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ABSTRACT

Heterogeneity in human diseases presents challenges in diagnosis and treatments due to the broad range of manifestations
and symptoms. With the rapid development of labelled multi-omic data, integrative machine learning methods have achieved
breakthroughs in treatments by redefining these diseases at a more granular level. These approaches often have limitations in
scalability, oversimplification, and handling of missing data. In this study, we introduce Multi-Omic Graph Diagnosis (MOGDx),
a flexible command line tool for the integration of multi-omic data to perform classification tasks for heterogeneous diseases.
MOGDx is a network integrative method that combines patient similarity networks with a reduced vector representation of
genomic data. The reduced vector is derived from the latent embeddings of an auto-encoder and the combined network
is fed into a graph convolutional network for classification. MOGDx was evaluated on three datasets from the cancer
genome atlas for breast invasive carcinoma, kidney cancer, and low grade glioma. MOGDx demonstrated state-of-the-art
performance and an ability to identify relevant multi-omic markers in each task. It did so while integrating more genomic
measures with greater patient coverage compared to other network integrative methods. MOGDx is available to download from
https://github.com/biomedicalinformaticsgroup/MOGDx. Overall, MOGDx is a promising tool for integrating multi-omic data,
classifying heterogeneous diseases, and interpreting genomic markers.
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Introduction
Heterogeneity in human diseases is a pertinent yet difficult
issue that can confound the analysis of clinical trials, genetic
association testing, drug responses, and intervention strategies.
Heterogeneous diseases encompass any single disease with
a broad range of manifestations or symptoms. Redefining
such diseases through sub-type classification, symptomatic
grading or similar has the potential to uncover new treatments,
re-purpose old treatments or identify intervention strategies.
This approach has already been shown to improve patient out-
comes in a number of diseases1, 2. Performing classification
tasks with heterogeneous diseases is a complex problem often
requiring analysis of multiple types of data of varying scale
and complexity, as such it needs analytic frameworks that are
flexible and scalable. The use of Artificial Intelligence (AI)
has emerged as a popular method to solve this problem and
has been facilitated by the development of high-throughput
sequencing technologies. Such technologies have made var-
ious types of biological data, coined ’omic’ data, available.
Individual omics provide a single measure of biological com-
plexity however, the integration of multiple omic types could
combine multiple measures of biological complexity, mirror-
ing the heterogeneity in these diseases. An analytical tool
which can integrate multiple omic measures and perform het-
erogeneous disease classifications could significantly improve
patient outcomes in this area.

There is an increasing number of methods which inte-
grate multi-omic data in both the supervised and unsupervised
classification space. There exists two main taxonomies for
data integration, which can be broadly categorised as input
data-fusion and output data-fusion, although no gold stan-
dard method exists. Input data-fusion methods combine data
sources into a single dataset prior to analysis, while output
data-fusion methods analyse each dataset separately and com-
bine the results. Input data-fusion methods estimate an em-
bedding which projects datasets into a shared latent space
which minimizes variance between datasets while maximis-
ing individual variability within each data set3. For exam-
ple, Lock et al.4 achieved state-of-the-art performance on
characterization of tumour types from the Breast Invasive
Carcinoma (BRCA) dataset in The Cancer Genome Atlas
(TCGA)(https://www.cancer.gov/tcga). Their analysis was
able to effectively uncover both individual and joint data struc-
tures, resulting in better interpretation while also improv-
ing unsupervised classification results on the BRCA dataset.
In its simplest form, output data-fusion resembles ensemble
methods, whereby an independent analysis of each dataset
is performed, and the results combined using an aggregation
technique. An example of this is presented by Phan et al.5

who use a stacked-generalisation model on an ovarian dataset
in TCGA.

These methods show that classification performance is
increased when multiple modalities are considered, however
they often scale poorly, are overly simplistic or do not take
into account the cross correlation between modalities3, 6. The
use of a network taxonomy for multi-omic data integration

has risen in popularity recently. The advantage of networks is
that they are easily integrated and can readily handle missing
data. Gliozzo et al.7 and Li et al.8 show that representing data
as a Patient Similarity Network (PSN) can retain information
and have superior or competitive performance compared to
standard Euclidean methods for a single modality. netDx,
developed by Pai et al.9, uses ridge regression and label prop-
agation algorithms to integrate and perform ranked classifica-
tions on PSN’s. Wang et al.6 define each modality as a single
PSN, perform classification using a Graph Convolutional Net-
work (GCN) and concatenate predictions into a cross-omic
correlation tensor before making final label predictions. Li
et al.10 perform classifications using a GCN on integrated
PSN’s. These methods are novel strategies for the integration
of network data at the input and output space, however, they
don’t leverage the full advantages of representing data as a
network. Current network methods cannot handle patients
missing one or more omic measures, and methods can only
handle a fixed number of modalities.

Hence, we introduce Multi-Omic Graph Diagnosis
(MOGDx), a flexible tool for the integration of multi-omic
data to perform classification tasks for heterogeneous dis-
eases. The MOGDx pipeline integrates omic data into a single
PSN before performing classification using an Graph Neural
Network (GNN) algorithm. Each omic measure undergoes
pre-processing steps to extract the most informative features.
These features are used to inform the PSN for each individ-
ual omic measure. Similarity Network Fusion (SNF)11 is
performed to integrate the PSN’s into a single network. In
parallel, each unprocessed omic measure is passed through an
Autoencoder (AE) for dimensionality reduction. The latent
embedding of each modality is concatenated into a single
vector. Each vector corresponds to a single patient node, and
the two are combined into a single GNN model, namely GCN
in this instance. The performance of MOGDx is benchmarked
on the BRCA, Low-Grade Glioma (LGG) and Pan Kidney
Cohort (KIPAN) datasets, with state-of-the-art performance
demonstrated. MOGDx is the first tool of its kind which can
handle missing patient data as well as any number of data
modalities or omic measures. We show the benefit of integrat-
ing multiple modalities and the importance of representing
data as a PSN. We also demonstrate that MOGDx can identify
important omic markers relating to the targeted biomedical
problem.

Results
Pipeline of MOGDx
We present MOGDx, a pipeline for the supervised classi-
fications of patients with heterogenous diseases (Figure 1).
MOGDx takes as input any number of omic measures such
as genomic, transcriptomic and proteomic datasets. The raw
data is processed into omic measure matrices, with each row
corresponding to a patient and each column a feature of that
measure. First, depending on the omic dataset (see Methods),
either differential expression or penalised logistic regression
is performed to identify important features of that dataset.
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Figure 1. Pipeline of MOGDx | MOGDx takes any number of omic measures as input. Feature extraction is performed to maximise
similarities between patients. Each patient similarity matrix is converted to a network and these patient similarity networks are fused using
SNF. In parallel, an AE is trained for dimensionality reduction. The reduced latent embeddings are concatenated and added to the fused
network as node features. A graph neural network is trained and patient classification performed.

These features are used to inform a weighted similarity matrix
calculated using Pearson correlation. A PSN is then con-
structed using the K-Nearest Neighbours (KNN) algorithm.
SNF is performed to fuse the PSN’s into a single network.

One AE per omic measure is applied for dimensionality
reduction. The reduced latent embeddings of each AE are
concatenated, forming the node feature matrix. The node
feature matrix and fused PSN are combined and input into
a GNN for supervised classification. For simplicity, a GCN

architecture was implemented using the Stellargraph12 library
(version 2.2.1) in python. This methodology integrates the
predictive power of PSN’s with a reduced representation of
classical omic characteristics. MOGDx obtains state-of-the-
art predictive performance on the integration of network and
vector characteristics, exhibiting the benefit of including both.
MOGDx is a command line tool for the supervised classifica-
tion of heterogeneous diseases, which can be used for a wide
range of biomedical applications.
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Table 1. Summary of TCGA datasets

Dataset Categories Modalities
Raw Feature Count Counts After Processing PSN Extracted Feature Counts

HER2 82 mRNA 60666 29995 1657
Basal 190 miRNA 1882 423 465
Luminal A 562 DNAm 485577 293649 191
Luminal B 209 RPPA 488 464 111

BRCA

Normal-like 40 CNV 60624 60265 341
Grade 2 215 mRNA 60660 22185 488
Grade 3 229 miRNA 1881 345 200

DNAm 485577 321999 318
RPPA 487 457 65

LGG

CNV 60623 60274 181
KICH 66 mRNA 60660 28212 1200
KIRP 284 miRNA 1881 1556 352
KIRC 514 DNAm 485577 310045 167

RPPA 487 469 48
KIPAN

CNV 60623 60274 157
mRNA refers to mRNA gene expression data, miRNA refers to micro RNA gene expression data, DNAm refers to DNA methylation data, RPPA refers to reverse phase protein array
data and CNV refers to Copy Number Variation data. The Breast Invasive Carcinoma (BRCA) dataset is for PAM50 sub-type classification consisting of 5 classes; HER2, Basal-like,
Luminal A, Luminal B and Normal-like. The LGG dataset is a grade classification task for Low-Grade Glioma. The KIPAN dataset is sub-type classification task consisting of 3
classes; KICH, KIRP, KIRC.

Datasets
The performance of MOGDx is benchmarked on three differ-
ent TCGA datasets, BRCA PAM50 sub-type classification,
grade classification in LGG and KIPAN for kidney type clas-
sification. Data was downloaded using the TCGABiolinks13

Bioconductor package (version 2.28.3). All modalities avail-
able in the TCGA database were included, resulting in 5 types
of omics data used for classification. The omic data types
available are mRNA expression (mRNA) data, micro RNA
expression (miRNA) data, DNA methylation (DNAm) data,
Reverse Phase Protein Array (RPPA) data and Copy Number
Variation (CNV) data. All patient samples were utilised irre-
spective if they were available in only one or all datasets, with
specific details reported in Table 1. Raw feature count is the
total number of features available per modality. Processing
was performed to remove features which were mostly missing
or had a standard deviation of 0. These features were di-
rectly inputted into the AE. Further processing was performed
to extract the most predictive features, which were used to
construct the PSN’s.

BRCA PAM50 is a 50-gene signature used to sub-type
breast cancer into 5 classifications; Normal-like, Basal-like,
HER2-enriched, Luminal A and Luminal B14, 15. Patients in-
cluded in this dataset have a mutation to their BRCA gene
and therefore have a larger risk of developing breast cancer.
Sub-typing by gene expression separates the carcinomas by
varying biological properties and prognoses. For example,
Luminal A has the best prognosis, while HER2 and Basal are
considered more aggressive forms of cancer15. The KIPAN
dataset consists of three categories separated by chromosomal
differences16. Clear Renal Cell Carcinoma (KIRC) is charac-
terised by loss of chromosome 3p, Papillary Renal Cell Carci-
noma (KIRP) is characterised by loss of chromosome 9p and
Chromophobe Renal Cell Carcinoma (KICH) is characterised
by loss of multiple other chromosomes. The LGG dataset

consists of grade 2 and grade 3 which are characterised by
the World Health Organisation based on their histopathologic
characteristics17. All of these datasets categorise a heteroge-
neous disease by a genetic association, making them suitable
tasks for classification. They were chosen to demonstrate
the generalisability of MOGDx to different diseases, as well
as to benchmark the performance of MOGDx against other
integrative methods6, 10, 18.

Performance & Evaluation
The performance of MOGDx was compared to existing net-
work integrative methods that perform heterogeneous disease
classification. Ablation experiments were also performed
to understand the importance of different components of
MOGDx. The performance metrics used to compare the
classification performance of MOGDx were accuracy and
F1-score (F1). The F1 score was calculated by the mean
F1 score of each class, weighted by the size of that class.
k-fold cross validation was performed with 5 randomly gener-
ated splits to obtain the mean and standard deviation metrics
reported. Within each split, the training set was randomly
split into training and validation sets to produce an overall
train/validation/test split of 65%/15%/20% respectively.

MOGDx achieves superior performance when integrating
a variable number of modalities while including a larger
number of samples
The classification performance of MOGDx was compared
to similar PSN multi-omic integrative methods as well as
benchmark classification algorithms namely; Support Vector
Machine (SVM), L1 regularized linear regression (Lasso) and
gradient tree boosting (XGBoost). Table 2 shows MOGDx
outperforms all benchmark classification algorithms when
trained on a single best modality or low dimensional represen-
tation of multiple modalities. This demonstrates the predictive
power of the PSN and GCN learning architecture.
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Table 2. Summary of Performance

Method Dataset Number of Modalities Number of Samples Number of Classes Accuracy F1
BRCA 5 1083 5 0.866±0.007 0.827±0.010
BRCA 5 1043 4 0.890±0.013 0.857±0.017
LGG 1 457 2 0.875±0.032 0.851±0.044MOGDx

KIPAN 5 888 3 0.949±0.013 0.938±0.017
BRCA 3 875 5 0.829±0.018 0.825±0.016
LGG 3 510 2 0.816±0.016 0.814±0.014MOGONET
KIPAN 3 658 3 0.999±0.002 0.999±0.002
BRCA 3 511 4 0.898±0.025 0.902±0.024MoGCN KIPAN 3 698 3 0.977±0.017 0.977±0.017

SVM BRCA 1 869 5 0.782±0.033 0.721±0.030
Lasso BRCA 1 1047 5 0.829±0.014 0.771±0.012
XGBoost BRCA 1 1047 5 0.762±0.036 0.692±0.033
The optimal MOGDx performance is shown for each dataset. All available modalities were used for both BRCA and KIPAN. Only DNAm was used on the LGG dataset
as it achieved the best accuracy while still including maximum number of samples. The performance reported by MOGONET6 was achieved using mRNA, miRNA and
DNAm. The performance reported by MoGCN10 was achieved using CNV, mRNA and RPPA. The performances reported on SVM, Lasso and XGBoost methods were
achieved using the omic measure which gave the highest accuracy.

MOGDx outperforms the other comparative integrative
methods, MOGONET6 and MoGCN10. On the BRCA dataset,
MOGDx performs better in both accuracy and F1 metrics
compared to MOGONET. MoGDx achieves comparable per-
formance to MoGCn when trained on four classes and cru-
cially retains double the number of samples. In supplementary
figure S1, it can be seen that the Normal-like class is a difficult
sub-type to classify. This is due to the small number of sam-
ples and the likelihood of these samples to go on to develop
into one of the other sub-types. MoGCN does not include this
sub-type in their classification, simplifying the task, resulting
in higher accuracy. Interestingly, MOGDx strongly associates
some of the Normal-like samples with other sub-types. This
could suggest predictive power of this method to identify
early signatures of BRCA. MOGDx identified a single omic
measure, DNAm, which achieved optimal performance on
the LGG dataset. All labelled samples were available in this
single omic measure. While MOGDx did significantly outper-
form MOGONET on this dataset, there is a relatively large
difference in number of samples. MOGONET obtained their
data from Broad GDAC Firehose which stores TCGA data
version from 2016 which could explain this discrepancy. Fi-
nally, MOGDx achieves slightly lower metrics on the KIPAN
dataset compared to MOGONET and MoGCN. Once again,
the number of samples differ due to differences between meth-
ods and differences in data collection. The lower performance
of MOGDx in this dataset could be due to the imputation
methods applied to account for missing samples in one or
more data modality.

MOGDx can incorporate greater number of samples and
modalities in its methodology. MOGONET and MoGCN
are limited to the intersection of samples, which reduce the
number of samples included in their analysis when more
modalities are included. This is evident as both Lasso and
XGBoost have greater number of samples available when
trained on mRNA only. Conversely, MOGDx can incorporate
all available samples due to imputation methods employed

without a significant degradation in performance. Moreover,
MOGONET and MoGCN are fixed to the integration of three
modalities. The flexibility of MOGDx allows any number of
modalities to be included, resulting in significantly improved
performance on the LGG dataset as per Table 2.

The performance of MOGDx varies under different
omic data types for different classification tasks
Figure 2.A shows the performance of MOGDx varies signif-
icantly when different omic measures are integrated. There
exists a trade-off between modality integration and perfor-
mance. As can be seen in supplementary figure S2, typically
three to four modalities are required to ensure full sample
coverage. Figure 2.A shows that some omic measures are sig-
nificantly more predictive than others. The standard error bars
when only one omic measure is considered are large, meaning
there is a spread in accuracy. Omic measures should be in-
cluded if they improve performance or contribute a significant
number of samples not contained in other measures. In order
to test this, all combinations of modalities were trained using
MOGDx. The modality or combination of modalities which
achieved the best classification performance and including
all samples were reported in Table 2 with the performance
of all other combinations reported in supplementary tables
S2-S4. For the BRCA and KIPAN datasets, integration of
all 5 modalities resulted in optimal performance. Whilst in-
cluding all modalities was not necessary to produce optimal
accuracy it did reduce the standard deviation of accuracy es-
timates from cross-validation. Conversely, training MOGDx
on only DNAm resulted in the best performance on the LGG
dataset. The DNAm dataset had all samples present, meaning
there was full sample coverage. In this case, it was clear that
DNAm was the only informative modality for tumour grade in
the LGG dataset. This demonstrates that flexibility to train on
any number and/or combination of modalities is an important
requirement for integrative network approaches.
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Figure 2. A Modality Importance | Mean accuracy per number of integrated modalities across the three datasets. The error bars
represent the standard deviation of accuracy across all combinations of integrated modalities, e.g. The standard deviation of all 5 modalities is
zero as there is only one combination. B PSN Importance | Performance of MOGDx on the best model when trained on AE only, PSN
only and when trained on AE + PSN (MOGDx). The AE model has been trained on the AE only by removing all edges from the PSN.
Similarly, the PSN model was trained by one hot encoding each node feature, thus only allowing the GCN to learn from the structure of the
PSN. MOGDx learns from both AE node features and PSN.

Optimal performance is achieved when MOGDx is trained
on fused PSN and node features

Figure 2.B demonstrates the predictive power of a GCN
trained on a PSN. It is clear that the main predictive power
comes from learning the relationships between patient sam-

ples. The PSN achieves the best mean accuracy in each dataset
when k-fold cross validation is performed. Integrating the
PSN with an AE reduces the variation in accuracy of the
GCN to splits in the data. It is known that GNN’s are sen-
sitive to train/test and validation splits. Schur et al. showed
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that classification metrics are susceptible to inflated results
when models are trained on the same splits19. To overcome
this limitation of GNN’s MOGDx was trained on shuffled
splits of the data. Embedding a reduced representation of the
modality as node features also allows the GNN to learn from
more than just the network structure, reducing this variabil-
ity furthermore, as can be seen in Figure 2. In this manner,
MOGDx achieves a balanced trade-off between accuracy and
robustness by integrating the AE with the PSN.

MOGDx can identify relevant biological markers of hetero-
geneous diseases
Ablation experiments were performed to determine which
omic measures were most predictive of each classification
task. It was determined that mRNA and DNAm were most
predictive of BRCA, all modalities except CNV were predic-
tive of KIPAN and only DNAm was predictive of LGG. The
ten most predictive features per omic measure, as determined
by adjusted p-value, are shown in Table 3.

Table 3. Top 10 Important Biomarkers per Modality Identified by MOGDx

Modalities Markers
FOXC1 FAM83D GINS1 ESR1 XBP1mRNA ABCC2 GATA3 CA12 SPAG5 AURKA
cg25941751 cg08651590 cg02218932 cg04016621 cg02212575BRCA

DNAm cg00011460 cg08836954 cg21861233 cg01065161 cg07951083
COL23A1 MEF2C ANGPT2 FLT1 NOVA2mRNA NPTX2 CA9 ABCC3 VEGFA CDH6
hsa-mir-651 hsa-mir-221 hsa-mir-874 hsa-mir-222 hsa-mir-532miRNA hsa-mir-660 hsa-mir-188 hsa-mir-29a hsa-mir-96 hsa-mir-766
cg25941751 cg08651590 cg02218932 cg04016621 cg02212575DNAm cg00011460 cg08836954 cg21861233 cg01065161 cg07951083
ASNS ATR CKIT CYCLINE1 DRP1

KIPAN

RPPA Grp75 ERCC1 CD31 PKA-a Stat3
cg25941751 cg08651590 cg02218932 cg04016621 cg02212575LGG DNAm cg00011460 cg08836954 cg21861233 cg01065161 cg07951083

Further enrichment analysis was performed on all extracted
features in the mRNA and DNAm modalities. Supplemen-
tary figure S3 and tables S5-S7 show the functional processes
and genes associated with mRNA and DNAm respectively
for; BRCA PAM50 sub-type classification, KIPAN sub-type
classification and LGG grade classification. The functional
processes found to be enriched in the BRCA mRNA dataset
are related to the regulation of cellular and nucleic metabolic
processes, which corroborates what is already known in lit-
erature20, 21. The KIPAN mRNA dataset was enriched in
processes relating to myeloid and leukocyte cells. These cells
have known associations with carcinoma tumours and have
a known association with survivability of these cancers22, 23.
Similarly, the DNAm enrichment identified known gene as-
sociations in all three datasets. The genes CD44, CRIM1 and
USP1 were all enriched in the CpG sites extracted by MOGDx.
These genes have been strongly associated with breast cancer
and its prognosis24–26. Extracted CpG sites were also enriched
in genes pertaining to the target dataset in KIPAN and LGG.
For example, upregulation of KRT8 is predictive of a poor
prognosis in KIRC and WIPF1 is indicative of a favourable
prognosis in LGG27, 28.

t-SNE plots, shown in supplementary figure S1, show the
grouping of clusters in each task. These figures show the
groups that MOGDx has learnt in training. MOGDx finds

good separation between all classes in the KIPAN and LGG
datasets, however, there is no cluster for the ’Normal-like’
sub-type in the BRCA dataset. There is also signification
overlap between the "Luminal A" and "Luminal B" sub-types,
which is likely due to the similarity of the two sub-types.

Discussion
Disease heterogeneity has moved medical research from a
population-based perspective towards a personalised approach
where diagnosis, prognosis and treatments are selected based
on biomedical characteristics. Driving this movement is the
development of large, diverse omic technologies and stud-
ies which provide labelled biomedical data at unprecedented
levels. The integration of these omic measures offer the oppor-
tunity to build quantitative models, which can aid the under-
standing of heterogeneous disease architectures and inform
clinical guidance. Therefore, a tool which can flexibly in-
corporate omic measures and identify specific biomedical
characteristics based on these labels has the ability to redefine
heterogeneous diseases.

We propose MOGDx, a network integrative architecture
for the classification of heterogeneous diseases. What sep-
arates MOGDx from its competitors is the flexibility in its
integration of omic measures, its inclusion of all available
patient samples and its leverage of the predictive power of
PSN’s. MOGDx includes omic measures, which either im-
proves predictive performance or include patients who may
only have samples in one omic measure. This allows users to
fine tune to the most predictive modalities while incorporat-
ing the maximum number of patient samples in an analysis.
In this analysis, we maximised data usage while maintain-
ing competitive or state-of-the-art performance on a variety
of classification tasks. Fundamental to the predictive perfor-
mance of MOGDx is the integration of PSN’s. In this analysis,
we have shown that patient similarity is a very effective deter-
minant of heterogeneous disease sub-typing and grading. The
use of PSN’s is analogous to clinical diagnosis, where a diag-
nostician will compare a new patient to a database of similar
cases. Similarly, MOGDx captures the variability in similarity
and uses this to perform accurate sub-type classification and
grading.

The application of MOGDx has been benchmarked on
three cancer datasets from the TCGA, namely; BRCA, LGG
and KIPAN. Cancer is widely regarded as a highly hetero-
geneous disease however, MOGDx was able to accurately
classify breast cancer sub-types, kidney cancer sub-types and
brain tumour grades from integrated omic data. MOGDx iden-
tified the optimal combination of modalities which resulted in
greater patient coverage while maintaining a state-of-the-art
classification performance compared to its competitors, as per
Table 2.

Interpretability is an important aspect to consider for
biomedical applications in order to transform research into
novel diagnoses, grades or treatments. We have demon-
strated the interpretability of MOGDx in several ways. Firstly,
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through leave one out experiments we have identified the
modalities which are most predictive of the classification task
and their most important features, as summarised in Table 3.
We have also performed enrichment analyses on the extracted
features in the mRNA and DNAm modalities to identify the
main drivers of their variability. Finally, we have plotted the
latent embeddings from the GCN model as a t-SNE which
shows the clusters the model has learnt in supplementary fig-
ure S1.

The use of different omics modalities allows us to assay
different parts of the biological systems involved in disease
mechanism, their integration can help reduce biological noise
improving signal and allowing for the identification of pre-
viously undetectable informative features. Understanding
which omic modalities are most predictive for a given disease
can allow us to design more efficient and informative exper-
iments, minimising impacts on patients and reducing costs.
Further, because different omics modalities capture different
components of the genetic and environmental contributions
to disease their integration can help us to gain a more com-
plete picture of disease. We performed enrichment analysis on
mRNA and DNAm modalities if they were shown to be pre-
dictive for that disease. MOGDx was able to identify features
enriched in processes and genes relating to the pathology and
prognosis of the disease. These findings were supported by
similar findings in the literature demonstrating MOGDx’s abil-
ity to identify important omic markers. We have demonstrated
in this work that the MOGDx architecture can successfully
produce interpretable and reproducible insights into multiple
heterogeneous diseases.

The cluster plots, shown in supplementary figure S1, show
what clusters the GCN algorithm has learnt. The clusters in
the KIPAN end LGG datasets show good separation between
the class, with each class having their own distinct cluster.
There is no distinct cluster for the ’Normal-like’ subtype in
the BRCA dataset. This could be an artefact of the small
sample size, however small sample size was not an issue for
the smallest class of the KIPAN dataset. As the BRCA dataset
consists of individuals with a mutation in their BRCA gene,
they are predisposed to developing the disease at some stage.
As a result, it is possible that MOGDx is catching early signs
of the different sub-types of the disease. This is an important
finding as it could inform treatment strategies. For example,
if someone was classified as ’Normal-like’ but it was very
likely they were to develop a more aggressive sub-type such
as Basal, they should be treated differently. Further longitudi-
nal studies to identify the predictive performance of MOGDx
on the BRCA dataset would be an interesting avenue of further
research.

The main drawback of MOGDx is that the GNN algorithm
employed in this analysis, is a transductive algorithm. Trans-
ductive algorithms require the entire network to be available
during training. In a clinical setting, this is not possible as
it will be required to perform predictions on unseen patients.
Hence, it will be required to extend MOGDx to an induc-

tive algorithm which will not require the entire network to
be available during training and can make predictions on un-
seen patients. In summary, MOGDx is a flexible and accurate
classification tool which can be applied to a broad range of
heterogeneous diseases.

Methods
Framework of MOGDx
The framework for MOGDx can be summarised into four
main components; 1) Pre-processing and feature extraction, 2)
Graph generation and SNF, 3) Dimensionality reduction and
node feature augmentation and 4) GNN training and classifica-
tion. Before integration, each modality is treated individually.
An individual modality will undergo processing steps where
an expression matrix and meta file for each modality is cre-
ated. Feature extraction will be performed on this expression
matrix and a PSN generated on the most important features.
This PSN will then be used to create a network based on the
KNN algorithm. The expression matrix will be inputted into
a de-noising AE for dimensionality reduction. Integration is
performed using SNF on the networks and simple concate-
nation on the reduced latent dimensions of the expression
matrices. The nodes of the fused PSN are augmented with
a vector representing the concatenated embedding from the
AE. A GNN is trained on the combination of PSN and AE
to perform heterogeneous disease classifications. MOGDx is
a command line tool which can integrate a variable number
of omic measures. Specific details of each component are
described in the following sections.

Pre-processing and Feature Extraction
Pre-processing is performed to remove unwanted noise and
variations in the data due to experimental or technical effects.
For mRNA expression (mRNA) and micro RNA expression
(miRNA) all genes which had either zero expression or zero
variance in all samples were removed. Next, any samples
which were more than 2 standard deviations from the mean
node connectivity distance were removed. Differential ex-
pression was performed using a one-vs-the-rest methodology,
and the most significantly differentially expressed genes were
extracted.

The DNA methylation (DNAm) data downloaded from
TCGA-Biolinks used multiple generations of Illumina In-
finium DNA methylation arrays, however, they have been
corrected and standardised using the SeSAMe29 pipeline. Fur-
ther steps were taken to remove any CpG sites which con-
tained missing values. Important CpG sites were identified
by performing a penalised Logistic Regression algorithm and
keeping any CpG sites which had a non-zero weight.

To overcome significant missingness in the Copy Number
Variation (CNV) and Reverse Phase Protein Array (RPPA)
datasets, sites which contained more than 50% missingness
were removed, and mean imputation was performed. The
CNV data was log transformed to give it a close to normal
distribution, and penalised Logistic Regression was applied to
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both. The CNV and RPPA sites which had a non-zero weight
were extracted.

Graph Generation and Similarity Network Fusion
The modalities were represented as graphs and Similarity Net-
work Fusion (SNF) was performed to integrate the modalities.
A patient similarity matrix was first created for each modal-
ity. The Pearson correlation coefficient (Eq. 1) between the
extracted features was used as a measure of similarity.

r =
∑(xi − x̄)(yi − ȳ)√
(xi − x̄)2(yi − ȳ)2

(1)

The K-Nearest Neighbours (KNN) algorithm was used to
build the graph with edges created between the 15 nearest
neighbours. SNF11 was applied to fuse the graphs into a sin-
gle network representing the full spectrum of the underlying
data. SNF allows complimentary information to be shared
between modalities, and also is effective in identifying novel
relationships between patients. It also integrates missing pa-
tient samples inherently by complimenting a missing edge in
one modality with the same relationship from others.

Dimensionality Reduction and Node Feature Aug-
mentation
One Autoencoder (AE) was constructed for dimensionality
reduction of each modality. AE’s consist of an encoder and
decoder. The encoder ( f ) maps the original domain to a re-
duced latent space and the decoder (g) maps the latent space
back to the original domain. The encoder consists of a single
linear layer, which is batch normalised and passed through
a sigmoid function. The aim of the AE is to minimise noise
in the reconstruction of the latent space according to Eq. 2
where the loss is calculated as the mean square error (MSE)
loss.

E = argmin f ,g (MSELoss(x, f (g(x)))) (2)

The size of the latent space is arbitrary and can be tuned to
each modality. If a patient is missing a sample from an omic
measure, the latent embedding from this modality is imputed
with the median value derived from all other patients. Each
node in the fused network is augmented with a vector formed
by concatenating the latent spaces of each modality.

GNN Training and Classification
GNN’s are a powerful architecture for the learning of graph
structure and information in a supervised setting. We im-
plemented a GCN model from the StellarGraph12 library in
Python. The differentiation between GCN and neural network
architectures is their ability to learn from the local neighbour-
hood as opposed to handcrafted features. The performance of
GCN and other GNN architectures has been demonstrated on
a variety of benchmark tasks, hence extending their applica-
tion to a biomedical setting is an exciting avenue with great
potential.

GCN requires two inputs. A network, consisting of nodes
and edges, and a vector of features for each node. For
MOGDx, the network created was a PSN and the vector of
features was a reduced feature representation from the AE.
Formulating the GCN algorithm as a network represented by
an adjacency matrix A ∈ Rnxn and a feature matrix X ∈ Rnxd

where n is the number of patients and d is the latent dimen-
sion selected for the AE. The GCN then consists of stacked
convolutional layers defined by Eq. 330.

H l+l = σ

(
LH(l)W (l)

)
(3)

Where L = D̃− 1
2 ÃD̃− 1

2 is the normalised graph Laplacian;
Ã = A+ I is the adjacency matrix; D̃ is the degree matrix of
Ã; W is the weight matrix learned during training; σ is the
non-linear activation function, ELU activation in this case,
H(l) is the input to each layer and H(0) corresponds to X the
node feature matrix.

Interpretability of MOGDx
Interpretability in biomedical applications is important to un-
derstand how specific features contribute to prediction so that
therapeutic interventions or novel diagnoses can be well un-
derstood. MOGDx shows interpretability in a number of ways.
Firstly, through ablation experiments, we can identify which
omic measures are most predictive of the targeted outcome.
Ablation experiments are widely adopted for feature impor-
tance and ranking in neural networks31. Similarly, we can
treat entire modalities as features in MOGDx to identify the
most informative. Enrichment analysis is a well understood
methodology to map selected genes to their biological and
molecular pathways. Functional enrichment analysis was
carried out using the clusterProfiler32 algorithm in R on the
extracted features from the mRNA datasets. Similarly, enrich-
ment analysis was carried out using the mCSEA33 algorithm
in R on the extracted CpG sites from the DNAm datasets.
Results from these analyses were further compared to exist-
ing literature. TSNE is a statistical method to represent high
dimensional data in an x-y plane. In this case, the GCN algo-
rithm was able to map each point to a coordinate with close
points having the same classification outcome. Through this
visualisation, we can see which classes are most difficult to
predict and which classes overlap in predictions.
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