𝑙
, 𝑁

𝑞
, 𝑀, 𝑝, ℎ

𝑙
2) =

𝑝

ℎ𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁𝑞

𝑒𝑥𝑝 − 1
2

β
^

𝑗,𝑙

2

ℎ𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁𝑞

⎧
⎪
⎨⎪
⎩

⎫
⎪
⎬⎪
⎭

𝑝

ℎ𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁

𝑒𝑥𝑝 − 1
2

β
^

𝑗,𝑙

2

ℎ𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁𝑞

⎧
⎪
⎨⎪
⎩

⎫
⎪
⎬⎪
⎭

+ 1−𝑝
1

𝑁𝑞

𝑒𝑥𝑝 − 1
2 𝑁

𝑞
β
^

𝑗,𝑙

2⎰
⎱

⎱
⎰

When deriving the expected squared accuracy of we have:β
^

𝑗
𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒

𝚅𝚊𝚛(𝐺
^

𝑃𝐺𝑆−𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
) = 𝙲𝚘𝚟(𝐺

^

𝑃𝐺𝑆−𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
, 𝐺)

and

𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐺𝑆−𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
, 𝐺( )2

=
𝚅𝚊𝚛(𝐺

^

𝑃𝐺𝑆−𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
)( )2

ℎ
𝑙,𝑆𝑁𝑃
2 𝚅𝚊𝚛(𝐺

^

𝑃𝐺𝑆−𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
)

=
𝚅𝚊𝚛(𝐺

^

𝑃𝐺𝑆−𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
)

ℎ
𝑙,𝑆𝑁𝑃
2

however, and can be estimated by:𝚅𝚊𝚛(𝐺
^

𝑃𝐺𝑆−𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
) ≤ ℎ

𝑙,𝑆𝑁𝑃
2 + 𝑀

𝑁
𝑞

𝚅𝚊𝚛(𝐺
^

𝑃𝐺𝑆−𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
) = 𝚅𝚊𝚛(

𝑗=1

𝑀

∑  𝑥
𝑗
β
^

𝑗
𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒

) = 𝚅𝚊𝚛(β
^

𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
)

𝑗=1

𝑀

∑  𝚅𝚊𝚛(𝑥
𝑗
) = (β

^

𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
)𝑀

Thus

𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐺𝑆−𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
, 𝐺( )2

= 𝑀

ℎ
𝑙,𝑆𝑁𝑃
2

−∞

∞

∫  𝑥 1
1+ 𝑀𝑝

ℎ
𝑙,𝑆𝑁𝑃
2 𝑁

𝑞

𝑃(β
𝑗

≠ 0| 𝑥, 𝑁
𝑞
, 𝑀, 𝑝, ℎ

𝑙,𝑆𝑁𝑃
2 )( )2

𝑃( 𝑥 |𝑁
𝑞
, 𝑀, 𝑝, ℎ

𝑙,𝑆𝑁𝑃
2 )𝑑𝑥 

= 𝑀

ℎ
𝑙,𝑆𝑁𝑃
2

1
1+ 𝑀𝑝

ℎ
𝑙,𝑆𝑁𝑃
2 𝑁

𝑞

( )2

−∞

∞

∫  𝑥2𝑃(β
𝑗

≠ 0|𝑥, 𝑁
𝑞
, 𝑀, 𝑝, ℎ

𝑙,𝑆𝑁𝑃
2 )

2
𝑃( 𝑥 |𝑁

𝑞
, 𝑀, 𝑝, ℎ

𝑙,𝑆𝑁𝑃
2 )𝑑𝑥   

https://paperpile.com/c/04Tfpk/CRvMt
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=
ℎ

𝑙,𝑆𝑁𝑃
2

ℎ
𝑙,𝑆𝑁𝑃
2 + 𝑀𝑝

𝑁
𝑞

( ) 1
ℎ

𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁

𝑞

⎛

⎝

⎞

⎠−∞

∞

∫  𝑥2𝑃(β
𝑗

≠ 0|𝑥, 𝑁
𝑞
, 𝑀, 𝑝, ℎ

𝑙,𝑆𝑁𝑃
2 )𝑃(𝑥|β

𝑗
≠ 0, 𝑁

𝑞
, 𝑀, 𝑝, ℎ

𝑙,𝑆𝑁𝑃
2 )𝑑𝑥

=
ℎ

𝑙,𝑆𝑁𝑃
2

ℎ
𝑙,𝑆𝑁𝑃
2 + 𝑀𝑝

𝑁
𝑞

( ) 1
ℎ

𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁

𝑞

⎛

⎝

⎞

⎠−∞

∞

∫  𝑥2

𝑝

ℎ𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁𝑞

𝑒𝑥𝑝 − 1
2

𝑥2

ℎ𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁𝑞

⎧
⎪
⎨⎪
⎩

⎫
⎪
⎬⎪
⎭

𝑝

ℎ𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁𝑞

𝑒𝑥𝑝 − 1
2

𝑥2

ℎ𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁𝑞

⎧
⎪
⎨⎪
⎩

⎫
⎪
⎬⎪
⎭

+ 1−𝑝
1

𝑁𝑞

𝑒𝑥𝑝 − 1
2 𝑁

𝑞
𝑥2{ }

1

ℎ
𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁

𝑞

𝑒𝑥𝑝 − 1
2

𝑥2

ℎ
𝑙,𝑆𝑁𝑃
2

𝑀𝑝 + 1
𝑁

𝑞

⎧

⎨
⎩

⎫

⎬
⎭

𝑑𝑥.

(Eq.S16)

which can be evaluated with numerical integration techniques. Note that if , this reduces to𝑝 = 1

which is identical to Eq. S15. As in Eq. S15, we can substitute𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐺𝑆−𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒
, 𝐺( )2

=
ℎ

𝑙,𝑆𝑁𝑃
2

ℎ
𝑙,𝑆𝑁𝑃
2 + 𝑀

𝑁
𝑞

( )
for , and for if the outcome is a quantitative trait.𝑁 𝑁

𝑞
ℎ

𝑆𝑁𝑃
2 ℎ

𝑙,𝑆𝑁𝑃
2
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S.9 Expected correlation of PGS and PA-FGRS assuming conditional

independence

Under the assumption the that and are statistically independent conditional on the true𝐺
^

𝐹𝐺𝑅𝑆
𝐺
^

𝑃𝐺𝑆

genetic value ( ), their correlation will be the product of their accuracies. We can show this using𝐺
𝑖

the law of total covariance:

𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐺𝑆
, 𝐺

^

𝐹𝐺𝑅𝑆( ) =
𝙴 𝙲𝚘𝚟 𝐺

^

𝑃𝐺𝑆
,𝐺

^

𝐹𝐺𝑅𝑆
|𝐺( )( )+𝙲𝚘𝚟 𝙴 𝐺

^

𝑃𝐺𝑆
|𝐺( )𝙴 𝐺

^

𝐹𝐺𝑅𝑆
|𝐺( )( )

𝚅𝚊𝚛(𝐺
^

𝑃𝐺𝑆
)𝚅𝚊𝚛(𝐺

^

𝐹𝐺𝑅𝑆
)

=
𝙲𝚘𝚟 𝙴 𝐺

^

𝑃𝐺𝑆
|𝐺( )𝙴 𝐺

^

𝐹𝐺𝑅𝑆
|𝐺( )( )

𝚅𝚊𝚛(𝐺
^

𝑃𝐺𝑆
)𝚅𝚊𝚛(𝐺

^

𝐹𝐺𝑅𝑆
)

=
𝙲𝚘𝚟 𝐺

^

𝑃𝐺𝑆
,𝐺( )

𝚅𝚊𝚛 𝐺( )  
𝙲𝚘𝚟 𝐺

^

𝐹𝐺𝑅𝑆
,𝐺( )

𝚅𝚊𝚛 𝐺( ) 𝚅𝚊𝚛 𝐺( )

𝚅𝚊𝚛(𝐺
^

𝑃𝐺𝑆
)𝚅𝚊𝚛(𝐺

^

𝐹𝐺𝑅𝑆
)

=
𝙲𝚘𝚟 𝐺

^

𝑃𝐺𝑆
,𝐺( )

𝚅𝚊𝚛(𝐺
^

𝑃𝐺𝑆
)𝚅𝚊𝚛(𝐺)

𝙲𝚘𝚟 𝐺
^

𝐹𝐺𝑅𝑆
,𝐺( )

𝚅𝚊𝚛(𝐺
^

𝐹𝐺𝑅𝑆
)𝚅𝚊𝚛(𝐺)

= 𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐺𝑆
, 𝐺( )𝚌𝚘𝚛𝚛 𝐺

^

𝐹𝐺𝑅𝑆
, 𝐺( )

(Eq. S17)

Using the using estimates of and narrow-sense heritability, we can also calculate the expected𝑅
𝑙
2

correlation between estimated genetic values under the assumption of conditional independence as:

(Eq. S18)𝚌𝚘𝚛𝚛 𝐺
^

𝑃𝐺𝑆
, 𝐺

^

𝐹𝐺𝑅𝑆( ) =
𝑅

𝑙,𝑃𝐺𝑆
2 𝑅

𝑙,𝐹𝐺𝑅𝑆
2

ℎ
𝑙
2ℎ

𝑙
2 =

𝑅
𝑙,𝑃𝐺𝑆
2 𝑅

𝑙,𝐹𝐺𝑅𝑆
2

ℎ
𝑙
2

S.10 On the asymptotic difference between linear predictors and

PA-FGRS

If we again imagine the situation where we are studying a population in which all probands have 𝑛

relatives, that are all equally related to each other, with a relatedness coefficient and equally𝑟
𝑟𝑟

related to the proband with relatedness coefficient .𝑟
𝑝𝑟
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=𝚌𝚘𝚛𝚛(𝐺, 𝐺
^

𝑙𝑖𝑛𝑒𝑎𝑟
) = 𝚌𝚘𝚛𝚛(𝐺, 𝐷‾)

𝑛
𝑟𝑒𝑙

ℎ
𝑙
2𝑟

𝑝𝑟
2 ϕ 𝑡( )2

𝐾 1−𝐾( )+ 𝑛
𝑟𝑒𝑙

−1( )
𝑡

∞

∫
𝑡

∞

∫ϕ
2
( 𝑥,𝑦, 𝑟

𝑟𝑟
ℎ

𝑙
2 ) 𝑑𝑥 𝑑𝑦− 𝐾2( )

As shown in S.4 , as , this accuracy with approach𝑛
𝑟𝑒𝑙

 →  ∞

ℎ
𝑙
2𝑟2

𝑝𝑟
ϕ(𝑡)2

𝑡

∞

∫
𝑡

∞

∫ϕ
2
( 𝑥,𝑦, 𝑟

𝑟𝑟
ℎ2 ) 𝑑𝑥 𝑑𝑦 − 𝐾2

  ≈
𝑟

𝑝𝑟

𝑟
𝑟𝑟

1

1+
𝑟

𝑟𝑟
ℎ2𝑡2

2( )

However the PA-FGRS estimator of , has a slightly different expected accuracy. First since𝐺 𝐺
^

𝑃𝐴

is an unbiased estimator of , we have , and by the law of total𝐺
^

𝑃𝐴−𝐹𝐺𝑅𝑆
𝐺 𝐸(𝐺|𝐺

^

𝑃𝐴
) = 𝐺

^

𝑃𝐴

covariance we can write,

 
𝙲𝚘𝚟(𝐺,𝐺

^

𝑃𝐴
)

𝚅𝚊𝚛(𝐺
^

𝑃𝐴
)

=
𝙲𝚘𝚟(𝐺,𝐺

^

𝑃𝐴
|𝐺

^

𝑃𝐴
)+𝙲𝚘𝚟( 𝐸(𝐺|𝐺

^

𝑃𝐴
),𝐸(𝐺

^

𝑃𝐴
|𝐺

^

𝑃𝐴
))

𝚅𝚊𝚛(𝐺
^

𝑃𝐴
)

=
𝐸(𝐺

^

𝑃𝐴

2
)

𝚅𝚊𝚛(𝐺
^

𝑃𝐴
)

= 1

we then have:

(Eq. S19)𝚌𝚘𝚛𝚛(𝐺, 𝐺
^

𝑃𝐴
) =

𝙲𝚘𝚟(𝐺,𝐺
^

𝑃𝐴
)

𝚅𝚊𝚛(𝐺
^

𝑃𝐴
)𝚅𝚊𝚛(𝐺)

=
𝚅𝚊𝚛(𝐺

^

𝑃𝐴
)

𝚅𝚊𝚛(𝐺
^

𝑃𝐴
)𝚅𝚊𝚛(𝐺)

=
𝚅𝚊𝚛(𝐺

^

𝑃𝐴
)

ℎ
𝑙
2

and by the law of total variance we have:

𝚅𝚊𝚛(𝐺
^

𝑃𝐴
) = 𝚅𝚊𝚛(𝐸(𝐺|𝐷

1,...,𝑛
𝑟𝑒𝑙

)) = 𝚅𝚊𝚛(𝐺) − 𝚅𝚊𝚛(𝐺|𝐷
1,...,𝑛

𝑟𝑒𝑙

 )

is estimated by the PA formula as:𝚅𝚊𝚛(𝐺|𝐷
1,...,𝑛

𝑟𝑒𝑙

 )

 Ω* = Ω −  Ω
,𝑥

 Ω
𝑥,𝑥
−1 −  Ω

𝑥,𝑥
−1 Ω

𝑥,𝑥
*  Ω

𝑥,𝑥
−1( )Ω

𝑥,

where is the covariance matrix after conditioning on ( -1) relatives, and is the covariance afterΩ 𝑘  Ω*

conditioning on relatives.𝑘

If we define: , we have:δ
𝑘

=1 −  Ω
𝑥,𝑥
−1 Ω

𝑥,𝑥
* = 1 −

𝚅𝚊𝚛(𝐿
𝑘
|𝐷

1,
···𝐷

𝑘
 )

𝚅𝚊𝚛(𝐿
𝑘
|𝐷

1,
···𝐷

𝑘−1
 )
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where .λ
𝑘

=
𝑡−𝙴(𝐿

𝑘
|𝐷

1,
···𝐷

𝑘−1
 )

𝚅𝚊𝚛(𝐿
𝑘
|𝐷

1,
···𝐷

𝑘−1
 )

We can write the expected conditional variance of as:𝐺
𝑝
 

𝚅𝚊𝚛(𝐺
𝑝
|𝐷

1
, ···,  𝐷

𝑛
 ) = 𝚅𝚊𝚛(𝐺

𝑝
) −

𝙲𝚘𝚟(𝐺
𝑝
,𝐿

1
 )2

𝚅𝚊𝚛(𝐿
1
 ) δ

1
−

𝙲𝚘𝚟(𝐺
𝑝
,𝐿

2
 |𝐷

1
)2

𝚅𝚊𝚛(𝐿
2
 |𝐷

1
) δ

2
 −  ···  −

𝙲𝚘𝚟(𝐺
𝑝
,𝐿

𝑛
 |𝐷

1
,···,𝐷

𝑛−1
)2

𝚅𝚊𝚛(𝐿
𝑛
 |𝐷
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,···,𝐷

𝑛 −1
) δ

𝑛
 

Similarly, we have:

𝙲𝚘𝚟(𝐺
𝑝
, 𝐿

𝑛
 |𝐷

1
, ···, 𝐷

𝑛−1
) = 𝙲𝚘𝚟(𝐺

𝑝
, 𝐿

𝑛
 ) −

𝙲𝚘𝚟(𝐺
𝑝
,𝐿

1
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2
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2
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1
)

𝚅𝚊𝚛(𝐿
2
 |𝐷

1
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2
 −  
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𝙲𝚘𝚟(𝐺

𝑝
,𝐿

𝑛−1
 |𝐷

1
,···,𝐷

𝑛−2
)𝙲𝚘𝚟(𝐿

𝑛
,𝐿

𝑛−1
 |𝐷

1
,···,𝐷

𝑛−2
)

𝚅𝚊𝚛(𝐿
𝑛−1

 |𝐷
1
,···,𝐷

𝑛−2
) δ

𝑛−1

since , and will both be monotonically0 < δ
𝑘

< 1 𝚅𝚊𝚛(𝐺
𝑝
|𝐷

1
, ···,  𝐷

𝑛
 ) 𝙲𝚘𝚟(𝐺

𝑝
, 𝐿

𝑛
 |𝐷

1
, ···,  𝐷

𝑛−1
)

decreasing as with 0. Meaning that in the limit conditioning𝑛 →  ∞ 𝙲𝚘𝚟(𝐺
𝑝
, 𝐿

𝑛
 |𝐷

1
, ···,  𝐷

𝑛−1
) →  

on will not affect .𝐷
𝑛+1

 𝚅𝚊𝚛(𝐺
𝑖
|𝐷

1,...,𝑛
 )

Since all , we can factor out from which𝙲𝚘𝚟(𝐺
𝑝
, 𝐿

𝑘
 ) = ℎ

𝑙
2𝑟

𝑝𝑟
 − ℎ

𝑙
2𝑟

𝑝𝑟
𝚅𝚊𝚛(𝐺

𝑝
|𝐷

1
, ···,  𝐷

𝑛
 )
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𝚅𝚊𝚛(𝐺
𝑝
|𝐷

1
, 𝐷

2
, ···,  𝐷
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𝑝
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1
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2
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𝑝
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2
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1
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1
)
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2
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1
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2
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𝑝
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𝑙
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𝙲𝚘𝚟(𝐺
𝑝
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1
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1
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1
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2
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1
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1
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2
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2
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+ ···( )⎛

⎝

⎞

⎠
(Eq. S20)
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And similarly, since all we can factor out from𝙲𝚘𝚟(𝐿
𝑗
, 𝐿

𝑘
 ) = ℎ

𝑙
2𝑟

𝑟𝑟
; 𝑗 ≠ 𝑘 − ℎ

𝑙
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𝑟𝑟

which becomes:𝙲𝚘𝚟(𝐺
𝑝
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⎞
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As , the will approach 0:𝑛
𝑟𝑒𝑙

 →  ∞ 𝙲𝚘𝚟(𝐺
𝑝
, 𝐿

𝑛
 |𝐷

1
, 𝐷
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, ···,  𝐷

𝑛
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𝑛 ∞
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→
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𝑝
, 𝐿
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𝑝
, 𝐿
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which we can rearrange to get:

(Eq.21)
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𝑝
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𝑛
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𝑗
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inserting this into (Eq. S20), gives us:
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giving the asymptotic accuracy of:

.
𝑛 ∞
lim
→

𝚌𝚘𝚛𝚛(𝐺
𝑝
, 𝐺

^

𝑃𝐴
) =

ℎ
𝑙
2𝑟

𝑝𝑟
2

𝑟
𝑟𝑟

ℎ2
=

𝑟
𝑝𝑟

𝑟
𝑟𝑟

S.11 Exact estimator for PA-FGRS accuracy

While this gives the asymptote, we can also derive the expected accuracy for of the PA-FGRS, starting

with Eq.S6, we have:

𝚌𝚘𝚛𝚛(𝐺, 𝐺
^

𝑃𝐴
) =

𝚅𝚊𝚛(𝐺
^

𝑃𝐴
)

ℎ
𝑙
2

We can obtain the the expected variance of given number of relatives , prevalence and the𝐺
^

𝑃𝐴
𝑛

𝑟𝑒𝑙
𝐾

variance-covariance matrix , for the random vector of lilities , If denotes the set,  Σ 𝐺
𝑝
, 𝐿

1
, ···, 𝐿

𝑛
𝑟𝑒𝑙

⎡
⎢
⎣

⎤
⎥
⎦

𝑑

of possible configurations of the vector , will be discrete mixture distribution:𝑚 = 2
𝑛

𝑟𝑒𝑙 
 
 𝐷 𝐺

^

𝑃𝐴

𝐺
^

𝑃𝐴
 ∼

𝑖=1

𝑚

∑ 𝑃 𝐷 = 𝑑
𝑖
, Σ, 𝐾( )𝙴 𝐺|𝐷 = 𝑑

𝑖
,, Σ, 𝐾( )

and

𝚅𝚊𝚛(𝐺
^

𝑃𝐴
) =

𝑖=1

𝑚

∑ 𝑃 𝐷 = 𝑑
𝑖
, Σ, 𝐾( )𝙴 𝐺|𝐷 = 𝑑

𝑖
, Σ, 𝐾( )2( )

However, if is large, numerical integration of the , -variate normal distributions will𝑛
𝑟𝑒𝑙 

𝑚 = 2
𝑛

𝑟𝑒𝑙 
 
 𝑛

𝑟𝑒𝑙 

quickly become infeasible. E.g. with relatives . However, if all𝑛
𝑟𝑒𝑙 

= 20 𝑚 = 220 = 1 048 576

and all . The probability mass function can be𝙲𝚘𝚟(𝐺, 𝐿
𝑘
 ) = ℎ2𝑟

𝑝𝑟
 𝙲𝚘𝚟(𝐿

𝑗
, 𝐿

𝑘
 ) = ℎ2𝑟

𝑟𝑟
; 𝑗 ≠ 𝑘

written as a simpler mixture distribution:

𝐺
^

𝑃𝐴
 ∼

𝑛
𝑎𝑓𝑓

=0

𝑛
𝑟𝑒𝑙

∑
𝑛

𝑟𝑒𝑙

𝑛
𝑎𝑓𝑓

𝑃 
𝑗=1

𝑛
𝑟𝑒𝑙

∑ 𝐷
𝑗

= 𝑛
𝑎𝑓𝑓

,  𝑛
𝑟𝑒𝑙

, Σ, 𝐾( )𝙴 𝐺|
𝑗=1

𝑛
𝑟𝑒𝑙

∑ 𝐷
𝑗

= 𝑛
𝑎𝑓𝑓

,  𝑛
𝑟𝑒𝑙

, Σ, 𝐾( )
which has a variance of:
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𝚅𝚊𝚛(𝐺
^

𝑃𝐴
) =

𝑛
𝑎𝑓𝑓

=0

𝑛
𝑟𝑒𝑙

∑
𝑛

𝑟𝑒𝑙

𝑛
𝑎𝑓𝑓

𝑃 
𝑗=1

𝑛
𝑟𝑒𝑙

∑ 𝐷
𝑗

= 𝑛
𝑎𝑓𝑓

,  𝑛
𝑟𝑒𝑙

, Σ, 𝐾( )𝙴 𝐺|
𝑗=1

𝑛
𝑟𝑒𝑙

∑ 𝐷
𝑗

= 𝑛
𝑎𝑓𝑓

,  𝑛
𝑟𝑒𝑙

, Σ, 𝐾( )2

⎛

⎝

⎞

⎠
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𝑃 
𝑗=1

𝑛
𝑟𝑒𝑙

∑ 𝐷
𝑗

= 𝑛
𝑎𝑓𝑓

,  𝑛
𝑟𝑒𝑙

, Σ, 𝐾( ) =
𝑙

1

𝑢
1

∫
𝑙

2

𝑢
2

∫···
𝑙

𝑛
𝑟𝑒𝑙

𝑢
𝑛

𝑟𝑒𝑙

∫ ϕ
𝑛

𝑟𝑒𝑙

( 0, ···, 0[ ],  Σ'   )

in which is the variance-covariance matrix for the random vector of liabilities in the relatives Σ'

, and are and for the number of unaffected and and for the number of𝐿
1
, ···, 𝐿

𝑛
𝑟𝑒𝑙

⎡
⎢
⎣

⎤
⎥
⎦

𝑙
𝑖
 𝑢

𝑖
 − ∞ 𝑡 𝑡 ∞

affected relatives. Inserting this into equation Eq.S19 we get:

(Eq. S22)𝚌𝚘𝚛𝚛(𝐺, 𝐺
^

𝑃𝐴
) =

𝑛
𝑎𝑓𝑓

=0

𝑛
𝑟𝑒𝑙

∑
𝑛

𝑟𝑒𝑙

𝑛
𝑎𝑓𝑓

𝑃 
𝑗=1

𝑛
𝑟𝑒𝑙

∑ 𝐷
𝑗
=𝑛

𝑎𝑓𝑓
, 𝑛

𝑟𝑒𝑙
,Σ,𝐾( )𝙴 𝐺|

𝑗=1

𝑛
𝑟𝑒𝑙

∑ 𝐷
𝑗
=𝑛

𝑎𝑓𝑓
, 𝑛

𝑟𝑒𝑙
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⎞

⎠
ℎ2 

Using numerical estimates of and estimating
𝑙
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𝑢
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∫
𝑙

2

𝑢
2

∫···
𝑙

𝑛
𝑟𝑒𝑙

𝑢
𝑛

𝑟𝑒𝑙

∫ ϕ
𝑛

𝑟𝑒𝑙

( 0, ···, 0[ ],  Σ'   )

by the PA-FGRS estimator, we can compute the expected accuracy.𝙴 𝐺|
𝑗=1

𝑛
𝑟𝑒𝑙

∑ 𝐷
𝑗

= 𝑛
𝑎𝑓𝑓

,  𝑛
𝑟𝑒𝑙

, Σ, 𝐾( )
Supplementary Figure S15 shows the empirical accuracies of a linear estimator , the and 𝐺

^

𝑙𝑖𝑛𝑒𝑎𝑟
𝐺
^

𝑃𝐴

the expected accuracies as estimated by (Eq. S18).



25

Supplementary References:

1. Lee, S. H., Goddard, M. E., Wray, N. R. & Visscher, P. M. A better coefficient of determination for

genetic profile analysis. Genet. Epidemiol. 36, 214–224 (2012).

2. Hujoel, M. L. A., Loh, P.-R., Neale, B. M. & Price, A. L. Incorporating family history of disease

improves polygenic risk scores in diverse populations. Cell Genom 2, (2022).

3. Golan, D., Lander, E. S. & Rosset, S. Measuring missing heritability: inferring the contribution of

common variants. Proc. Natl. Acad. Sci. U. S. A. 111, E5272–81 (2014).

4. Dempster, E. R. & Lerner, I. M. Heritability of Threshold Characters. Genetics 35, 212–236 (1950).

5. Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. The genetic interpretation of area under

the ROC curve in genomic profiling. PLoS Genet. 6, e1000864 (2010).

6. Hazel, L. Principles of a selection index which involves several characteristics and utilizes

information concerning relatives. (1941).

7. Daetwyler, H. D., Villanueva, B. & Woolliams, J. A. Accuracy of predicting the genetic risk of

disease using a genome-wide approach. PLoS One 3, e3395 (2008).

8. Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e1003348

(2013).

9. Wu, T., Liu, Z., Mak, T. S. H. & Sham, P. C. Polygenic power calculator: Statistical power and

polygenic prediction accuracy of genome-wide association studies of complex traits. Front.

Genet. 13, 989639 (2022).

10. Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability for disease

from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 (2011).

11. Vilhjálmsson, B. J. et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk

Scores. Am. J. Hum. Genet. 97, 576–592 (2015).

http://paperpile.com/b/04Tfpk/yEfmI
http://paperpile.com/b/04Tfpk/yEfmI
http://paperpile.com/b/04Tfpk/5LLqy
http://paperpile.com/b/04Tfpk/5LLqy
http://paperpile.com/b/04Tfpk/zH87p
http://paperpile.com/b/04Tfpk/zH87p
http://paperpile.com/b/04Tfpk/g7p4
http://paperpile.com/b/04Tfpk/URzau
http://paperpile.com/b/04Tfpk/URzau
http://paperpile.com/b/04Tfpk/OWetD
http://paperpile.com/b/04Tfpk/OWetD
http://paperpile.com/b/04Tfpk/ws983
http://paperpile.com/b/04Tfpk/ws983
http://paperpile.com/b/04Tfpk/mNbTo
http://paperpile.com/b/04Tfpk/mNbTo
http://paperpile.com/b/04Tfpk/c3O7C
http://paperpile.com/b/04Tfpk/c3O7C
http://paperpile.com/b/04Tfpk/c3O7C
http://paperpile.com/b/04Tfpk/KeVO9
http://paperpile.com/b/04Tfpk/KeVO9
http://paperpile.com/b/04Tfpk/CRvMt
http://paperpile.com/b/04Tfpk/CRvMt

