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Abstract current: 154 (limit: 160) 38 

The functional domain of the cerebellum has expanded beyond motor control to also include 39 

cognitive and affective functions. In line with this notion, cerebellar volume has increased over recent 40 

primate evolution, and cerebellar alterations have been linked to heritable mental disorders. To map 41 

the genetic architecture of human cerebellar morphology, we here studied a large imaging genetics 42 

sample from the UK Biobank (n discovery = 27,302; n replication: 11,264) with state-of-the art 43 

neuroimaging and biostatistics tools. Multivariate GWAS (MOSTest) on empirically derived regional 44 

cerebellar MRI features yielded 351 significant genetic loci (228 novel, 94% replicated). Candidate 45 

SNPs showed significant positive enrichment for relatively recent genetic mutations over the last 46 

300k years (i.e., coinciding with the emergence of Homo sapiens), while gene level analyses 47 

revealed enrichment for genes associated with human-specific evolution over the last ∼6-8 million 48 

years. Finally, we observed genetic overlap with major mental disorders, reinforcing the notion of 49 

cerebellar involvement in psychopathology.  50 

  51 

Teaser: Genome-wide analysis of cerebellar morphology reveals links to recent human evolution 52 

and psychopathology 53 

  54 
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Introduction 74 

The cerebellum contains ~80% of all neurons in the human brain(1) and has rapidly expanded in 75 

volume over recent primate evolution(2). Indeed, the surface area of the cerebellar cortex extends 76 

to almost 80% of the surface area of the cerebral cortex(3). Comparative genetic analyses suggest 77 

that protein coding genes with known roles in cerebellar development have been subject to a similar, 78 

or even greater, rate of hominid evolution as compared to cerebro-cortical developmental genes(4). 79 

Thus, the evolution of the cerebellum may have played a key role in the emergence of human 80 

cognition, including language(5).  81 

A growing number of neuroimaging and clinical studies in humans also link cerebellar 82 

structure and function to a wide range of cognitive and affective functions(6-8), as well as to a 83 

number of heritable developmental(9) and psychiatric(10) disorders where these abilities either fail 84 

to develop properly or are compromised later in life. However, compared to supra-tentorial brain 85 

structures such as the cerebral cortex(11) and the hippocampus(12), few studies have mapped the 86 

genetic architecture of the cerebellum. 87 

 Of note, the few existing cerebellar genome-wide association studies (GWAS) have mostly 88 

been restricted to total cerebellar volume(13, 14), thus largely ignoring regional variation in cerebellar 89 

morphology. Importantly, such variation in the relative volumes of cerebellar subregions (i.e., 90 

variation in cerebellar shape independent of total cerebellar volume) has been associated with 91 

variation in behavioral repertoires in several species(15, 16), including domain-general cognition in 92 

primates(16). 93 

We here performed a GWAS of MRI-derived regional cerebellar morphological features in a 94 

large population-based sample from the UK biobank (n discovery = 27,302; n replication:11,264), 95 

functionally characterized the genetic signal, tested for enrichment of SNPs and genes linked to 96 

human evolution, and assessed genetic overlap with major mental disorders. 97 

 98 

 99 

Results 100 

  101 

Data-driven decomposition of cerebellar grey matter maps reveals highly reproducible 102 

morphological features. 103 

Since traditional atlases of the cerebellar cortex based on gross anatomical landmarks (i.e., lobules) 104 

only partially overlap with more recent functional parcellations of the cerebellum(17-25), we first used 105 

a data-driven approach (non-negative matrix factorization, NNMF(26-28)) to parcellate voxel-based 106 

morphometry (VBM) based maps of cerebellar grey matter volume from 28,212 participants into 107 

robustly reproducible sub-regions. NNMF yielded highly reproducible decompositions (across split-108 

half datasets) for model orders (i.e., number of components specified) ranging from 2 to 100 (see 109 

Online Methods for details about the study sample, MRI processing and quality control procedures). 110 

After observing that the improved fit to the original data seen with higher model orders tended to 111 
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level off between 15 and 30 components (indicating that the intrinsic dimensionality of the data might 112 

have been reached), we decided on a model order of 23 based on its good split-half reproducibility 113 

(see Fig. 1B, Online Methods for details regarding model order selection, as well as Supplementary 114 

Figure 1 for summary maps of all tested model orders). 115 

 116 

 117 
Figure 1: Data driven decomposition of cerebellar grey matter maps yields highly 118 

reproducible and moderately heritable morphological features. A: Binarized winner-takes-all 119 

map for the 23-component solution based on data-driven decomposition of cerebellar grey matter 120 

maps from 28,212 participants. Note that empirically derived boundaries between cerebellar regions 121 

only partially follow traditional lobular borders (marked with dotted black lines); B: Five distinct 122 

components overlapping cerebellar Crus I derived from the split-half reliability analyses. While one 123 

of these components emerged as bilateral in Split 2, the remaining four components were almost 124 

identical, despite being derived from two independent samples; C: Narrow sense (SNP-based) 125 

heritability of the 23 components (see Supplementary Data 5 for numerical values). D: Hierarchical 126 

clustering of the 23 components (derived from the full sample decomposition) based on their pairwise 127 

genetic correlations revealed a primary division between the anterior and posterior cerebellum, with 128 

additional separations between medial and lateral regions. The full genetic correlation matrix can be 129 

found in Supplementary Data 6.  130 

 131 

Of note, our data-driven decomposition differed markedly from the standard cerebellar atlas based 132 

on gross anatomical features, shown as dotted lines in Fig 1A (see Supplementary Figure 2 for all 133 

23 components and Supplementary Data 1 for quantification of overlap between NNMF-derived 134 

components and standard cerebellar anatomical regions, i.e. lobules). For instance, five distinct 135 

components overlapped Crus I of cerebellar lobule VII (shown in Fig 1B), an anatomical region which 136 

already started to split into separate components at a model order of three. We further observed 137 

only partial overlap with task-based functional parcellations of the cerebellar cortex (Supplementary 138 

Data 2). While some components clearly overlapped cerebellar regions previously associated with 139 

hand movements, eye-movements/saccades or autobiographical recall, other data-driven 140 

components overlapped multiple functionally defined cerebellar regions (Supplementary Data 2).   141 
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Cerebellar morphological features are heritable and reveals a distinct anterior-posterior 142 

pattern based on their bivariate genetic correlations. 143 

After removal of one of each genetically related pair of individuals (n = 910), 27,302 participants 144 

remained for the genetic analyses. In addition to the 23 regional cerebellar morphometric features 145 

of primary interest, we also included total cerebellar volume, estimated total intracranial volume and 146 

9 cerebral brain phenotypes to serve as covariates and/or comparison phenotypes. Prior to the 147 

genetic analyses, all morphological features were adjusted for effects of scanner site, sex, age, 148 

estimated total intracranial volume, 40 genetic population components, genetic analysis batch and 149 

a quantitative structural MRI quality index (the Euler number(29)) using general additive models, 150 

before finally being rank-order normalized (see Online Methods for details). 151 

To validate our analysis approach, we computed genetic correlations (using LD-score 152 

regression, LDSC(30)) between univariate GWAS results on the comparison features and previously  153 

neuroimaging GWAS studies. Results showed a mean rg of .90 (range: .80-.99, see Supplementary 154 

Data 3). For the 23 cerebellar morphological features, we computed genetic correlations between 155 

discovery (n = 27,302) and replication (n = 11,264) samples using LDSC(30). These genetic 156 

correlations were high (mean rG: .92; range: .83-1), indicating reliable genetic signals (see 157 

Supplementary Data 4). 158 

Genetic complex trait analysis (GCTA(31)) revealed SNP-based heritability estimates (h2) 159 

ranging from .33 to .44 (Figure 1C and Supplementary Data 5). Analyses of total cerebellar volume 160 

(h2 = .35), estimated total intracranial volume (h2 = .41) and the 9 cerebral comparison phenotypes 161 

(h2 range: .26 to .45) gave a similar range of heritability estimates (Supplementary Data 5). 162 

Hierarchical clustering of cerebellar features based on their bivariate genetic correlation 163 

matrix (GCTA-based rG ranging from 0.35 to 0.98, Supplementary Data 6) revealed a primary 164 

anterior-posterior division running along the horizontal fissure separating Crus I and Crus II, with 165 

secondary divisions grouping features into more lateral or medial, as well as more anterior and 166 

posterior features within the major anterior and posterior regions (Fig 1D). Of note, the primary 167 

division along the horizontal fissure was also evident from the (genetically naïve) two-component 168 

NNMF decomposition, while medial-to-lateral divisions already began to emerge with a model order 169 

of three (see Supplementary Figure 1).  170 

In order to examine whether this phenotypic and genetic correlation structure was also 171 

reflected in regional cerebellar gene expression patterns, we used the abagen toolbox(32) to extract 172 

Allen Human Brain Atlas(33) gene expression profiles for 22 of the 23 morphological features and 173 

computed their bivariate Pearson correlations (across 15,631 genes; Supplementary Data 7) and 174 

hierarchical clustering solution (Supplementary Figure 4). The anterior-posterior boundary across 175 

the horizontal fissure was also evident in the gene expression data, which in addition highlighted 176 

distinct gene expression patterns for the posterior midline (grouped together with the horizontal 177 

fissure), as well as for the most lateral regions of the cerebellar cortex. 178 

 179 
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Multivariate GWAS reveals 351 genetic loci associated with cerebellar morphology. Figure 2A 180 

shows the main results for the multivariate GWAS across the 23 cerebellar morphological features 181 

applying MOSTest(34). We observed 35,098 genome-wide significant (GWS) SNPs, which were 182 

mapped by FUMA(35) to a total of 51,803 candidate SNPs by adding reference panel SNPs in high 183 

LD (r >.6) with GWS SNPs. The 51,803 candidate SNPs (see Supplementary Data 8) were 184 

represented by 1,936 independent significant SNPs and 560 lead SNPs in 351 genomic loci (see 185 

Supplementary Data 10). The QQ-plot of the MOSTest results did not suggest inflation, while the 186 

QQ-plot of results based on permuted data (under the null hypothesis) confirmed the validity of the 187 

MOSTest analytical approach (Supplementary Figure 5). 188 

 189 
Figure 2: Multivariate GWA analysis of the 23 cerebellar morphological features revealed 351 190 

independent genome-wide significant (GWS) loci. A: The upper half of the Miami plot shows the 191 

main results from the multivariate analysis. The lower half displays results from a series of 23 192 

univariate analyses (corrected for multiple comparisons using the standard min-P approach), as well 193 

as results from a univariate analysis of total cerebellar grey matter (marked in orange). B-D: Euler 194 

diagrams showing the relative numbers of - and overlaps between - candidate SNPs mapped by the 195 

three analysis approaches employed in the current study (B), the current and four recent studies 196 
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reporting genetic associations with cerebellar morphology (C), as well as results from multivariate 197 

GWASs on hippocampal and cerebrocortical morphology (D).    198 

 199 

Annotation of all candidate SNPs using ANNOVAR(36) as implemented in FUMA35 revealed that the 200 

majority of candidate SNPs were intronic (57.8%) or intergenic (38.3%). While only 0.7% were 201 

exonic, about 81% of the candidate SNPs were assigned minimal chromatin states between 1 and 202 

7 (i.e., open chromatin states), implying effects on active transcription37 (see Supplementary Data 8-203 

9). 204 

         We evaluated the robustness of these multivariate results using a multivariate replication 205 

procedure established in Loughnan et al(37), which computes a composite score from the mass-206 

univariate z-statistics (i.e., applying multivariate weights from the discovery sample to the replication 207 

sample input data) and then tests for associations between this composite score and genotypes in 208 

the replication sample (for mathematical formulation see Loughnan et al(37)). Results showed that 209 

97% of loci lead SNPs present in both samples replicated at a nominal significance threshold of p < 210 

.05 (Supplementary Figure 6 and Supplementary Data 8), and that 74% remained significant after 211 

Bonferroni correction for the 339 replication tests conducted (Supplementary Data 10). Moreover, 212 

99% of loci lead SNPs showed the same effect direction across discovery and replication samples 213 

(Supplementary Figure 6 and Supplementary Data 10). Thus, 329 (94%) of the 351 reported loci 214 

were replicated.  215 

In addition, we assessed the robustness of the multivariate patterns by computing bivariate 216 

correlations between feature z-score vectors assigned to the discovery sample lead SNPs in an 217 

independent multivariate GWAS (MOSTest) performed on the replication sample. These correlations 218 

(restricted to the 339 loci lead SNPs present in both samples) were relatively high (mean r: .70, see 219 

Supplementary Data 10 and Supplementary Figure 7). Figure 3 and Supplementary Figure 7 give 220 

some examples of discovery and replication sample multivariate patterns projected back onto the 221 

cerebellar cortex. 222 

         To compare our main multivariate MOSTest results to univariate approaches, the lower part 223 

of the Miami plot in Figure 2A, and Figure 2B, displays results from a set of univariate GWASs on 224 

the cerebellar morphological features (which yielded 8370 candidate SNPs and 57 genomic loci, 225 

corrected for multiple comparisons using the min-P approach(38, 39)), as well as the 4044 candidate 226 

SNPs and 10 significant loci resulting from the univariate GWAS on total cerebellar grey matter 227 

volume (marked in orange). 52 of the 57 loci identified in the univariate analyses of regional 228 

cerebellar features overlapped 55 of the 351 loci identified using the multivariate method, while 9 out 229 

of 10 loci identified in the univariate analysis of total cerebellar volume were also identified in the 230 

multivariate analysis. Thus, our multivariate analysis of regional cerebellar features increased the 231 

locus yield ~35-fold relative to analyzing total cerebellar volume and ~6-fold relative to performing a 232 

set of univariate analyses on the same regional features.   233 
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We next compared the current findings with previously reported genetic loci for cerebellar 234 

morphology by extracting summary statistics from two recent GWAS studies using the UKBB sample 235 

(n = 19k(40) and 33k(41)) that included regional cerebellar volumes among the full set of analyzed 236 

brain imaging-derived phenotypes (101(40) and 3,144(41), respectively), as well as two recent 237 

GWASs on total cerebellar volume (n = 33k(13) and 27k(14), respectively). Candidate SNPs and 238 

independent GWS loci were identified in FUMA using the same settings as for our primary analyses 239 

and employing a liberal p-value threshold of 5e-8 (i.e., not correcting for the total number of brain 240 

imaging features analyzed). Results are displayed in Figure 2c and Supplementary Data 8 and 10. 241 

In brief, we found that 19,527 of the 51,803 candidate SNP (i.e., 36%) and 123 of the 351 identified 242 

genomic loci (i.e., 35%) overlapped with candidate SNPs and loci extracted from these three 243 

previous studies. Thus, 228 of the 351 (i.e., 65%) genetic loci reported here are novel to the literature 244 

on of cerebellar morphology genetics (see Supplementary Data 10. 245 

Overlap of cerebellar candidate SNPs and genetic loci with results from recent multivariate 246 

analyses of hippocampal and cerebrocortical morphology are displayed in Figure 2D and 247 

Supplementary Data 8 and 10 (final columns). Of note, we found that 32 and 29 percent of the 248 

candidate SNPs discovered here for the cerebellum overlapped with candidate SNPs for vertex-wise 249 

cerebrocortical surface area and thickness(42), respectively, while 11.4 percent overlapped with 250 

candidate SNPs found for hippopcampal subregions(43). 95 of the 351 genetic loci overlapped loci 251 

linked to the other multivariate brain phenotypes (Supplementary Data 10). Thus, 64% of the 252 

candidate SNPs and 73% of genetic loci appeared to be specifically associated with cerebellar 253 

morphology. 254 

 255 

Significant genetic variants show heterogeneous effects across the cerebellar cortex, 256 

influencing both regional and total volumes.   257 

A major advantage of our multivariate analysis approach is its sensitivity to both highly localized and 258 

more generally distributed effects of SNPs on cerebellar morphology. This is illustrated in Figure 3, 259 

which displays the 351 loci lead SNPs as a function of both the most extreme individual Z-score 260 

across all cerebellar features (e.g, analogous to the strongest “local” effect) and of the mean Z-score 261 

across these features (i.e. analogous to the main effect on overall cerebellar volume).  262 

 263 
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 264 
Figure 3: Lead SNPs show spatially heterogeneous – and replicable - effects across the 265 

cerebellar cortex. The 351 loci lead SNPs identified by MOSTest are plotted as a function of main 266 

overall effect across all cerebellar features (x-axis: mean Z-score) and most extreme effect for any 267 

single cerebellar feature (y-axis: most extreme Z-score across features), and colour coded by SNP 268 

discovery method. The cerebellar flat-maps show discovery (left) and replication (right) sample 269 

regional distributions of Z-scores (color-scale range from -10 to 10) for a few selected lead SNPs 270 

(see Supplementary Data 10 for individual feature Z-scores for all 351 discovery sample loci lead 271 

SNPs). SNP rs7877685 was only present in the discovery sample. 272 

 273 

As can be seen, some lead SNPs (e.g. rs13107325; rs76934732) show pronounced positive or 274 

negative mean z-scores, indicating a relatively consistent direction of effect across cerebellar 275 

features. See also inset figures displaying feature Z-scores projected back onto the cerebellar cortex. 276 

Many of these SNPs also emerged in the univariate analysis of total cerebellar volume and were 277 

recently reported in GWASs on total cerebellar volume(13, 14). 278 

         Many other lead SNPs, however, show strong “local” signals with opposite effect directions 279 

across features, yielding very weak global signals (e.g. rs117332043; rs78777685). Thus, while 280 

several of the most significant SNPs in this category have previously been reported in GWASs 281 

including local cerebellar morphological features(40, 41), they did not emerge from analyses of total 282 

cerebellar volume, neither in the current nor in previous studies. 283 
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Finally, our multivariate MOSTest approach is also sensitive to SNPs displaying weaker 284 

effects distributed across several cerebellar features, often with opposite effect directions (e.g. 285 

rs12464825; rs2388334). For this category of SNPs, neither of the univariate methods have sufficient 286 

power at the current sample size. In contrast, these two example SNPs robustly emerged from the 287 

multivariate analysis (discovery sample p-values < 1e-56; replication sample p-values <1e-15). 288 

 289 

Genetic variants associated with cerebellar morphology are enriched for evolutionary recent 290 

mutations in the human genome 291 

We next mapped the evolutionary age of cerebellar candidate SNPs by merging them with a recently 292 

published dataset on dated mutations in the human genome(44). Following the analysis procedure 293 

established by Libedinsky et al.(45), we plotted the histogram of dated candidate SNPs over the last 294 

2 million years in bins of 20.000 years (Figure 4A and Supplementary Data 11), and tested for 295 

positive or negative enrichment by comparing them to empirical null distributions derived from 10,000 296 

randomly drawn and equally sized sets of all SNPs in the full human genome dating dataset (after 297 

matching them to brain-related SNPs in terms of minor allele frequency; see Online Methods for 298 

details).  299 

 300 
Figure 4: Genetic variants associated with cerebellar morphology are enriched for 301 

evolutionary recent mutations in the human genome. A: Histogram of estimated SNP age 302 

(ranging from 0 to 2 million years, in bins on 20,000 years) for 41,549 candidate SNPS associated 303 

with cerebellar morphology. The solid black line and grey ribbon denote the mean and Bonferroni-304 

corrected 95% confidence intervals derived from a null model constructed from 10,000 of equally 305 

sized sets of SNPs randomly drawn from the Human Genome Dating Atlas of Variant Age (after 306 

matching these to brain-related SNPs in terms of minor allele frequencies). Red bars denote time-307 

bins of significant positive enrichment. B: Enrichment Z-scores (calculated from means and standard 308 

deviations of the corresponding null models) for candidate SNPs associated with cerebellar, 309 

hippocampal and cerebrocortical surface area and cortical thickness morphology. Time bins with 310 

significant positive enrichment are highlighted and marked with black borders, while circle size reflect 311 

z-score (see Supplementary Data 11-12 for full numerical results).    312 

 313 

0

500

1000

1500

2000

0.0 0.5 1.0 1.5 2.0
Time (million years ago)

C
an
di
da
te
SN

P
co
un
t

Genetic timeline of cerebellar morphologyA

−25

0

25

50

0.0 0.5 1.0 1.5 2.0
Time (million years ago)

Z−
sc
or
e

Cerebellum
Hippocampus
Area
Thickness

SNP−age enrichment for brain morphologyB

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2023. ; https://doi.org/10.1101/2023.02.10.23285704doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285704
http://creativecommons.org/licenses/by/4.0/


Results revealed two main peaks of positive enrichment, the most prominent ranging from 260-300k 314 

years ago (enrichment z-scores ranging from 23.7-28.6; see Figure 4B and Supplementary Data 11) 315 

, i.e., coinciding with the emergence of anatomically modern humans (46, 47). The second strongest 316 

enrichment peak (z-score range: 6.1-12.5) ranged from 40-120k years ago, i.e., overlapping the 317 

human migration out of Africa, as well as the first evidence of several uniquely human behaviors 318 

(often referred to as behavioral modernity), such as tool-making, recording of information onto 319 

objects and purposeful burials(48).  320 

For comparison, Figure 4B also shows results from analyses on candidate SNPs identified 321 

in previous multivariate GWAS studies of hippocampal(43) and cerebrocortical(42) morphology. 322 

These brain features also showed significant enrichment peaks, partially overlapping the cerebellar 323 

results. Specifically, SNPs associated with hippocampal morphology also displayed the most 324 

prominent enrichment peak between 260 and 300k years ago, while SNPs linked to cerebrocortical 325 

morphology (surface area and thickness) tended to show the most significant enrichment for more 326 

recent time bins (i.e., 40-120k years ago, see full results in Supplementary Data 12).    327 

 328 

Genes associated with cerebellar morphology show selective expression in cerebellar and 329 

prenatal brain tissue, as well as enrichment for genes linked to human accelerated regions. 330 

To functionally characterize the multivariate GWAS signal, we mapped the full set of GWAS p-values 331 

to 19,329 protein coding genes using MAGMA(49) and used the resulting gene-level p-values to test 332 

for 1) GWS genes, 2) gene expression in brain tissue; and 3) enrichment for genes linked to human 333 

accelerated regions (HARs),  i.e. sections of DNA that have remained relatively conserved 334 

throughout mammalian evolution, before being subject to  a burst of changes in humans since 335 

divergence of humans from chimpanzees(50, 51). These analyses yielded a total of 534 GWS genes 336 

(i.e., 2.78% of all protein coding genes, see Figure 5A and Supplementary Data 13). Using the full 337 

set of 19,329 gene-level p-values in MAGMA gene property analyses revealed significant and 338 

specific gene expression in cerebellar and prenatal brain tissue (Figure 5B-C and Supplementary 339 

Data 14-15), with the selective cerebellar expression seen in two independent datasets (Allen 340 

Human Brain Atlas(33) and The Genotype-Tissue Expression (GTEx) Project).  341 

The MAGMA gene set analysis of HAR-linked genes revealed significant enrichment (p = 342 

7.09e-08) for genes associated with cerebellar morphology (Figure 5D, Supplementary Data 16). Of 343 

note, running this same HAR gene set analysis on summary statistics from recent multivariate GWAS 344 

studies on cerebrocortical(42) or hippocampal(43) morphological features yielded similar (for cortical 345 

features) or significantly weaker (hippocampal features) enrichment effects (Figure 5d, see Online 346 

Methods for processing pipeline).  347 

 348 
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 349 
Figure 5: Gene mapping reveals selective enrichment for cerebellar and prenatal brain tissue, 350 

as well as for genes linked to human accelerated regions. A: MAGMA mapped the full range of 351 

SNPs from the multivariate GWAS to 19.329 protein-coding genes, 534 of which were genome-wide 352 

significant (Bonferroni corrected threshold marked with red line), with the 30 most significant genes 353 

labeled in the gene-based Manhattan plot. B-C: MAGMA gene-property analyses revealed selective 354 

brain expression in the cerebellum and during prenatal developmental stages. D: MAGMA gene-set 355 

analysis revealed significant enrichment for sets of genes previously linked to human accelerated 356 

regions (HARs). Figure 4d also shows results from comparative analyses using summary statistics 357 

from other multivariate GWASs of MRI-based brain, as well as significant results from statistical tests 358 

comparing beta-weights for HAR-linked genes across multivariate brain features. Horizontal red lines 359 

mark the Bonferroni-corrected significance threshold for each subplot. See Supplementary Data 13-360 

16 for full results. 361 

 362 

Genes linked to human cerebellar morphology show enrichment for gene sets linked to 363 

selective cerebellar gene expression, altered cerebellar morphology in mouse models, 364 

human clinical/anthropometric traits, as well as specific biological processes and pathways. 365 

In line with the continuous brain tissue gene expression results described above, we also observed 366 

significant and relatively selective enrichment for smaller curated sets of genes previously found to 367 

be highly and selectively expressed in mouse (Figure 6A, Supplementary Data 17) and human 368 

(Figure 6C, Supplementary Data 19) cerebellar brain tissue, as well as for sets of genes previously 369 
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shown to affect cerebellar morphology in mouse gene perturbation experiments (Figure 6B, 370 

Supplementary Data 18) and various clinical conditions and anthropometric traits in humans (Figure 371 

6D, Supplementary Data 20). The most significant gene ontology and curated gene sets from the 372 

MSigDB(52, 53) database were related to brain development (e.g., neurogenesis, axon guidance 373 

and neuron differentiation, Figure 6E, Supplementary Data 21), and highlighted the reelin signaling 374 

pathway (Figure 6F, Supplementary Data 22). 375 

 376 

 377 
Figure 6: Gene mapping reveals selective enrichment across brain tissues and curated gene 378 

sets. MAGMA gene-set analyses revealed significant enrichment for sets of genes previously linked 379 

to preferential expression in human (A) and mouse (C) cerebellar tissue, as well as effects on 380 

cerebellar morphology (and other brain phenotypes) in mouse gene perturbation experiments (B) 381 

and human clinical disorders and phenotypes (D).  Significant gene ontology terms were related to 382 

neural development (E), while curated gene sets highlighted the Reelin signaling pathway (F). 383 

Across all subplots the x-axis shows the -log10 p-value, the y-axis marks the number of gene sets, 384 

and the top 10 most significant gene-sets are labelled. Red lines mark the Bonferroni-corrected 385 

significance threshold for each subplot. See Supplementary Data 17-22 for full results.  386 
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As can be seen in Figure 5A (and Supplementary Data 13), RELN (encoding the protein Reelin) was 388 

also the most significant gene mapped by MAGMA. See also Supplementary Figure 8 for a regional 389 

locus plot showing the 12 lead SNPs mapped to RELN and their associated z-score maps. 390 

  391 
Gene mapping reveals sets of plausible causal genes 392 

In addition to the gene-based mapping strategy using all SNPs described above (MAGMA), we also 393 

mapped candidate SNPs to genes using two complementary gene mapping strategies: 1) positional 394 

mapping of deleterious SNPs (defined as having a CADD-score(54) > 12.37); and 2) mapping of 395 

SNPs previously shown to affect gene expression in cerebellar tissues (i.e., eQTL mapping). Across 396 

all three strategies, we mapped a total of 674 unique genes; 531 using MAGMA, 310 using positional 397 

and 197 using eQTL mapping (see Figure 7A and Supplementary Data 23). 298 genes were 398 

identified by at least two strategies, while 65 genes were mapped by all three strategies. Out of these 399 

674 genes, 61 have previously been associated with cerebellar pathology in humans and/or altered 400 

cerebellar morphology in mouse gene perturbation experiments, while 121 have been linked to 401 

human accelerated regions (Supplementary Data 23). As can be seen in Figure 7B and 402 

Supplementary Data 23, the 674 genes mapped to cerebellar morphology showed some overlap 403 

with genes mapped to hippocampal(43) and cerebrocortical(42) morphology using the same 404 

mapping strategies, but 264 genes (39%) appeared relatively specific to the cerebellum.   405 

Results from gene set analyses on the 674 mapped genes (Figure 7, Supplementary Data 406 

24-28) largely mirrored results from the MAGMA analyses described above, but in addition revealed 407 

that this set of 674 mapped genes was also enriched for gene sets associated with several complex 408 

clinical phenotypes and anthropometric traits in humans, including cognitive ability, neuroticism and 409 

schizophrenia (Figure 7F, Supplementary Data 28). 410 

Of note, while the full set of mapped genes showed significant enrichment for sets of genes 411 

known to alter cerebellar morphology in mouse mutation or knock-down experiments 412 

(Supplementary Data 26), we also note that 613 of the 674 mapped genes have not to our knowledge 413 

previously been linked to cerebellar development, anatomy or pathology in mice or humans 414 

(Supplementary Data 23), and thus constitute potential targets for future gene perturbation 415 

experiments in animal models. 416 

Restricting the above analyses to the 298 genes mapped across at least two strategies did 417 

not markedly affect the results (Supplementary Data 24-28, final columns). 418 

 419 

 420 

 421 

 422 
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 423 
Figure 7: Mapping and functional characterization of plausible causal genes. The 674 plausible 424 

causal genes mapped using three complementary strategies (A) show partial overlap with genes 425 

mapped to hippocampal(43) and cerebrocortical(42) morphology (B); significant enrichment for sets 426 

of genes linked to human accelerated regions (HAR) (C); selective expression in the cerebellum in 427 

mice (D) and humans (E), as well as effects on cerebellar morphology in mouse gene perturbation 428 

studies (F) and human disorders and anthropometric phenotypes (G). See Supplementary Data 23-429 

28 for full results. 430 

 431 
Cerebellar morphology shows significant genetic overlap with psychiatric disorders 432 

We finally tested for overlap between the multivariate genetic profile for cerebellar morphology and 433 

genetic profiles for five major developmental/psychiatric disorders (attention deficit hyperactivity 434 

disorder: ADHD; autism spectrum disorder: ASD; bipolar disorder: BIP; major depressive disorder: 435 
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MDD; and schizophrenia: SCZ) using conditional/conjunctional FDR analysis(55). As can be seen 436 

in the conditional QQ-plots in Figure 8, these analyses revealed clear patterns of enriched 437 

association with the clinical phenotypes when selecting subsets of SNPs with increasingly stronger 438 

association with cerebellar morphology (Fig. 8A and figure insets in (C-F). 439 

440 
Figure 8: Genetic variants influencing cerebellar morphology overlap with variants 441 

associated with five major mental disorders. Conditional QQ plots (A and figure insets in C-F) 442 

show an incremental incidence of association with five mental disorders (leftward deflection) as a 443 

function of the significance of association with cerebellar morphology. Manhattan plots show SNPs 444 

with significant association with both traits, thresholded at a conjunctional FDR threshold of p > .01 445 

(red dotted line). SCZ: Schizophrenia; BIP: Bipolar Disorder; MDD: Major Depressive Disorder; 446 

ADHD: Attention Deficit Hyperactivity Disorder; ASD: Autism Spectrum Disorders. 447 

 448 
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See also Supplementary Figure 9 for QQ-plots depicting the reverse association, i.e., enriched 449 

association with cerebellar morphology when conditioning on the association with 450 

developmental/psychiatric disorders. Specific genetic variants jointly influencing the two phenotypes 451 

were identified using conjunctional FDR analyses at a conservative statistical threshold of p<.01. 452 

Results revealed shared genetic loci with all disorders; namely 48 with SCZ, 22 with BIP, 2 with 453 

MDD, 5 with ADHD and 5 with ASD (Figure 6; Supplementary Data 29-33). We mapped lead and 454 

candidate SNPs for each of these loci to genes using positional and eQTL mapping and checked for 455 

gene overlap across disorders (Supplementary Data 34). Of note, the LRP8 gene (a HAR-linked 456 

gene(50, 51) encoding a Reelin receptor) emerged from the conjunctional FDR analyses of both BIP 457 

and SCZ, thus again highlighting the Reelin signaling pathway.  458 

 To complement these multivariate analyses, we also conducted a set of univariate analyses, 459 

using LD-score regression(30) to calculate the genetic correlations between each individual 460 

cerebellar feature and the five developmental/psychiatric disorders. 461 

 462 

 463 
Figure 9: Univariate genetic correlations between cerebellar morphological features and five 464 

major mental disorders are negative. The top row display unthresholded genetic correlations, 465 

while these are filtered at increasingly strict statistical thresholds in the following rows, i.e. nominal 466 

p-value < .05 (second row); Bonferroni correction for the 23 cerebellar features tested (third row); 467 

and Bonferroni correction for both 23 features and 5 clinical conditions (bottom row). Black dotted 468 

lines denote lobular boundaries. 469 

 470 
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As can be seen in the first row of Figure 9 (and Supplementary Data 35), genetic correlations with 471 

cerebellar morphological features were predominantly negative across diagnoses, indicating that 472 

genetic variants associated with a clinical diagnosis tended to also be associated with reduced 473 

cerebellar volumes (with 42 out of 115 tested associations showing nominally significant negative 474 

correlations; Fig 9, second row). However, all univariate genetic correlations were relatively weak, 475 

and only a few negative genetic correlations with BIP and SCZ survived Bonferroni correction for the 476 

23 features tested. When also correcting for the five clinical conditions, only the negative correlation 477 

between BIP and cerebellar feature 23 (primarily overlapping vermal lobules VIIIa and VIIIb) 478 

remained significant.             479 

Supplementary Data 36 show genetic correlations between the five disorders and the ten 480 

comparison brain phenotypes, as well as total cerebellar volume. In general agreement with the 481 

observed pattern for regional cerebellar features, total cerebellar grey matter volume showed 482 

nominally significant negative genetic correlations with BIP (rg: -.10; p = 0.0052) and SCZ (rg: -.09; 483 

p = 0.0133). Pallidal volume also showed nominally significant negative genetic correlations with 484 

these two disorders (BIP: rg: -.10; p = 0.0087; SCZ: rg: -.08; p = 0.0172, while ADHD displayed 485 

negative genetic correlations with estimated total intracranial volume (rg: -.15; p = 0.0003) and total 486 

cortical surface area (rg:-.14 ; p = 0.0065), as well as a positive genetic correlation with hippocampal 487 

volume (rg: .13; p = 0.0164). Finally, MDD showed nominally significant negative genetic correlations 488 

with volumes of the hippocampus (rg -.08: p = 0.025) and thalamus (rg: -.09; p = 0.0258). Only the 489 

negative genetic correlation between ADHD and estimated total intracranial volume survived 490 

Bonferroni correction across the 55 tests performed. 491 

  492 
 493 
Discussion 494 
  495 

The current study identified novel features of the genetic architecture of cerebellar morphology, 496 

supported the notion of recent changes over human evolution, implicated specific neurobiological 497 

pathways, and demonstrated genetic overlap with major mental disorders. 498 

With respect to the main features of cerebellar morphology, it is worth noting that results from 499 

our data-driven decomposition of cerebellar grey matter maps (which was not informed by genetic 500 

data), the genetic correlation analyses of the chosen 23-feature solution and gene expression data 501 

from the Allen Human Brain Atlas all converge on a similar general pattern. The first boundary to 502 

emerge in the data-driven decompositions ran along the horizontal fissure separating Crus I and II 503 

of lobule VII, reflecting its centrality in characterizing phenotypic variability in cerebellar morphology 504 

at the population level. Of note, this boundary also emerged from clustering of the 23 cerebellar 505 

morphological features based on their bivariate genetic correlations or gene expression profiles 506 

(based on the Allen Human Brain Atlas). This latter finding essentially mirrors results from a recent 507 

report using a different analysis strategy on the same gene expression data(56). Interestingly, the 508 

horizontal fissure has been suggested to mark the border between two separate cerebellar 509 
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representations of the cerebral cortex, with a possible third representation in lobules IX-X(57). The 510 

current cerebellar results thus complement previous work on the hierarchical genetic organization of 511 

the cerebral cortex, which has identified the Rolandic fissure (separating the frontal and parietal 512 

lobes) as a main boundary with respect to genetic effects of effects of surface area(58), as well as 513 

a superior-inferior gradient for genetic influences on cortical thickness(59) 514 

         Our multivariate GWAS using MOSTest identified 351 independent GWS loci associated with 515 

cerebellar morphology, increasing the yield ~35-fold relative to analyzing total cerebellar volume and 516 

~6-fold relative to performing a set of univariate analyses on the same regional features in our current 517 

sample. 329 (94%) loci from the multivariate analyses were replicated in an independent sample, 518 

indicating robust results. After applying a liberal threshold to summary statistics from previous well-519 

powered studies, we find that 228 (65%) of our reported loci are novel. Importantly, among the genes 520 

mapped to these novel loci we find several that are known to play important roles in cerebellar 521 

development in mice (e.g., RORA(60), FGF8(61) and BAHRL1(62), see Supplementary Data 22). 522 

While candidate SNPs associated with cerebellar morphology partially overlap with SNPs previously 523 

mapped to other multivariate brain phenotypes, we note that a substantial number of SNPs appear 524 

to be relatively selectively linked to cerebellar morphology, a finding that is in in line with the distinct 525 

gene expression profile found for the cerebellum(33).  526 

SNP- and gene-level results from the current study also bolster – and refine –  the notion of 527 

relatively recent changes in cerebellar morphology over human evolution(2, 4, 15, 16). Specifically, 528 

we found that candidate SNPs associated with cerebellar morphology were particularly enriched for 529 

SNPs with an estimated age of 260-300 thousand years, i.e., coinciding with the emergence of Homo 530 

Sapiens(46, 47). Significant, but weaker, enrichment was also seen for time bins stretching from 40-531 

120 thousand years ago, i.e., overlapping the human migration out of Africa, as well as the first 532 

evidence of several uniquely human behaviors (often referred to as behavioral modernity), such as 533 

tool-making, recording of information onto objects and purposeful burials(48). Similar patterns of 534 

enrichment was also found when analyzing candidate SNPs derived from previous studies on 535 

multivariate hippocampal(43) and cerebro-cortical(42) morphology Gene level analyses further 536 

showed that genes associated with inter-individual variation in cerebellar morphology are enriched 537 

for genes linked to human accelerated regions (HARs)(50) of the genome. HARs denote previously 538 

conserved regions of the genome that were subject to a burst of changes in humans after the 539 

divergence of humans from chimpanzees about 6-8 million years ago(50). Of note, a recent GWAS 540 

on total cerebellar volume found no enrichment for HAR-linked genes(14), suggesting that SNPs 541 

associated with regional cerebellar variation may be driving this effect. While the comparisons with 542 

cerebral features should be interpreted with care since different image preprocessing pipelines were 543 

employed, it is nonetheless striking that HAR gene enrichment was nominally stronger for cerebellar 544 

morphology than for vertex-wise cerebrocortical thickness and area, and significantly stronger than 545 

for hippocampal regional volumes (Figure 5D).  546 
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Together, these SNP- and gene-level results suggest that genetic variants influencing 547 

cerebellar morphology in modern humans have been subject to selection over relatively recent 548 

human evolution, and that cerebellar changes – in concert with other brain regions - may thus have 549 

played a central part in the emergence of uniquely human cognitive abilities.  550 

         Results from the MAGMA gene property and gene set analyses bolster our 551 

confidence in the genetic signal by showing selective gene expression in human cerebellar brain 552 

tissue across two independent datasets (Allen Human Brain Atlas and GTEx.8) and significant 553 

enrichment for sets of genes which have previously been shown to affect cerebellar morphology in 554 

mouse gene perturbation experiments. The MAGMA results further show significant enrichment for 555 

sets of genes known to play key roles in neurodevelopment (e.g., neurogenesis & axon guidance) 556 

and preferential expression in prenatal brain tissue, thus supporting a primarily developmental origin 557 

of genetically determined effects on adult cerebellar morphology.Of note, our MAGMA enrichment 558 

analysis of curated gene sets strongly implicated the Reelin signaling pathway. Indeed, both the 559 

gene coding for the Reelin protein (RELN) and genes coding for its two receptors (LRP8 & VLDLR) 560 

were identified across at least two gene mapping strategies, with RELN emerging as the single most 561 

significant gene by MAGMA. The Reelin pathway is known to play important roles in 562 

neurodevelopment (e.g. neuronal migration), and mutations in the RELN and VLDLR(63) (and to a 563 

lesser extent LRP8; also known as ApoER2(64)) have been associated with cerebellar 564 

malformations and/or dysfunction. LRP8 is also among the genes linked to human accelerated 565 

regions (HARs) of the genome.  566 

The sets of genes mapped by the three complementary mapping strategies provide a 567 

database for future studies investigating the genetic architecture of cerebellar morphology. For 568 

instance, we mapped 616 genes associated with inter-individual variability in human cerebellar 569 

morphology that have not yet to our knowledge been examined in mouse gene perturbation 570 

experiments and/or associated with cerebellar pathology in humans. Among these, we highlight 571 

MAP2K5 and GRB14, two HAR-linked genes mapped across all strategies and associated with lead 572 

SNP p-values <1e-50, but whose functions in the brain are largely unknown. 573 

The reported results for previously discovered variants, loci and genes add important 574 

information regarding regional effects on cerebellar morphology. For instance, while genetic variants 575 

linked to the RELN gene have previously been associated with volumes of cerebellar vermal lobules 576 

VI-X and hemispheric lobule IX(40, 41), we here mapped 12 lead SNPs to RELN showing 577 

heterogeneous effects across the entire cerebellar cortex (but with peak effects overlapping 578 

previously described midline and posterior cerebellar regions, see Supplementary Figure 8). 579 

The observed genetic overlap between cerebellar morphology and the five mental disorders 580 

reinforces the recent notion of the cerebellum as a key brain structure in complex clinical traits and 581 

disorders(6-10). Across the five diagnoses, the strongest evidence for genetic overlap with cerebellar 582 

morphology was found for SCZ and BIP, likely at least in part because these disorder GWASs were 583 

relatively well-powered. While an in-depth discussion of genetic loci jointly influencing psychiatric 584 
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disorders and cerebellar morphology is beyond the scope of this report, we note that the Reelin 585 

pathway again emerges in the genetic overlap analyses for SCZ and BIP. Specifically, the current 586 

finding of LRP8 (a reelin receptor, and HAR-linked gene) as one of the genes jointly associated with 587 

cerebellar morphology and the aforementioned severe mental disorders points towards a potential 588 

molecular pathway involved in the cerebellar abnormalities previously reported in SCZ(10, 65, 66) 589 

and BIP(65, 66). Indeed, in line with its key importance for brain development and function, the 590 

Reelin pathway is also increasingly seen as relevant for a wide range of neurodevelopmental, 591 

psychiatric and neurodegenerative disorders(67). Of particular relevance to the current findings, 592 

converging evidence supports LRP8 as a key susceptibility gene for psychosis(68). 593 

The main limitations of the current study concern the ancestral homogeneity of the sample, 594 

the sample size and the exclusion of very rare genetic variants. Limiting the sample to participants 595 

of European ancestry was deemed necessary considering the current state of the multivariate 596 

GWAS methods used but may limit the generalizability of our findings. Second, while the current 597 

sample size is large in comparison with previous imaging genetics studies, it is still relatively small 598 

in comparison to GWASs of other complex human phenotypes (e.g., intelligence, with a current n of 599 

> 3 million(69)). Finally, very rare genetic variants (MAF < 0.005) were excluded from the current 600 

multivariate GWAS, but are likely to include a number of variants with relatively large effect sizes on 601 

complex human traits (70). Thus, future studies using larger and more diverse samples – as well as 602 

whole exome and/or genome sequencing - are likely to discover more of the genetic variants 603 

associated with cerebellar structure.  604 

In conclusion, the current results enhance our understanding of the genetic architecture of 605 

human cerebellar morphology, provide supporting evidence for cerebellar morphological changes 606 

during the last ∼6-8 million years of human evolution, and reinforce the notion of cerebellar 607 

involvement in several mental disorders by demonstrating significant genetic overlap. 608 

 609 

 610 

 611 
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 623 

 624 

Materials and Methods:  625 

 626 

Participants 627 

For our main analyses, T1-weighted MR images, demographic and genetic data from 39,178 UK 628 

Biobank participants were accessed using access number 27412. After removing 1043 participants 629 

who either had missing genetic data or had withdrawn consent (as of 19.11.2019), data from 38,135 630 

participants remained for the main analysis (age range: 44.6-82.1; mean age: 64.1, 51.9% female). 631 

Following quality control procedures (QC, see below), 28,212 UK Biobank participants of European 632 

descent remained for the main analyses (age range: 45.1-82.1; mean age: 64.1, 55.1% female), 910 633 

of which were identified as close relatives and removed prior to genetic analyses (see below), leaving 634 

a final sample for the primary analyses of 27,302 (age range: 45.1-82.1; mean age: 64.1, 54.9% 635 

female). For the replication sample, we accessed a newer release of UK Biobank participants (n = 636 

48,045) and removed the 27,302 participants included in the primary analyses.  After running through 637 

identical QC procedures as for the main sample (although applied only to the cerebellar features of 638 

primary interest and covariates included when analyzing these), the replication sample consisted of 639 

11,264 unrelated UK Biobank participants of European descent (age range: 46.1-83.7; mean age: 640 

66.8, 46.9% female). The UK Biobank was approved by the National Health Service National 641 

Research Ethics Service (ref. 11/NW/0382),  642 

 643 

Initial MR image processing 644 

MRI data was first processed using the recon-all pipeline in Freesurfer 5.3(71), yielding a large 645 

number of brain features. Of these, we retained measures of estimated total intracranial volume 646 

(eTIV), total cerebro-cortical surface area, average cerebro-cortical thickness as well as the volumes 647 

of seven subcortical structures (hippocampus, amygdala, thalamus, pallidum, putamen, caudate 648 

nucleus and nucleus accumbens) as cerebral (or global, in the case of eTICV) comparison regions 649 

for our main cerebellar analyses. These anatomical features were averaged across hemispheres, 650 

yielding a total of ten comparison phenotypes.  651 

Next, the bias-field corrected T1-images from the FreeSurfer analyses were analyzed using 652 

the cerebellum-optimized SUIT-toolbox(72). In brief, SUIT isolates the cerebellum and brain stem 653 

from T1-images, segments cropped images into grey and white matter, and normalizes these tissue 654 

probability maps to a cerebellum-specific anatomical template. After multiplying the grey matter 655 

maps with the Jacobian of the transformation matrix (i.e. preserving information about absolute 656 

volumes), we extracted grey matter intensity values overlapping the 28 cerebellar lobular labels in 657 

the probabilistic SUIT-atlas. Since cerebellar volumetric indices showed high correlations across the 658 

two hemispheres (range: .87-.96; mean: .94), we created mean volumetric measures by averaging 659 

across hemispheres. Finally, we also combined the two smallest regions in the SUIT-atlas (Vermis 660 
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Crus I and II located in the midline, average volumes: 2.9 and 293.4 mm2, respectively) to create a 661 

new Vermis Crus region (average volume: 296.2 mm2). This procedure reduced the 28 cerebellar 662 

lobular volumes to 16 morphological indices. Total cerebellar grey matter volume was defined as the 663 

sum of all 28 lobular labels in the SUIT-atlas. 664 

 665 

Quality control procedures 666 

After excluding 4,818 UKBB participants of non-European origin, anatomical indices from the 667 

remaining 33,317 participants went through an iterative quality control (QC) procedure. First, we 668 

excluded 639 subjects with a mean Euler number below -217, indicating poor MRI quality(29), as 669 

well as 12 subjects with missing and 90 subjects with zero values for any of the key cerebellar or 670 

cerebral brain measures of interest. Next, we used general additive models (GAM, implemented in 671 

the R-package “mgcv”) in order to model the effects of age (estimated as smooth functions for males 672 

and females separately, using cubic splines with 10 knots), sex, and scanner site on estimated total 673 

intracranial volume (eTIV) and mean thickness of the cerebral cortex. Specifically, we used the 674 

following formula: 675 

 676 

GAM_model<-gam(Anatomical feature ~ s(Age, bs = “cs”, by = Sex, k = 10) + as.factor(Sex) 677 

+ as.factor(Scanner), data = UKBB_cerebellum_GWAS, select = TRUE, method = “REML”) 678 

 679 

Adjusted eTIV and mean cortical thickness indices were then created by reconstructing the data 680 

using the intercept and residuals from this model (i.e., removing effects of age, sex and scanner), 681 

before identifying and rejecting potential outliers, defined as +/- 3 median absolute deviations 682 

(MAD)(73)  from the median of these adjusted values. Data from 350 subjects were rejected based 683 

on these criteria.  684 

For the remaining cerebral anatomical measures, as well as total cerebellar volume, this 685 

procedure was then repeated, with scaled eTIV as an additional predictor. Since previous studies 686 

have demonstrated that the relationship between regional brain volumes and intracranial volume is 687 

not strictly allometric(74, 75), we estimated the effect of eTIV using cubic splines with 10 knots. 688 

Specifically, we used the following formula: 689 

 690 

GAM_model<-gam(Anatomical feature ~ s(Age, bs = “cs”, by = Sex, k = 10) + as.factor(Sex) 691 

+ as.factor(Scanner) + s(eTIV_scaled, bs = “cs”, k = 10), data = UKBB_cerebellum_GWAS, 692 

select = TRUE, method = “REML”) 693 

 694 

In order to be maximally sensitive to outliers in relative cerebellar volumes, we replaced eTIV with 695 

total cerebellar volume in the GAM models of cerebellar regions of interest (i.e., SUIT atlas regions), 696 

using the following formula: 697 

 698 
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GAM_model<-gam(Anatomical feature ~ s(Age, bs = “cs”, by = Sex, k = 10) + as.factor(Sex) 699 

+ as.factor(Scanner) + total cerebellar volume, data = UKBB_cerebellum_GWAS, select = 700 

TRUE, method = “REML”) 701 

 702 

Adjusted cerebral and cerebellar indices were then created by reconstructing the data using the 703 

intercept and residuals from these models (i.e., removing estimated effects of age, sex and eTIV or 704 

total cerebellar volume), before rejecting 1792 participants with potential outlier cerebral indices and 705 

2222 participants with potential outlier cerebellar indices (MAD > +/- 3).  706 

 707 

This iterative QC procedure resulted in the rejection of 5,105 (i.e., 15.3%) of the original 33,317 708 

datasets, leaving 28,212 datasets for further analysis. 709 

 710 

Non-negative matrix factorization 711 

Cerebellar grey matter maps from 28,212 subjects passing the iterative QC procedure were 712 

smoothed with a 4mm full-with-half-maximum gaussian kernel in SPM12(76), concatenated across 713 

all subjects and multiplied with a binary mask to isolate voxels located in the cerebellar cortex. This 714 

cerebellar cortical mask was constructed by multiplying a binary mask containing all 28 cerebellar 715 

lobules of the SUIT-atlas with the thresholded (at a value of 0.1) mean (unsmoothed) grey matter 716 

segmentation across all 28,212 participants.  717 

The smoothed, concatenated and masked grey matter maps were then subjected to 718 

orthogonal projective non-negative matrix-factorization (OPNMF)(26), in order to derive data-driven 719 

parcellations of regional cerebellar grey matter volume.  720 

Non-negative matrix factorization (NNMF) is a blind source separation technique that allows 721 

structural brain networks to be described in a hypothesis-free, data-driven way by identifying patterns 722 

of covariation in the data. In contrast to alternative techniques, such as principal component analysis 723 

and independent component analysis, which yield components with both positive and negative 724 

weights that are often difficult to interpret, NNMF produces a sparse, positive-only, parts-based 725 

representation of the data. Importantly, NNMF has previously been proven effective in estimating 726 

covariance patterns in neuroimaging data while providing an easier interpretation of the results than 727 

other matrix decomposition techniques such as principal component analysis (PCA) or independent 728 

component analysis (ICA)(26-28, 77, 78).  729 

Briefly, NNMF decomposes an input matrix (voxels×subjects) into two matrices; a component 730 

matrix W (voxels×k) and a weight matrix H (k×subjects) where k is the number of components that 731 

needs to be specified by the user. Here, we used an implementation of orthogolnal projective non-732 

negative matrix factorization previously used in a number of publications(26-28, 77, 78) and 733 

downloaded from https://github.com/asotiras/brainparts. Given the large number of participants, we 734 

used the opnmf_mem.m function, which has been optimized for high-dimensional data. The function 735 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2023. ; https://doi.org/10.1101/2023.02.10.23285704doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285704
http://creativecommons.org/licenses/by/4.0/


was run with default parameter settings, exept for maximal number of iterations, which was increased 736 

to 200k, in order to ensure full convergence across all tested model orders.  737 

 738 

Model order selection 739 

Since the resulting parcellations are highly dependent on the requested number of components (or 740 

model order) specified, we tested model orders ranging from 2 to 30 in steps of 1, as well as from 741 

30 to 100 in steps of 10. Binarized winner-winner-takes-all (i.e. assigning each voxel to the NNMF 742 

component with the highest loading) maps of the resulting decompositions projected onto a flattened 743 

representation of the cerebellar cortex are shown in Supplementary Figure 1. 744 

Resulting NNMF decompositions were then evaluated based on two criteria; 1) how much of the 745 

variance in the original input data a given NNMF solution (i.e., component maps and subject weights) 746 

could explain and on 2) how reproducible the component maps were. As a metric of change in 747 

explained variance we used the change of the Frobenius norm of the reconstruction error. With 748 

increasing model orders the variance explained will always increase and the reconstruction error 749 

decrease, but if the decrease in the reconstruction error (or gradient) levels off, this indicates that 750 

the intrinsic dimensionality of the data might have been approximated (and that the subsequent 751 

increase in explained variance can largely be attributed to fitting random noise in the input data). In 752 

order to assess reproducibility, we split the full dataset into two equal sets (matched with respect to 753 

scanner site, n = 14,105 and 14,107, respectively), and ran NNMF on each split-half sample. For 754 

each set of independent NNMF parcellations, we computed two reproducibility indices. First, for each 755 

model order we matched components across split-half runs using the Hungarian algorithm(79), 756 

before computing the spatial correlations between matched component maps, and extracting the 757 

median correlation across all matched components as our first reproducibility index. For our second 758 

reproducibility index, we first computed one overall – and categorical – component map using a 759 

“winner-takes-all”-approach, i.e., assigning each voxel to the NNMF component with the highest 760 

loading. Next, we calculated the adjusted Rand index (ranging from 0 to 1, with higher values 761 

indicating greater similarity(80), across the two categorical parcellation maps for each model order 762 

as our second metric of reproducibility.  763 

As can be seen in Supplementary Figure 2A, for lower model orders, increasing the model 764 

order resulted in a sharp decrease in the reconstruction error, indicating that models with more 765 

components resulted in a significantly better fit to the data. However, after reaching model orders 766 

between 15 and 30, the incremental improvement in fit from adding another component appeared to 767 

level off. As expected, the reproducibility results showed a largely inverse pattern, with both 768 

reproducibility indices decreasing with increasing model orders (Supplementary Figure 2B). Of note, 769 

for model orders up to 8, median spatial correlations across all matched components was above .99, 770 

indicating almost identical parcellations derived from the two independent samples. However, even 771 

for a model order of 100, the median pairwise correlation was still pretty high (.85), with 60% of 772 

components showing pairwise spatial correlations above 0.8, suggesting a reasonable level of 773 
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reproducibility even for the most fine-grained parcellation. Our reproducibility index for the 774 

categorical parcellations showed very similar results; the adjusted Rand index remained above .9 775 

for model orders up to 8, and then decreased to 0.56 at a model order of 100.  776 

Given that the change in reconstruction error appeared to stabilize between 15 and 30 777 

components, indicating that the intrinsic dimensionality of the data had been approximated, we 778 

searched for the most reproducible parcellations within this range. Since the reliability estimates for 779 

model orders of 16 and 23 were very similar, with the 23-component solution explaining more of the 780 

variance in the original data, we used the 23-component parcellation for all further analyses.  781 

 782 

Adjustment and rank-order normalization of anatomical indices  783 

Prior to being subjected to genome-wide association analyses, we adjusted all anatomical indices 784 

for effects of age, sex, estimated total intracranial volume, scanner site, 40 genetic population 785 

components, genetic batch and mean Euler number (i.e, an index of MRI image quality(29), 786 

averaged across hemispheres). Finally, all adjusted anatomical indices were inverse rank 787 

normalized(81).  788 

 789 

Pre-processing of genetic data 790 

For all genetic analyses we made use of the UKB v3 imputed data, which has undergone extensive 791 

quality control procedures as described by the UKB genetics team(82). After converting the BGEN 792 

format to PLINK binary format, we additionally carried out standard quality check procedures. We 793 

first selected White Europeans, as determined by a combination of self-identification as ‘White 794 

British’ and similar genetic ancestry based on genetic principal components, that had undergone the 795 

neuroimaging protocol. We then filtered out individuals with more than 10% missingness, removed 796 

SNPs with low imputation quality scores (INFO <.5), SNPs with more than 10% missingness, and 797 

SNPs failing the Hardy-Weinberg equilibrium test at p=1*10-9. We further set a minor allele 798 

frequency threshold of 0.005 leaving 9,061,238 SNPs. After estimating the genetic relationship 799 

matrix (GRM) using genetic complex trait analysis (GCTA(31)), we finally removed 910 participants 800 

defined as close relatives using a threshold of 0.05 (approximately corresponding to 3rd cousins).   801 

 802 

Heritability estimation and genetic correlation analyses 803 

SNP-based heritability estimates for all morphological features – as well as the pairwise genetic 804 

correlations between cerebellar features - were estimated using genetic complex trait analysis 805 

(GCTA(31)).  806 

 807 

Univariate genome-wide association analyses 808 

Univariate analyses of total cerebellar grey matter volume and the ten cerebral comparison 809 

phenotypes were conducted using Plink v1.9.  810 

 811 
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Genetic correlation analyses across discovery and replication samples and with previous 812 

published GWASs 813 

Genetic correlation analyses across different samples were conducted using LD-score 814 

regression(30).  815 

 816 

Multivariate genome-wide association analyses 817 

For our main analysis, we used a recently developed multivariate analysis method (MOSTest(34)), 818 

to conduct a multivariate genome-wide association (GWA) analysis on cerebellar morphological 819 

features. MOSTest identifies genetic effects across multiple phenotypes, yielding a multivariate 820 

GWAS summary statistic across all 23 features, and provides robust (permutation based) test 821 

statistics. For mathematical details of the implementation, see van der Meer et al. (2020)(34), for 822 

details on the software implementation see github.com/precimed/mostest. MOSTest has been 823 

extensively validated in the original methods paper, including simulations and comparisons with 824 

other methods that have confirmed its solid discovery performance as well as an order of magnitude 825 

shorter runtime compared to other tools(34). For comparison to standard univariate approaches, we 826 

also performed univariate GWASs (extracted from the univariate stream of MOSTest(34) and 827 

identical to results from analyses using Plink).  828 

 829 

Multivariate replication analysis 830 

To ensure that not only single lead SNP associations replicate but that also the multivariate pattern 831 

of these associations are consistent in the discovery and replication sample, we implemented a 832 

multivariate replication procedure established in Loughnan et al.(37). In brief, for each lead SNP 833 

identified in the multivariate analysis in the discovery sample, this procedure derives a composite 834 

score from the mass-univariate z-statistics and tests for associations of the composite score with the 835 

genotype in the replication sample (for mathematical formulation see Loughnan et al.(37)). 19 of the 836 

560 lead SNPs could not be tested as they were not available in the replication sample. For the 837 

remaining SNPs we report the percent of loci replicating at P < 0.05, the percent remaining significant 838 

after Bonferroni correction for 541 conducted tests, and the percent of lead SNPs showing the same 839 

effect direction. In addition, we report the percentage of genetic loci replicated (defined as containing 840 

at least one replicating lead SNP). 841 

 842 

Multivariate cerebral comparison phenotypes  843 

To compare key multivariate cerebellar results with other multivariate brain phenotypes, we 844 

downloaded summary statistics from two recent studies on cerebrocortical(42) and hippocampal(43) 845 

regional morphology. These comparison summary statistics were next analyzed using FUMA(35) as 846 

described for the main cerebellar results below.  847 

 848 

Locus identification and SNP annotation 849 
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To identify genetic loci we uploaded summary statistics to the FUMA platform v1.4.1(35) Using the 850 

1000GPhase3 EUR as reference panel, we identified independent SNPs as SNPs below the 851 

significance threshold of P < 5e−8 that were also in linkage equilibrium with each other at r2 < 0.6. 852 

For each independent SNP, all candidate variants are identified as variants with LD r2≥ 0.6 with the 853 

independent SNP. A fraction of the independent significant SNPs in approximate linkage equilibrium 854 

with each other at r2 < 0.1 were considered as lead SNPs. For a given lead SNP, the borders of the 855 

genomic locus are defined as min/max positional coordinates over all corresponding candidate 856 

SNPs. Finally, loci are merged if they are separated by less than 250kb. 857 

FUMA further annotates associated SNPs based on functional categories, Combined 858 

Annotation Dependent Depletion (CADD) scores which predicts the deleteriousness of SNPs on 859 

protein structure/function(54), RegulomeDB scores which predicts regulatory functions(83); and 860 

chromatin states that shows the transcription/regulation effects of chromatin states at the SNP 861 

locus(84). For all these analyses, we used default FUMA parameters.  862 

 863 

Genome-wide gene-based association and gene-set analyses  864 

We conducted genome-wide gene-based association and gene-set analyses using MAGMA 865 

v.1.10(49) (http://ctg.cncr.nl/software/magma). MAGMA performs multiple linear regression to map 866 

the input SNPs to 19,190 protein coding genes and estimates the significance value of that gene. 867 

Genes were considered significant if the P value was <0.05 after Bonferroni correction for 19,190 868 

genes. The same procedure was used for MAGMA analysis of summary statistics for the three 869 

multivariate cerebral comparison phenotypes (cerebrocortical thickness and surface area(42) and 870 

regional hippocampal volumes(43)).  871 

MAGMA gene-level statistics were next used as input to gene-property and gene-set 872 

analyses in MAGMA. Gene-property analyses test for associations between tissue specific gene 873 

expression profiles and disease-gene associations. The gene-property analysis is based on the 874 

regression model: Z ∼ β0 + EtβE + AβA + BβB + ϵ, where Z  is a gene-based Z-score converted from 875 

the gene-based P-value, B is a matrix of several technical confounders included by default (e.g., 876 

gene size, gene density, sample size), Et is the gene expression value of a testing tissue type and A 877 

is the average expression across all tissue types in a data set (ensuring a test of expression 878 

specificity). We performed a one-sided test (βE > 0) which is essentially testing the positive 879 

relationship between tissue specificity and genetic association of genes. 880 

We tested associations with two regional brain gene expression datasets (Allen Human 881 

Brain Atlas(33) and GTEx) and one developmental brain gene expression dataset (BrainSpan). For 882 

extraction and processing of gene expression data, see below.  883 

 884 

Extraction and processing of gene expression data 885 

Allen Human Brain Atlas: Regional microarray expression data were obtained from 6 post-mortem 886 

brains (1 female, ages 24.0--57.0, 42.50 +/- 13.38) provided by the Allen Human Brain Atlas(33). 887 
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Data were processed with the abagen toolbox (version 0.1.3) (32) using two volumetric atlases; 1) 888 

the binarized 23-region NNMF-derived parcellation of the cerebellar cortex; and 2) a modified version 889 

of the Desikan atlas were ROIs were merged to construct 9 bilateral regions: cerebellum, cerebral 890 

cortex, pallidum, caudate, putamen, thalamus, amygdala, nucleus accumbens and hippocampus.  891 

First, microarray probes were reannotated using data provided by Arnatkeviciute, Fulcher 892 

and Fornito(85); probes not matched to a valid Entrez ID were discarded. Next, probes were filtered 893 

based on their expression intensity relative to background noise(86), such that probes with intensity 894 

less than the background in >=50.00% of samples across donors were discarded, yielding 31,569 895 

probes. When multiple probes indexed the expression of the same gene, we selected and used the 896 

probe with the most consistent pattern of regional variation across donors (i.e., differential 897 

stability(87)), calculated with: 898 

 899 
where p is Spearman's rank correlation of the expression of a single probe, p, across regions 900 

in two donors Bi and Bj, and N is the total number of donors.  901 

Here, regions correspond to the structural designations provided in the ontology from the 902 

AHBA. The MNI coordinates of tissue samples were updated to those generated via non-linear 903 

registration using the Advanced Normalization Tools (ANTs; https://github.com/chrisfilo/alleninf). 904 

Samples were assigned to brain regions in the provided atlas if their MNI coordinates were within 2 905 

mm of a given parcel. To reduce the potential for misassignment, sample-to-region matching was 906 

constrained by hemisphere and gross structural divisions (i.e., cortex, subcortex/ brainstem, and 907 

cerebellum, such that e.g., a sample in the left cortex could only be assigned to an atlas parcel in 908 

the left cortex(85)). All tissue samples not assigned to a brain region in the provided atlas were 909 

discarded. \n\nInter-subject variation was addressed by normalizing tissue sample expression 910 

values across genes using a robust sigmoid function(88):  911 

 912 
where (x) is the median and IQRz is the normalized interquartile range of the expression of a 913 

single tissue sample across genes. Normalized expression values were then rescaled to the unit 914 

interval:  915 

 916 
Gene expression values were then normalized across tissue samples using an identical 917 

procedure. Samples assigned to the same brain region were averaged separately for each donor 918 
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and then across donors, yielding two regional expression matrices with 23 and 9 rows, corresponding 919 

to brain regions, and 15,631 and 15,633 columns, corresponding to the retained genes. Prior to 920 

inclusion in MAGMA gene property analyses, we converted gene names for the modified Desikan 921 

atlas to ENSMBL IDs, and calculated the mean expression value across tissue types (in order to 922 

include this as a covariate in MAGMA analyses testing for gene expression specificity), resulting in 923 

a 10 (regions) by (15,490) gene expression matrix.     924 

 925 

GTeX: Text files containing median transcript per millimeter (TPM) values for 53 tissue types 926 

(GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz) were down-loaded 927 

from the GTEx portal (https://gtexportal.org/home/datasets/). After selecting only expression data 928 

from the seven (out of nine) comparison brain regions present in the GTEx dataset (i.e., amygdala, 929 

caudate, cerebellum, cortex, hippocampus, nucleus accumbens and putamen), we filtered the data 930 

by only including genes with median TPM values above 1 for at least one of these tissue type 931 

(retaining 19,578 of 56,200 annotated genes). Following the procedure used by FUMA(35), we next 932 

winsorized median TPM values at 50 (i.e., replaced TPM>50 with 50), before log transforming TPM 933 

with pseudocount 1 (log2(RPKM+1)). Finally, we calculated the mean expression value across tissue 934 

types (in order to include this as a covariate in MAGMA analyses testing for gene expression 935 

specificity). 936 

 937 

BrainSpan data: The analysis of BrainSpan data testing for developmentally specific brain 938 

expression was performed entirely within FUMA v1.4.1., using default parameters. 939 

 940 

Analysis of Human Dating Genome Data. The Atlas of Variant Age for chromosomes 1-22 was 941 

downloaded from the Human Genome Dating (HGD) website: https://human.genome.dating/. This 942 

atlas contains more than 45 million SNPs which has been assigned dates of origin based on a 943 

recombination clock and mutation clock applied to two large-scale sequencing datasets (1000 944 

Genomes Project(89) and The Simons Genome Diversity Project(90)), with no assumptions made 945 

about demographic or selective processes(44). The current study used the median joint age 946 

estimates from both clocks when analyzing SNPs present in both datasets in combination (i.e., 947 

13,694,493 SNPs). 948 

 After merging dated SNPs with the 40,405,505 SNPs also present in the Haplotype 949 

Reference Consortium reference data (to add minor allele frequencies, MAF) and removing 715,083 950 

(5.2%) SNPs with missing MAF values as well as the very few (14,549, 0.1%) SNPs dated older 951 

than 2 million years, 12,960,066 SNPs remained. 146,977 of these dated SNPs were matched to 952 

candidate SNPs linked to cerebellar morphology or any of the comparison brain phenotypes, 953 

hereafter referred to as brain-SNPs. Partially because very rare variants (Minor Allele 954 

Frequency/MAF < 0.005) had been removed prior to the multivariate GWAS analysis, MAF was not 955 

equally distributed between these brain-SNPs and the full range of dated SNPs in the HGD dataset. 956 
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Importantly, MAF has been shown to be systematically related to the estimated age of SNPs, with a 957 

higher proportion of low-MAF SNPs in more recent than in older time-bins(44, 45). Consequently, 958 

following the analysis approach established by Libedinsky et al. (45), we first determined the MAF-959 

distribution of brain-SNPs (across eight bins: <0.0001; 0.0001-0.001; 0.001-0.01; 0.01-0.1; 0.1-0.2; 960 

0.2-0.3; 0.3-0.4; 0.4-0.5) and selected random set of 2,645,586 SNPs from the HGD dataset that 961 

were matched to the brain-SNPs in terms of MAF-bin distribution. 962 

For statistical inference we constructed null models (separate for each brain phenotype) by 963 

randomly drawing sets of SNPs (of equal size to the number of phenotype-linked candidate SNPs) 964 

from the MAF-matched HGD-dataset and computing the histograms of estimated dates from 0 to 2 965 

million years ago (divided into 100 bins of 20.000 years) over 10,000 iterations. From these null 966 

models we extracted bin means and standard deviations (used to assign z-scores to the bin values 967 

of brain phenotype histograms), as well as significance thresholds (defined as the upper and lower 968 

99.95th percentile of the null model (i.e. corresponding to a Bonferroni corrected threshold of 0.05 969 

across 100 bins). 970 

 971 

Positional and eQTL mapping of SNPs to plausible causal genes 972 

In addition to using MAGMA, we also mapped candidate SNPs to plausible causal genes using two 973 

complementary gene mapping strategies implemented ion FUMA(35): 1) Positional mapping of 974 

deleterious SNPs (defined as having a CADD-score > 12.37) and 2) eQTL-mapping of SNPs 975 

previously shown to alter gene expression in cerebellar tissue (from the BRAINEAC and GTEx v8 976 

databases). These analyses were run with default FUMA parameters. For the three multivariate 977 

cerebral comparison phenotypes (i.e., cerebrocortical thickness, cerebrocortical surface area and 978 

hippocampal regional volumes), we employed identical gene mapping procedures to our cerebellar 979 

morphology results, except for the tissues chosen for eQTL mapping (cerebrocortical and 980 

hippocampal, respectively). 981 

 982 

Gene set analyses using lists of mapped genes 983 

All gene set analyses using mapped genes were conducted using the hypeR R-package (91). This 984 

package implements the hypergeometric test (also known as Fisher’s exact test), which assigns a 985 

p-value to gene-set overlaps given gene set sizes and the number of background genes. This R-986 

package also contains functions for downloading and/or formatting gene sets. The following gene 987 

sets were accessed using hypeR: “Allen_Brain_Atlas_up” (regional overexpression in the Allen 988 

Muse Brain Atlas), “MGI_Mammalian_Phenotype_Level_4_2021”, "DisGeNet" (all from the enrichR 989 

platform. In addition, we downloaded sets of genes with regional overexpression in the Allen Human 990 

Brain Atlas from the Harmonizome platform(92) and accessed a list of genes mapped to human 991 

accelerated regions(93). For all gene-set analyses we employed Bonferroni-correction by dividing 992 

the p-value threshold of 0.05 by the number of gene sets included in each analysis. 993 

 994 
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Genetic overlap between cerebellar morphology and brain disorders 995 

We accessed GWAS summary statistics for attention deficit hyperactivity disorder (ADHD)(94), 996 

autism spectrum disorder (ASD)(95), bipolar disorder (BIP)(96) and major depressive disorder 997 

(MDD)(97) from the Psychiatric Genomics Consortium. In order to avoid sample overlap, for MDD 998 

we used summary statistics based on a sample with the UK Biobank participants removed. 23&me 999 

participants included in the original MDDGWAS were also excluded, since these data are not freely 1000 

available).  Finally, we included data from a recent study of schizophrenia (SCZ)(98). Shared variants 1001 

associated with cerebellar morphology and each of the above-mentioned brain disorders were 1002 

identified using conjunctional FDR statistics (FDR < 0.05)(99, 100). In contrast to genetic correlation 1003 

analysis, conjunctional FDR does not require effect directions and can therefore be applied to 1004 

summary statistics from multivariate GWAS, which do not contain effect directions. Two genomic 1005 

regions, the extended major histocompatibility complex genes region (hg19 location Chr 6: 1006 

25119106–33854733) and chromosome 8p23.1 (hg19 location Chr 8: 7242715–12483982) for all 1007 

cases and APOE region for ASD, were excluded from the FDR-fitting procedures because complex 1008 

correlations in regions with intricate LD can bias FDR estimation. We submitted the results from 1009 

conjunctional FDR to FUMA v1.3.7(35) to annotate the genomic loci with conjFDR value < 0.10 1010 

having an r2 ≥ 0.6 with one of the independent significant lead SNPs. Genetic correlations between 1011 

univariate results for the 23 cerebellar features, the 10 comparison brain phenotypes, and each of 1012 

the five mental disorders were computed using LD-score regression as described above.  1013 

 1014 
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