
1

Supplementary Figures:

Supplementary Figure S1. Common liability scale estimators give qualitatively different estimates of
liability scale variance explained for phenotype-based genetic instruments.
Supplementary Figure S2. Common estimates of variance explained on the liability scale can show large
bias in simulations.
Supplementary Figure S3. Nagelkerke's pseudo r2 from logistic model fitting.
Supplementary Figure S4. Impact of mutual adjustment on odds ratios for PGS, FGRS and FH in
iPSYCH-2012
Supplementary Figure S5. Impact of mutual adjustment on odds ratios for PGS, FGRS and FH in
iPSYCH-2015i
Supplementary Figure S6. Full Correlation among all predictors - iPSYCH 2012 random cohort.
Supplementary Figure S7. Full Correlation among all predictors - iPSYCH 2015i random cohort.
Supplementary Figure S8. Expected accuracy of family genetic risk scores from theory and in simulated
data based on records of full-siblings.
Supplementary Figure S9. Expected accuracy of family genetic risk scores from theory and in simulated
data based on records of offspring with different mates.
Supplementary Figure S10. Expected accuracy of family genetic risk scores from theory and in simulated
data based on records of siblings of one parent.
Supplementary Figure S11. Expected accuracy of family genetic risk scores from theory and in simulated
data based on records of half-sibs that are also half-sibs of each other.
Supplementary Figure S12. Expected accuracy of family genetic risk scores from theory and in simulated
data based on records of first cousins that are also first cousins of each other.
Supplementary Figure S13. Estimators of the Pearson correlation of disease status given liability correlation
and prevalence.
Supplementary Figure S14. Empirical and expected reliability of a linear predictor
Supplementary Figure S15. Empirical and expected reliability of the PA-FGRS
Supplementary Figure S16. Exact and approximate asymptotes of accuracy of a linear predictor based on
sibling information.
Supplementary figure S17. Sibling equivalents for disease traits with different prevalence and heritability.
Supplementary Figure S18. Impact of shared environment on risk of phenotypic recurrence.
Supplementary Figure S19. Impact of shared environment on squared accuracy and performance of
PA-FGRS relative to expectations.
Supplementary Figure S20. Impact of shared environment on performance of PGS relative to expectations.
Supplementary Figure S21. Impact of shared environment on correlation between PGS and PA-FGRS
relative to expectations.
Supplementary Figure S22. Choice of “M” and FGRS-PGS relationship.
Supplementary Figure S23. Choice of h2_snp / h2 and FGRS-PGS relationship
Supplementary Figure S24. Choice of p and FGRS-PGS relationship.
Supplementary Figure S25. A diagram depicting our generative liability model and the implied
relationships among PGS, PA-FGRS, and liability.
Supplementary Figure S26. Choice of M in PGS-FGRS correlation

Supplementary Figure S27. Choice of in PGS-FGRS correlationℎ
𝑆𝑁𝑃
2

Supplementary Figure S28. Choice of p in PGS, PA-FGRS correlation
Supplementary Figure S29. Choice of M in PGS-FGRS joint prediction

Supplementary Figure S30. Choice of in PGS-FGRS joint predictionℎ
𝑆𝑁𝑃
2

Supplementary Figure S31. Choice of p in PGS-FGRS joint prediction

1



2

Supplementary Figure S1. Common liability scale estimators give qualitatively different estimates of
liability scale variance explained for phenotype-based genetic instruments.
The estimated liability explained by polygenic score (PGS), family genetic risk score (FGRS), the indicator
variable for having an affected parent or sibling (FH), or their combinations (PGS+FGRS, PGS+FH,
PGS+FGRS+FH) can vary depending on estimation approach. The solid bars are estimates of liability
explained by a two-stage weighted probit model whereas the striped bars are estimated using
transformations from linear regression estimates on the observed scale. With the exception of the PGS
alone model, the estimated liability scale variance tends to be larger when applying the observed scale
transformations, which we believe to be incorrect.
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Supplementary Figure S2. Common estimates of variance explained on the liability scale are biased for
phenotype-based genetic instruments. In a simulated population of families, we compare different
strategies for estimating liability scale variance explained by PGS, FH, and PA-FGRS, under different
sampling schemes. The dashed line in each plot represents the ratio of estimated to true liability scale
variance explained where values deviating from 1 indicate biased estimates. Transforming variance
explained from the observed scale (A,B,C) is only appropriate for PGS, but produces biased estimates for FH
and PA-FGRS across nearly all sampling and trait configurations tested. Directly estimating liability scale
variance using a weighted probit regression to account for one-stage case-control sampling (D,E,F) corrects
for this bias, but overcorrects when two-stage sampling (e.g., pruning of relatives) is applied (F). The most
robust estimates were found by directly estimating liability scale variance with a weighted probit regression
that accounts for the two-stage sampling associated with case oversampling followed by relatedness
pruning (G,H,I). When estimating variance explained on the liability scale for phenotype-based
instruments, accounting for sampling beyond case-control proportion may be critical. Confidence intervals
are generally narrower than and thus contained within each circle. Plotted simulation estimates are
presented in Supplementary Table S3. PGS, polygenic score; FH, indicator of first-degree family history;
PA-FGRS, Pearson-Aitken Family Genetic Risk Score; R2

liab, Liability scale variance explained; K, lifetime
prevalence; h2, narrow-sense heritability.
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Supplementary Figure S3. Nagelkerke's pseudo r2 from logistic model fitting.
The figure displays Nagelkerke's pseudo r2 from logistic regression for each of the five mental disorders
(attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BPD),
major depressive disorder (MDD) and schizophrenia (SCZ) in the iPSYCH-2012 case-cohort and the
non-overlapping iPSYCH-2015i case-cohort, by the disorder specific polygenic score (PGS), family genetic
risk score (FGRS), the indicator variable for having an affected parent or sibling (FH), or their combinations
(PGS+FGRS, PGS+FH, PGS+FGRS+FH) estimated as multiple regression.
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Supplementary Figure S4. Impact of mutual adjustment on odds ratios for PGS, FGRS and FH in
iPSYCH-2012
The figure shows the odds ratio for the five different mental disorders associated with one standard
deviation change in the predictor, when the predictor is the disorder specific PGS (red), PA-FGRS (yellow) or
family history indicator (FH; green). The odds ratios are presented in an unadjusted model (solid lines), and
with adjustment for each or both of the two other predictors. Each estimate is based on the disorder
specific case cohort from the iPSYCH 2012 data.
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Supplementary Figure S5. Impact of mutual adjustment on odds ratios for PGS, FGRS and FH in
iPSYCH-2015i
The figure shows the odds ratio for the five different mental disorders associated with one standard
deviation change in the predictor, when the predictor is the disorder specific PGS (red), PA-FGRS (yellow) or
family history indicator (FH; green). The odds ratios are presented in an unadjusted model (solid lines), and
with adjustment for each or both of the two other predictors. Each estimate is based on the disorder
specific case control sample from the iPSYCH 2015i data.
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Supplementary Figure S6. Full Correlation among all predictors - iPSYCH 2012 random cohort.
Estimated Pearson correlation coefficient between the polygenic score (PGS), the Family Genetic risk score
(FGRS) and the family history indicator (FH) in the random population cohort of iPSYCH-2012 (N=24,266).
Notes: liab221015, FH = fgrs_ps > 0
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Supplementary Figure S7. Full Correlation among all predictors - iPSYCH 2015i random cohort.
Estimated Pearson correlation coefficient between the polygenic score (PGS), the Family Genetic risk score
(FGRS) and the family history indicator (FH) in the random population cohort of iPSYCH-2015i (N=15,381).
Notes: liab221015, FH = fgrs_ps > 0
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Supplementary Figure S8. Expected accuracy of family genetic risk scores from theory and in simulated
data based on records of full-siblings.
We simulate 100 000 index individuals and a varying number of relatives and assess the correlation
between the predicted and the true liability (dots with error bars for 95%-confidence intervals). We
compare this to the expected accuracy given Eq.2 (solid line). Colors indicate the prevalence and heritability
of the phenotype.
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Supplementary Figure S9. Expected accuracy of family genetic risk scores from theory and in simulated
data based on records of offspring with different mates.
We simulate 100 000 index individuals and a varying number of relatives and assess the correlation
between the predicted and the true liability (dots with error bars for 95%-confidence intervals). We
compare this to the expected accuracy given Eq.2 (solid line). Colors indicate the prevalence and heritability
of the phenotype.
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Supplementary Figure S10. Expected accuracy of family genetic risk scores from theory and in simulated
data based on records of siblings of one parent.
We simulate 100 000 index individuals and a varying number of relatives and assess the correlation
between the predicted and the true liability (dots with error bars 95%-confidence intervals). We compare
this to the expected accuracy given Eq.2 (solid line). Colors indicate the prevalence and heritability of the
phenotype.
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Supplementary Figure S11. Expected accuracy of family genetic risk scores from theory and in simulated
data based on records of half-sibs that are also half-sibs of each other.
We simulate 100 000 index individuals and a varying number of relatives and assess the correlation
between the predicted and the true liability (dots with error bars 95%-confidence intervals). We compare
this to the expected accuracy given Eq.2 (solid line). Colors indicate the prevalence and heritability of the
phenotype.
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Supplementary Figure S12. Expected accuracy of family genetic risk scores from theory and in simulated
data based on records of first cousins that are also first cousins of each other.
We simulate 100 000 index individuals and a varying number of relatives and assess the correlation
between the predicted and the true liability (dots with error bars 95%-confidence intervals). We compare
this to the expected accuracy given Eq.2 (solid line). Colors indicate the prevalence and heritability of the
phenotype.
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Supplementary Figure S13. Estimators of the Pearson correlation of disease status given liability
correlation and prevalence.
The figure displays the relationship between the empirical pearson correlation (x-axis) and the expected
pearson correlation (y-axis). The empirical pearson correlations are obtained by generating 100K samples
from a standard bivariate normal distribution with correlation varying from 0 to 1 (at 0.02 increments) , and

dichotomizing into disease status at threshold setting K to 0.01, 0.05, 0.125 or 0.5, and 𝑡 = Φ−1(1 − 𝐾)
the expected pearson correlation (y-axis) are obtained by the three different approximations: the first order

taylor approximation (rho_1st, ) , the second order taylor approximation (rho_2nd, ρ
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Supplementary Figure S14. Empirical and expected reliability of a linear predictor
The figure displays the empirical reliability of a linear predictor of genetic liability (dots) obtained by
simulating 100K individuals with 1-30 siblings and the expected reliability given by the second order
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panels denote different combinations of heritability (0.25,0.5 and 0.75) and prevalence (0.01,0.1 and 0.5).
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Supplementary Figure S15. Empirical and expected reliability of the PA-FGRS
The figure displays the empirical reliability of a pa-fgrs of genetic liability (dots) obtained by simulating
100K individuals with 1-30 siblings and the expected reliability given by the second order approximation

(from Equation S5; green line), the estimator based on multivariate𝑅2 =
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Supplementary Figure S16. Exact and approximate asymptotes of accuracy of a linear predictor based on
sibling information.
The figure displays how the asymptote of the accuracy of a linear predictor depends on both the

heritability ( ; x-axis) and the prevalence (K; panels). The red line shows the exact asymptote of a linearℎ2

predictor given by (Equation S7), while the turquoise line shows the
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Supplementary figure S17. Sibling equivalents for disease traits with different prevalence and
heritability.
The figure displays the number of fully siblings that would be required to obtain the same accuracy as
obtained by 1 to 10 siblings, 1 or 2 parents, 1 to 5 half sibling offspring, one monozygotic twin, 1 to 4
grandparents (g.parents), 1 to 8 great grandparents, 1 to 16 cousins (cousins) and eight examples
n-generational pedigrees with n varying from 1 (parents as founders) to 5 (gr. gr. gr. grandparents as
founders) when all relatives mate and have either one child (child_pr_gen=1) or two children
(child_pr_gen=2). The x-axis shows the number of relatives, while the y-axis shows the estimated number
of sibling equivalents as estimated by the second order approximation. The four panel shows the
relationship under different heritabilities (h2) and prevalence (K).
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Supplementary Figure S18. Impact of shared environment on risk of phenotypic recurrence.
To test how effects of shared environment would impact on our results we performed simulation under a

model where for a set of relatives with where𝐿
𝑖
 =  𝐺

𝑖
 +  𝑒

𝑖
 𝑖,  ...,  𝑛 𝐺 ∼  𝑀𝑉𝑁([0,..., 0]𝑇, Σ

𝑔
)

and , whereσ
𝑔, 𝑖.𝑗 

= 𝑐𝑜𝑣(𝐺
𝑖
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𝑗
) = 𝑟

𝑖𝑗
ℎ2 𝑒 ∼  𝑀𝑉𝑁([0,..., 0]𝑇, Σ

𝑒
)

Under this model we simulated 100,000 families of 14 individuals (a proband, a sibling, two parents, four
grandparents, two avunculars, and four cousins) by sampling random draws from two 14-variate normal

distributions with covariance matrices outlines above setting , to 0, 0.05 or 0.1 and to 0, 0.1ℎ2 = 0. 4 𝑐
ℎ
2 𝑐

𝑠
2

or 0.2. We declared individuals as cases if with𝐿
𝑖
 =  𝐺

𝑖
 +  𝑒

𝑖
>  𝑡 =  Φ−1(1 − 𝐾

𝑝𝑜𝑝
) 𝐾

𝑝𝑜𝑝
= 0. 125

Here we display the expected impact of various levels of shared environmental effects within sibships ( )𝑐
𝑠
2

and/or within households ( ) on the recurrence risk of the disease outcome. Under a model with no𝑐
ℎ
2

common environmental effects, we expect a recurrence risk associated with either an affected sibling or an
affected parent to be ~0.2. Increasing levels of common environmental effects, increases the recurrence
risk associated with an affected family member. Using family history information to predict outcomes in a
proband with incorporate both additive genetics and aspects of the familial environment.
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Supplementary Figure S19. Impact of shared environment on squared accuracy and performance of PA-FGRS relative to expectations.
To test how effects of shared environment would impact on our results we performed simulation under a model where for a set of relatives𝐿

𝑖
 =  𝐺

𝑖
 +  𝑒

𝑖

with where and , where 𝑖,  ...,  𝑛 𝐺 ∼  𝑀𝑉𝑁([0,..., 0]𝑇, Σ
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)

Under this model we simulated 100,000 families of 14 individuals (a proband, a sibling, two parents, four grandparents, two avunculars, and four cousins) by

sampling random draws from two 14-variate normal distributions with covariance matrices outlines above setting , to 0, 0.05 or 0.1 and to 0,ℎ2 = 0. 4 𝑐
ℎ
2 𝑐

𝑠
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0.1 or 0.2. We declared individuals as cases if with .𝐿
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Here we display, via simulations (Supplementary Information), the observed squared accuracy (left panel) and performance (right panel) of PA-FGRS when

various levels of shared environmental effects within sibships ( ) and/or within households ( ). In the left panel, we see that the squared correlation𝑐
𝑠
2 𝑐

ℎ
2

between and is modestly reduced by and and modestly lower than expected assuming . In the right panel, as or increases,𝐺
^

𝐹𝐺𝑅𝑆
𝐺  𝑐

ℎ
2 𝑐

𝑠
2  𝑐

ℎ
2 = 𝑐

𝑠
2 = 0  𝑐

ℎ
2 𝑐

𝑠
2

the squared correlation between and increases and deviates from the performance expected assuming𝐺
^

𝐹𝐺𝑅𝑆
𝐿  𝑐

ℎ
2 = 𝑐

𝑠
2 = 0
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Supplementary Figure S20. Impact of shared environment on performance of PGS relative to
expectations.
To test how effects of shared environment would impact on our results we performed simulation under a

model where for a set of relatives with where𝐿
𝑖
 =  𝐺

𝑖
 +  𝑒

𝑖
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𝑒
)

Under this model we simulated 100,000 families of 14 individuals (a proband, a sibling, two parents, four
grandparents, two avunculars, and four cousins) by sampling random draws from two 14-variate normal

distributions with covariance matrices outlines above setting , to 0, 0.05 or 0.1 and to 0, 0.1ℎ2 = 0. 4 𝑐
ℎ
2 𝑐

𝑠
2

or 0.2. We declared individuals as cases if with .𝐿
𝑖
 =  𝐺

𝑖
 +  𝑒

𝑖
>  𝑡 =  Φ−1(1 − 𝐾
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We simulated PGS for the probands as where . Where is the𝐺
^

𝑖,𝑃𝐺𝑆
= 𝑓𝐺

𝑖 
+  ϵ ϵ ∼ 𝑁(0, 1 − 𝑓) 𝑓

fraction of expected to be explained by a PGS trained in a population study (i.e., the case proportion isℎ2

equal to the prevalence) of = 10,000, 100,000 or 1,000,000 samples.𝑁

Here we display, via simulations (Supplementary Information), the observed performance of PGS in

scenarios with various levels of shared environmental effects on within sibships ( ) and/or within𝑐
𝑠
2

households ( ). In our simulations, and have no effect on the squared correlation between𝑐
ℎ
2  𝑐

ℎ
2 𝑐

𝑠
2 𝐺

^

𝑃𝐺𝑆
and .𝐿
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Supplementary Figure S21. Impact of shared environment on correlation between PGS and PA-FGRS
relative to expectations.
To test how effects of shared environment would impact on our results we performed simulation under a

model where for a set of relatives with where𝐿
𝑖
 =  𝐺

𝑖
 +  𝑒

𝑖
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)

and , whereσ
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𝑗
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𝑖𝑗
ℎ2 𝑒 ∼  𝑀𝑉𝑁([0,..., 0]𝑇, Σ

𝑒
)

Under this model we simulated 100,000 families of 14 individuals (a proband, a sibling, two parents, four
grandparents, two avunculars, and four cousins) by sampling random draws from two 14-variate normal

distributions with covariance matrices outlines above setting , to 0, 0.05 or 0.1 and to 0, 0.1ℎ2 = 0. 4 𝑐
ℎ
2 𝑐

𝑠
2

or 0.2. We declared individuals as cases if with .𝐿
𝑖
 =  𝐺

𝑖
 +  𝑒

𝑖
>  𝑡 =  Φ−1(1 − 𝐾

𝑝𝑜𝑝
) 𝐾

𝑝𝑜𝑝
= 0. 125

We simulated PGS for the probands as where . Where is the𝐺
^

𝑖,𝑃𝐺𝑆
= 𝑓𝐺

𝑖 
+  ϵ ϵ ∼ 𝑁(0, 1 − 𝑓) 𝑓

fraction of expected to be explained by a PGS trained in a population study (i.e., the case proportion isℎ2

equal to the prevalence) of = 10,000, 100,000 or 1,000,000 samples.𝑁

Here we display, via simulations, the observed (filled shapes) and expected (x symbols) correlation between
PA-FGRS and PGS trained with different sample size GWAS, across scenarios with various levels of shared

environmental effects on within sibships ( ) and/or within households ( ). In our simulations, and𝑐
𝑠
2 𝑐

ℎ
2  𝑐

ℎ
2 𝑐

𝑠
2

reduce slightly the correlation between and (filled shapes), but the observed correlations are𝐺
^

𝑃𝐺𝑆
𝐺
^

𝐹𝐺𝑅𝑆
much lower than what would be expected from their marginal performances, assuming no familial effects
(x symbols).
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Supplementary Figure S22. Choice of “M” and FGRS-PGS relationship.

Assuming trait , and the effective proportion of causalℎ
𝑆𝑁𝑃,𝑡𝑒𝑠𝑡
2 = ℎ

𝑆𝑁𝑃,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 = 0. 5 ℎ2 𝑟

𝐺,𝑡𝑒𝑠𝑡−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
= 1

markers ( ) is 1, we compare the expected performance of PGS to the expected performance of PA-FGRS𝑝
with Nsibe=1,3, or 5 (dashed lines) under different choices of number of independent genetic factors (M).
Compared to the usual choice of M= 60 000 decreasing M to 10 000 decreases the sample size required to
obtain the sample size as PA-FGRS predictors. Whereas increasing M to 1 000 000 increases the required
sample size. PA-FGRS, Pearson-Aitken Family Genetic Risk Scores; PGS, polygenic score; h2, narrow-sense

heritability; , SNP heritability; , genetic correlation; prev, lifetime prevalence; Nsibe, number of fullℎ
𝑆𝑁𝑃
2 𝑟

𝐺
sibling equivalents; c.c., case-control sampling; pop., population sampling.
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Supplementary Figure S23. Choice of h2_snp / h2 and FGRS-PGS relationship

Assuming trait , and the effective proportion of causal markers (ℎ
𝑆𝑁𝑃,𝑡𝑒𝑠𝑡
2 = ℎ

𝑆𝑁𝑃,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 𝑟

𝐺,𝑡𝑒𝑠𝑡−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
= 1 𝑝

) is 1 and M= 60 000, we compare the expected performance of PGS to the expected performance of

PA-FGRS with Nsibe=1,3, or 5 (dashed lines) under different choices of . PA-FGRS, Pearson-Aitken Familyℎ
𝑆𝑁𝑃
2

Genetic Risk Scores; PGS, polygenic score; h2, narrow-sense heritability; , SNP heritability; , geneticℎ
𝑆𝑁𝑃
2 𝑟

𝐺
correlation; prev, lifetime prevalence; Nsibe, number of full sibling equivalents; c.c., case-control sampling;
pop., population sampling.

25



26

Supplementary Figure S24. Choice of p and FGRS-PGS relationship.

Assuming trait , , , and M= 60 000, we compareℎ
𝑆𝑁𝑃,𝑡𝑒𝑠𝑡
2 = ℎ

𝑆𝑁𝑃,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 𝑟

𝐺,𝑡𝑒𝑠𝑡−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
= 1 ℎ

𝑆𝑁𝑃
2 = 0. 5 ℎ2

the expected performance of PGS to the expected performance of PA-FGRS with Nsibe=1,3, or 5 (dashed
lines) under different choices of p. Compared to our standard choice of p=1 (right column), decreasing p
decreases the sample size required to obtain the sample size as PA-FGRS predictors (i.e., increases the
efficiency of thee PGS). PA-FGRS, Pearson-Aitken Family Genetic Risk Scores; PGS, polygenic score; h2,

narrow-sense heritability; , SNP heritability; , genetic correlation; prev, lifetime prevalence; Nsibe,ℎ
𝑆𝑁𝑃
2 𝑟

𝐺
number of full sibling equivalents; c.c., case-control sampling; pop., population sampling.
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Supplementary Figure S25. A diagram depicting our generative liability model and the implied relationships among PGS, PA-FGRS, and liability.
The relationships of interest (green dashed lines) among PGS, PA-FGRS, and disease liability can be inferred from a path diagram that depicts our assumed
generative liability model. PA-FGRS its expected relationships to PGS and liability are derived assuming no confounding by familial environment. In other
sensitivity analyses we relax this assumptions to describe how these relationships are affected if this assumption is not valid.
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Supplementary Figure S26. Choice of M in PGS-FGRS correlation

Assuming trait , , , and p=1, we compare theℎ
𝑆𝑁𝑃,𝑡𝑒𝑠𝑡
2 = ℎ

𝑆𝑁𝑃,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 𝑟

𝐺,𝑡𝑒𝑠𝑡−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
= 1 ℎ

𝑆𝑁𝑃
2 = 0. 5* ℎ2

expected correlation of a PGS to PA-FGRS with Nsibe=1,3, or 5 (dotted, dashed and solid lines) under

different choices of m, the number of independent markers in a PGS that can explain the full .ℎ
𝑆𝑁𝑃
2

PA-FGRS, Pearson-Aitken Family Genetic Risk Scores; PGS, polygenic score; h2, narrow-sense heritability;

, SNP heritability; , genetic correlation; prev, lifetime prevalence; Nsibe, number of full siblingℎ
𝑆𝑁𝑃
2 𝑟

𝐺
equivalents; c.c., case-control sampling; pop., population sampling.
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Supplementary Figure S27. Choice of in PGS-FGRS correlationℎ
𝑆𝑁𝑃
2

Assuming trait , , m=60,000, and p=1, we compare the expectedℎ
𝑆𝑁𝑃,𝑡𝑒𝑠𝑡
2 = ℎ

𝑆𝑁𝑃,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 𝑟

𝐺,𝑡𝑒𝑠𝑡−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
= 1

correlation of a PGS to PA-FGRS with Nsibe=1,3, or 5 (dotted, dashed and solid lines) under different choices

of defined either 100%, 50%, or 25% of the . Increasing the proportion of covered byℎ
𝑆𝑁𝑃
2 ℎ2 ℎ2 ℎ

𝑆𝑁𝑃
2

increases the efficiency of the PGS and this increases the expected correlation across the range of training
sample sizes. Importantly, even as the PGS efficiency increases, the PA-FGRs efficiency stays the same
which limits the maximum correlation of the two instruments. PA-FGRS, Pearson-Aitken Family Genetic Risk

Scores; PGS, polygenic score; h2, narrow-sense heritability; , SNP heritability; , genetic correlation;ℎ
𝑆𝑁𝑃
2 𝑟

𝐺
prev, lifetime prevalence; Nsibe, number of full sibling equivalents; c.c., case-control sampling; pop.,
population sampling.
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Supplementary Figure S28. Choice of p in PGS, PA-FGRS correlation

Assuming trait , , m=60,000, and , we compareℎ
𝑆𝑁𝑃,𝑡𝑒𝑠𝑡
2 = ℎ

𝑆𝑁𝑃,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 𝑟

𝐺,𝑡𝑒𝑠𝑡−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
= 1 ℎ

𝑆𝑁𝑃
2 = 0. 5 * ℎ2

the expected correlation of a PGS to PA-FGRS with Nsibe=1,3, or 5 (dotted, dashed and solid lines) under
different choices of p, the polygenicity factor among the m markers. Decreasing p, the proportion of m
with an effect, increases the efficiency of the PGS and this increases the expected correlation across the
range of training sample sizes. Importantly, even as the PGS efficiency increases, the PA-FGRs efficiency
stays the same which limits the maximum correlation of the two instruments. PA-FGRS, Pearson-Aitken

Family Genetic Risk Scores; PGS, polygenic score; h2, narrow-sense heritability; , SNP heritability; ,ℎ
𝑆𝑁𝑃
2 𝑟

𝐺
genetic correlation; prev, lifetime prevalence; Nsibe, number of full sibling equivalents; c.c., case-control
sampling; pop., population sampling.
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Supplementary Figure S29. Choice of M in PGS-FGRS joint prediction

Assuming trait , , , and p=1, we compare theℎ
𝑆𝑁𝑃,𝑡𝑒𝑠𝑡
2 = ℎ

𝑆𝑁𝑃,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 𝑟

𝐺,𝑡𝑒𝑠𝑡−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
= 1 ℎ

𝑆𝑁𝑃
2 = 0. 5* ℎ2

expected performance of a PGS (lower solid line) and a joint predictor of PGS and PA-FGRS with Nsibe=1,3, or
5 (dotted, dashed and upper solid lines) under different choices ofm, the number of independent markers

in a PGS that can explain the full . PA-FGRS, Pearson-Aitken Family Genetic Risk Scores; PGS, polygenicℎ
𝑆𝑁𝑃
2

score; h2, narrow-sense heritability; , SNP heritability; , genetic correlation; prev, lifetime prevalence;ℎ
𝑆𝑁𝑃
2 𝑟

𝐺
Nsibe, number of full sibling equivalents; c.c., case-control sampling; pop., population sampling.
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Supplementary Figure S30. Choice of in PGS-FGRS joint predictionℎ
𝑆𝑁𝑃
2

Assuming trait , , m=60,000, and p=1, we compare the expectedℎ
𝑆𝑁𝑃,𝑡𝑒𝑠𝑡
2 = ℎ

𝑆𝑁𝑃,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 𝑟

𝐺,𝑡𝑒𝑠𝑡−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
= 1

performance of a PGS (lower solid line) and a joint predictor of PGS and PA-FGRS with Nsibe=1,3, or 5

(dotted, dashed and upper solid lines) under different choices of defined either 100%, 50%, or 25% ofℎ
𝑆𝑁𝑃
2

the . PA-FGRS, Pearson-Aitken Family Genetic Risk Scores; PGS, polygenic score; h2, narrow-senseℎ2

heritability; , SNP heritability; , genetic correlation; prev, lifetime prevalence; Nsibe, number of fullℎ
𝑆𝑁𝑃
2 𝑟

𝐺
sibling equivalents; c.c., case-control sampling; pop., population sampling.
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Supplementary Figure S31. Choice of p in PGS-FGRS joint prediction

Assuming trait , , m=60,000, and , we compare theℎ
𝑆𝑁𝑃,𝑡𝑒𝑠𝑡
2 = ℎ

𝑆𝑁𝑃,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 𝑟

𝐺,𝑡𝑒𝑠𝑡−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
= 1 ℎ

𝑆𝑁𝑃
2 = 0. 5ℎ2

expected performance of a PGS (lower solid line) and a joint predictor of PGS and PA-FGRS with Nsibe=1,3, or
5 (dotted, dashed and upper solid lines) under different choices of p. PA-FGRS, Pearson-Aitken Family

Genetic Risk Scores; PGS, polygenic score; h2, narrow-sense heritability; , SNP heritability; , geneticℎ
𝑆𝑁𝑃
2 𝑟

𝐺
correlation; prev, lifetime prevalence; Nsibe, number of full sibling equivalents; c.c., case-control sampling;
pop., population sampling.
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