Supplementary Information to

Machine learning-based classification of Alzheimer's disease and its at-risk states from personality traits, anxiety, and depression

Konrad F. Waschkies^{1,2}, Joram Soch^{1,3}, Margarita Darna^{1,4}, Anni Richter⁴, Slawek

Altenstein^{5,6}, Aline Beyle^{7,31}, Frederic Brosseron⁷, Friederike Buchholz^{5,9}, Michaela

Butryn^{10,32}, Laura Dobisch¹⁰, Michael Ewers^{11,12}, Klaus Fliessbach^{7,8}, Tatjana Gabelin⁹,

Wenzel Glanz^{10,32}, Doreen Goerss^{13,14}, Daria Gref⁹, Daniel Janowitz¹², Ingo Kilimann^{13,14},

Andrea Lohse⁶, Matthias H. Munk^{15,16}, Boris-Stephan Rauchmann^{17,18,19}, Ayda

Rostamzadeh²⁰, Nina Roy⁷, Eike Jakob Spruth^{5,6}, Peter Dechent²¹, Michael T. Heneka⁷, Stefan

Hetzer²², Alfredo Ramirez^{7,8, 23,24,25}, Klaus Scheffler²⁶, Katharina Buerger^{11,12}, Christoph

Laske^{15,16}, Robert Perneczky^{11,17,18,27,28}, Oliver Peters^{5,9}, Josef Priller^{5,6,29,30}, Anja

Schneider^{7,8}, Annika Spottke^{7, 31}, Stefan Teipel^{13,14}, Emrah Düzel^{10,32}, Frank Jessen^{7, 20,33}, Jens

Wiltfang^{1,2,34}, Björn H. Schott^{#1,2,4}, & Jasmin M. Kizilirmak^{#1,35}

¹⁾ German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany

²⁾ Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany

- ³⁾ Bernstein Center for Computational Neuroscience, Berlin, Germany
- ⁴⁾ Leibniz Institute for Neurobiology, Magdeburg, Germany
- ⁵⁾ German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- ⁶⁾ Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
- ⁷⁾ German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

⁸⁾ University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Bonn, Germany

⁹⁾ Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy

¹⁰⁾ German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany

¹¹⁾ German Center for Neurodegenerative Diseases (DZNE), Munich, Germany

¹²⁾ Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany

¹³⁾ German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany

¹⁴⁾ Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany

- ¹⁵⁾ German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- ¹⁶⁾ Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- ¹⁷⁾ Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- ¹⁸⁾ Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- ¹⁹⁾ Department of Neuroradiology, University Hospital LMU, Munich, Germany
- ²⁰⁾ Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany

²¹⁾ MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Germany

²²⁾ Berlin Center for Advanced Neuroimaging, Charité – Universitätsmedizin Berlin, Berlin, Germany

²³⁾ Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany

²⁴⁾ Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany

²⁵⁾ Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA

²⁶⁾ Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany

²⁷⁾ Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany

²⁸⁾ Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK

²⁹⁾ School of Medicine, Technical University of Munich; Department of Psychiatry and Psychotherapy, Munich, Germany

³⁰⁾ University of Edinburgh and UK DRI, Edinburgh, United Kingdom

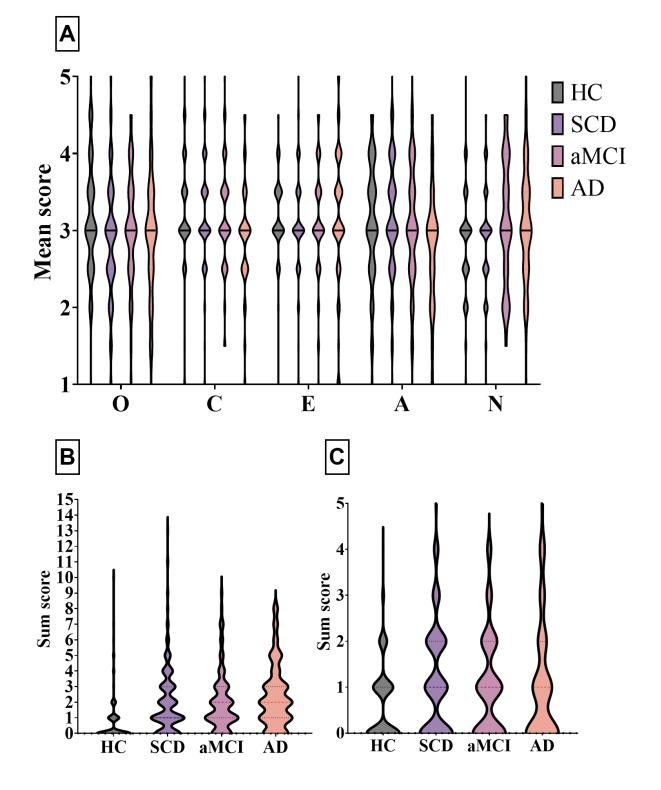
³¹⁾ Department of Neurology, University of Bonn, Bonn, Germany

³²⁾ Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany

³³⁾ Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany

³⁴⁾ Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal

³⁵⁾ Neurodidactics and NeuroLab, Institute for Psychology, University of Hildesheim, Hildesheim, Germany


[#] Correspondence should be addressed to JMK (<u>kizilirmak@uni-hildesheim.de</u>) for methodological and data analysis questions and to BHS (<u>bjoern-hendrik.schott@dzne.de</u>) for clinical questions.

Abbreviations

AD	Alzheimer's disease
BFI	Big Five inventory
CA	class accuracy
CSF	cerebrospinal fluid
DA	decoding accuracy
HC	healthy controls
aMCI	amnestic mild cognitive impairment
SCD	subjective cognitive decline
SVC	support vector classification
SVM	support vector machine

1. Supplementary Methods

1.1. Participants

Figure S1. Violin plots of psychometric scores. A. Mean BFI-10 scores (O = Openness; C = Conscientiousness; E = Extraversion; A = Agreeableness; N = Neuroticism). B. GDS sum scores. C. GAI-SF sum scores.

1.2. Predictor variables

Range	Description
$59 \le x_i \le 89$	chronological age in years
$x_i \in \{0,1\}$	male and female were one-hot-encoded
	as separate variables
$x_{ij} \in \{0,1\}$	each of 10 sites was one-hot-encoded
	as a separate variable
$x_i \in \mathbb{R}^{\nu}$	mPerAF maps masked for DMN
$1 \le x_i \le 5$	each trait was assessed as the mean of
	the rating on two items (5-point scales)
	of the 10-item BFI
$0 \le x_i \le 13$	GDS sum score
$0 \le x_i \le 5$	GAI-SF sum score
$x_i \in \{0, 1, 2\}$	number of $\varepsilon 4$ (risk) alleles
$66.4 \le x_i \le 2067.5$	unit: pg/ml
$14.92 \le x_i \le 320.62$	unit: pg/ml
$0.026 \le x_i \le 0.151$	-
	$x_{i} \in \{0,1\}$ $x_{ij} \in \{0,1\}$ $x_{i} \in \mathbb{R}^{v}$ $1 \leq x_{i} \leq 5$ $0 \leq x_{i} \leq 13$ $0 \leq x_{i} \leq 5$ $x_{i} \in \{0,1,2\}$ $66.4 \leq x_{i} \leq 2067.5$ $14.92 \leq x_{i} \leq 320.62$

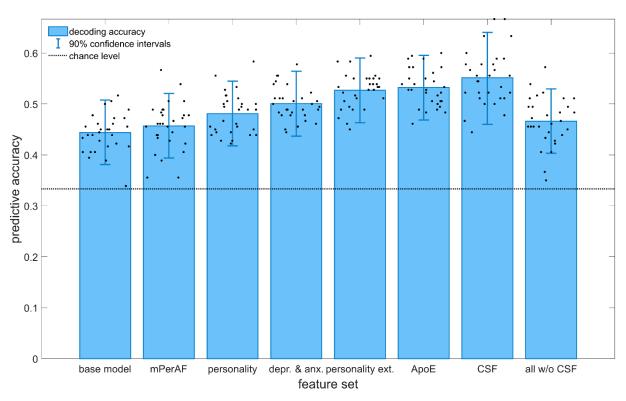
Table S1. Overview of predictor variables

1.3. Supplementary Results

1.4. Support vector classification with SCD and aMCI as one single "risk group"

In the main paper, we reported that every feature set yielded low CAs for the at-risk states SCD and aMCI. Therefore, we decided to combine the groups of SCD and aMCI participants into a common group of "at-risk for AD" and repeated SVM classifications for all feature sets as described in the main paper. Sample sizes were: 179 HC, 421 at-risk for AD, 63 AD.

Feature set	Value	DA	НС	at-risk for	AD
				AD	
1. Base model	mean accuracy	.444	.532	.410	.389
	90% CI	[.381, .508]	[.419, .642]	[.305, .522]	[.284, .503]
	mean <i>p</i>	.045	.081	.298	.361
2. mPerAF	mean accuracy	.457	.461	.358	.552
	90% CI	[.394, .520]	[.351, .573]	[.256, .471]	[.438, .661]
	mean p	.033	.132	.365	.005
3. Personality	mean accuracy	.481	.496	.406	.541
	90% CI	[.418, .545]	[.384, .607]	[.300, .519]	[.428, .651]
	mean p	.007	.088	.254	.031
4. Depression,	mean accuracy	.501	.653	.399	.450
anxiety	90% CI	[.437, .564]	[.540, .754]	[.294, .512]	[.341, .563]
	mean p	.003	.007	.304	.188
5. Personality	mean accuracy	.527	.611	.410	.559
extended	90% CI	[.463, .590]	[.498, .716]	[.304, .523]	[.446, .668]
	mean p	.001	.004	.222	.020
6. ApoE	mean accuracy	.532	.577	.389	.631
	90% CI	[.468, .59]	[.464, .68]	[.285, .50]	[.518, .73]
	mean p	.001	.043	.328	.010
7. CSF	mean accuracy	.551	.521	.367	.767
	90% CI	[.460, .640]	[.361, .678]	[.224, .530]	[.607, .883]
	mean p	.006	.119	.433	.002
8. All w/o CSF	mean accuracy	.466	.472	.368	.558
	90% CI	[.403, .530]	[.362, .584]	[.266, .481]	[.444, .667]
	mean p	.028	.112	.318	.004


Table S2. SVM classification results

Note. Since three groups were included, the chance level was at 33.33%. Mean accuracy and mean *p* refer to the mean of 30 subsamples. The *p*-value of each subsample was obtained by comparing the accuracy value to the null distribution generated from 1000 permutations.

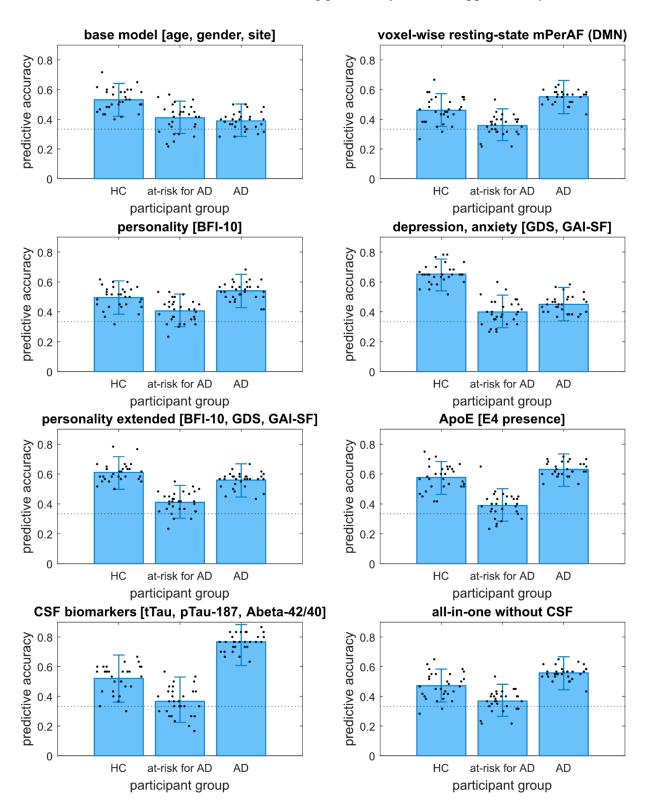

Base model vs.	t	р	CI	p adjusted
mPerAF	1.16	.128	[-0.01, 0.03]	.128
Depression, anxiety	7.37	< .001	[0.04, 0.07]	<.001
Personality	6.85	< .001	[0.03, 0.05]	<.001
Personality extended	9.94	< .001	[0.07, 0.10]	<.001
АроЕ	9.85	< .001	[0.07, 0.10]	<.001
All w/o CSF	1.96	.030	[0.00, 0.04]	.060

Table S3. Inferential statistical comparisons of DA between feature sets

Note. One-tailed t-test results are reported for the difference between the classification performance of each model and the performance of the base model. The column "p adjusted" reports p-values corrected for multiple comparisons according to the Bonferroni-Holm procedure (Holm, 1979).

Figure S2. Decoding accuracies for the evaluated feature sets. Here, SCD and aMCI were combined into an "at-risk for AD" group. Error bars represent 90% confidence intervals obtained by averaging the confidence intervals of the 30 subsamples (single dots) on which SVCs were performed.

Figure S3. Class accuracies of the evaluated feature sets. The "at-risk for AD" group is composed of SCD and aMCI participants. The dotted line represents the chance level, and the error bars represent the average 90% confidence interval across all 30 subsamples.

1.5. Support vector classification with the same sample size for all feature sets

To allow an inferential statistical comparison of the decoding accuracies of all feature sets – including "CSF" – we ran another set of SVCs with a sample that included only participants who had no missing data in any of the features. This resulted in a reduced but equal sample size of 311 participants (74 HC, 142 SCD, 63 aMCI, 32 AD) across all feature sets. This time, feature set number eight consisted of all predictors, including CSF biomarkers. The results are shown in Table S4.

Feature set	value	DA	НС	SCD	aMCI	AD
1. Base model	mean	.350	.339	.320	.249	.492
	accuracy					
	90% CI	[.278, .428]	[.201,	[.188,	[.131,	[.333,
			.502]	.480]	.407]	.653]
	mean p	.064	.302	.373	.511	.073
2. mPerAF	mean	.349	.332	.248	.293	.522
	accuracy					
	90% CI	[.277, .426]	[.197,	[.127,	[.164,	[.361,
			.494]	.408]	.455]	.680]
	mean p	.095	.300	.550	.410	.015
3. Personality	mean	.363	.387	.364	.229	.472
	accuracy					
	90% CI	[.290, .441]	[.241,	[.223,	[.115,	[.315,
			.551]	.527]	.386]	.634]
	mean p	.041	.156	.230	.578	.065
4.	mean	.377	.546	.312	.217	.434
Depression,	accuracy					
anxiety	90% CI	[.303, .456]	[.383,	[.181,	[.108,	[.281,
			.701]	.473]	.371]	.598]
	mean p	.020	.026	.384	.613	.128
5. Personality	mean	.384	.489	.352	.237	.460
extended	accuracy					
	90% CI	[.310, .463]	[.331,	[.212,	[.121,	[.304,
			.649]	.515]	.395]	.622]

Table S4. SVM classification results for the reduced sample (all feature sets with N = 311)

	mean p	.024	.040	.231	.558	.097
6. ApoE	mean	.381	.457	.284	.184	.598
	accuracy					
	90% CI	[.307, .459]	[.302,	[.160,	[.086,	[.433,
			.618]	.444]	.335]	.747]
	mean p	.027	.108	.459	.685	.016
7. CSF	mean	.419	.448	.368	.193	.669
	accuracy					
	90% CI	[.344, .498]	[.295,	[.228,	[.090,	[.504,
			.609]	.528]	.347]	.807]
	mean p	.019	.100	.263	.684	.002
8. All-in-one	mean	.361	.358	.259	.289	.539
(incl. CSF)	accuracy					
	90% CI	[.289, .439]	[.218,	[.136,	[.160,	[.376,
			.520]	.420]	.451]	.695]
	mean p	.063	.239	.504	.414	.010

ML classification of AD and at-risk states using personality scores | Supplementary Information

Note. Since four groups were included, the chance performance was at 25%. Mean accuracy, mean *p* refers to the mean across 30 subsamples. The *p*-value of each subsample was obtained by comparing the accuracy value to the null distribution generated from 1000 permutations.

CSF only vs.	t	р	CI	p adjusted
Base model	7.76	< .001	[0.05, 0.08]	< .001
mPerAF	7.67	< .001	[0.05, 0.09]	< .001
Depression, anxiety	4.34	< .001	[0.02, 0.06]	< .001
Personality	5.38	<.001	[0.04, 0.08]	< .001
Personality extended	3.00	.003	[0.01, 0.06]	.003
АроЕ	4.19	< .001	[0.02, 0.05]	< .001

6.52

Table S5. Inferential statistical comparisons of DA between feature sets

All-in-one

Compared to the larger sample size variant, the overall performance ranking of the feature sets was slightly different (see main paper), as can be seen in Table S4 and Figure S4. Feature set "CSF" yielded the overall highest decoding accuracy (DA = .419, p = .019). Inferential statistical comparisons are reported in Table S5.

< .001

[0.04, 0.07]

< .001

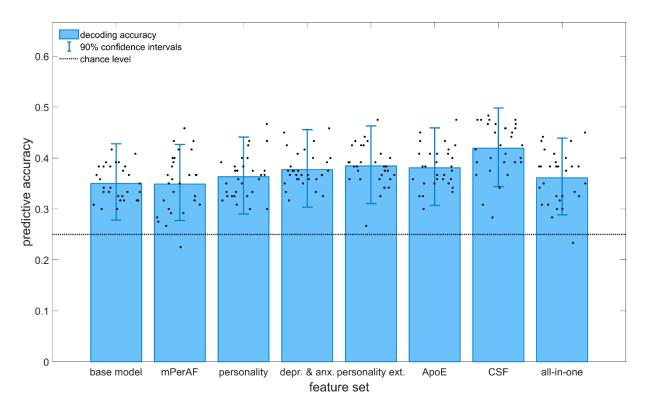


Figure S4. Decoding accuracies for the evaluated feature sets with reduced but equal sample size (N = 311).

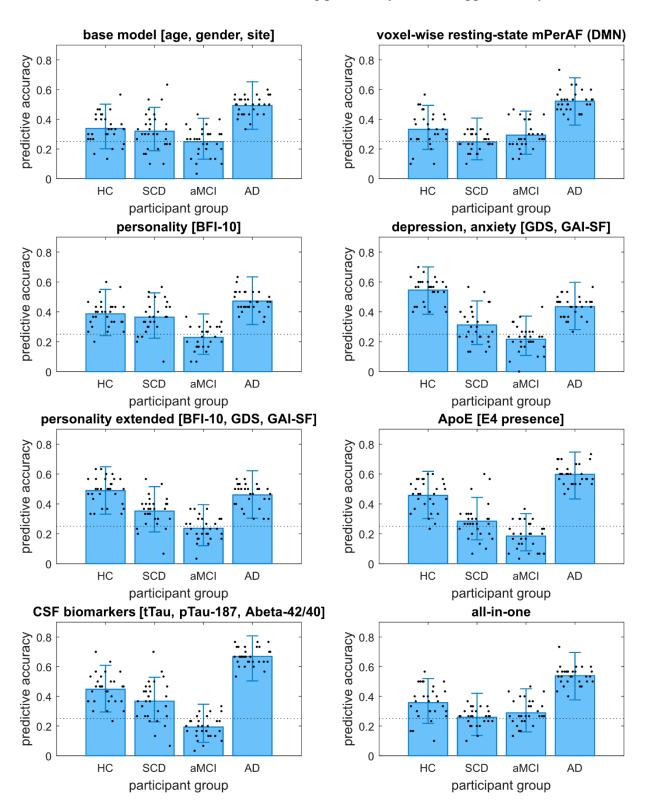


Figure S5. Class accuracies for the evaluated feature sets with reduced but equal sample size for all (N = 311).

2. Supplementary Discussion

2.1. Combining SCD and aMCI into an "at-risk for AD" group does not meaningfully improve class accuracies

We found no meaningful change in the performance pattern of the best performing feature sets (Table S2, Figure S2). The three best performing feature sets in terms of mean DA were "CSF" (DA = .551, p = .006), "ApoE" (DA = .532, p = .001), and "Personality extended" (DA = .527, p = 001). The CAs for the "at-risk for AD" group remained poor and statistically non-significant across all feature sets. We again observed that feature set "Depression, anxiety" had the highest CA for healthy participants (CA = .653, p = .007), while feature set "CSF" performed best in classifying AD patients correctly (CA = .767, p = .002). Notably, the only two feature sets achieving CAs statistically significantly above chance level for both groups of HC and AD were "Personality extended" and "ApoE" (Table S2, Figure S3).

According to one-tailed pairwise comparisons between each feature set and the "Base model" (see Table S3), all feature sets except for "mPerAF" and "All w/o CSF" performed statistically significantly better than the "Base model".

2.2. Equal sample sizes across all feature sets: CSF biomarkers achieve the highest overall decoding accuracy and class accuracy for AD

In the main paper, we reported that feature sets "Personality extended" and "CSF" had almost equal decoding accuracies. In the variant with equal sample sizes, the DA of "CSF" increased relative to other feature sets and achieved the overall highest decoding accuracy (DA = .419, p = .019). However, while "CSF" also yielded the highest class accuracy for the AD group (CA = .669, p = .002), this is contrasted by statistically non-significant CAs for HC, SCD, and aMCI. Feature set "Depression, anxiety" again achieved the highest CA for HC (CA = .546, p = .026).

Prediction results from the smaller-but-equal sample size variant reemphasized that CSF biomarkers, psychometric scores, and the ApoE genotype likely have complementary value, as they provide decent prediction accuracies for different participant groups.

3. Supplementary References

- Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. *Scandinavian Journal of Statistics*, 6(2), 65–70.
- Jessen, F., Amariglio, R. E., Buckley, R. F., van der Flier, W. M., Han, Y., Molinuevo, J. L., Rabin, L., Rentz, D. M., Rodriguez-Gomez, O., Saykin, A. J., Sikkes, S. A. M., Smart, C. M., Wolfsgruber, S., & Wagner, M. (2020). The characterisation of subjective cognitive decline. *The Lancet Neurology*, 19(3), 271–278. https://doi.org/10.1016/S1474-4422(19)30368-0