Supplementary Figure	upplementary gure Title			
1	Performance of SuSiEx under the standard simulation setting.	Standard simulation		
2	The number of confidently identified causal SNPs under the standard simulation setting.			
3	Comparison between SuSiEx and the meta-analysis-based fine-mapping method using the standard simulation setting.			
4	The coverage of Meta+SuSiE and SuSiEx when analyzing genetically close populations.	SuSiEx vo. moto		
5	The number of causal variants identified by Meta+SuSiE and SuSiEx when analyzing genetically close populations with identical causal effect sizes.			
6	The number of causal variants identified by Meta+SuSiE, SuSiEx and Mega+SuSiE when analyzing two independent samples from the same population.			
7	Comparison between SuSiEx and the single-population combining method under the standard simulation setting.			
8	The runtime of SuSiEx under varying sample sizes and population combinations.			
9	The number of iterations before SuSiEx converged under varying sample sizes and population combinations.	efficiency of SuSiEx		
10	The number of causal SNPs identified by SuSiEx under varying genetic correlations (r_g).			
11	The coverage of SuSiEx under varying genetic correlations (r_g) .			
12	The size of credible sets identified by SuSiEx under varying genetic correlations (r_g).			
13	The maximum PIP estimated by SuSiEx under varying genetic correlations (r_g).			
14	The number of confidently identified causal SNPs under varying genetic correlations (r_g).			
15	The number of causal SNPs identified by SuSiEx under varying local heritability (h^2).			

16	The coverage of SuSiEx under varying local heritability (h^2) .		
17	The size of credible sets identified by SuSiEx under varying local heritability (h^2).		
18	The maximum PIP estimated by SuSiEx under varying local heritability (h^2).		
19	The number of confidently identified causal SNPs under varying local heritability (h^2).		
20	The number of causal SNPs identified by SuSiEx under varying numbers of causal SNPs per locus (n_{csl}).		
21	The coverage of SuSiEx under varying numbers of causal SNPs per locus (n_{csl}).		
22	The size of credible sets identified by SuSiEx under varying numbers of causal SNPs per locus (n_{csl}).	Simulation with varying <i>n_{csl}</i>	
23	The maximum PIP estimated by SuSiEx under varying numbers of causal SNPs per locus (n_{csl}).		
24	The number of confidently identified causal SNPs under varying numbers of causal SNPs per locus (n_{csl}).		
25	The impact of different τ_s^2 values on the performance of SuSiEx.	Simulation with	
26	The impact of different τ_s^2 values on the calibration of SuSiEx.	varying hyperparameters	
27	Performance of SuSiEx in the presence of population- specific causal SNPs.		
28	Performance of SuSiEx in the presence of African-specific causal variants.		
29	The population-specific causal probability under the standard simulation setting.	Simulation of population-specific causal variants	
30	The impact of allele frequency and causal effect size on the classification of population-specific causal variants.		
31	The population-specific causal probability under varying numbers of causal SNPs per locus (n_{csl}) in two-population fine-mapping analysis.		
32	The population-specific causal probability under varying		

33	The population-specific causal probability under varying local heritability (h^2) in two-population fine-mapping analysis.		
34	The population-specific causal probability under the standard simulation setting in three-population fine-mapping analysis.		
35	The impact of allele frequency and causal effect size on the classification of population-specific causal variants in three-population fine-mapping analysis.		
36	The population-specific causal probability under varying numbers of causal SNPs per locus (n_{csl}) in three-population fine-mapping analysis.		
37	The population-specific causal probability under varying genetic correlations (r_g) in three-population fine-mapping analysis.		
38	The population-specific causal probability under varying local heritability (h^2) in three-population fine-mapping analysis.		
39	Comparison of fine-mapping results between in-sample LD and external reference LD.	In-sample LD vs. external LD	
40	Cross-population fine-mapping analysis after removing the variants with quality issues in biobanks.	D . 1 1 1	
41	The marginal per-allele effect size of the maximum PIP variant across populations.		

Supplementary Figure 1: Performance of SuSiEx under the standard simulation setting. a, The number of identified true causal variants when integrating data from different populations with different sample sizes for fine-mapping (true causal variants covered by a credible set). **b**, The coverage of credible sets. The dashed line represents the 95% coverage. The error bar represents the 95% confidence interval. **c**, Distribution of the maximum PIP. **d**, Distribution of the size of credible sets. The upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively. The middle line in the box indicates the median. The top label of each subpanel indicates the total sample size. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 4.

Supplementary Figure 2: The number of confidently identified causal SNPs under the standard simulation setting. The top label of each subpanel indicates the total sample size and the thresholds for selecting the credible sets. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 4.

Supplementary Figure 3: Comparison between SuSiEx and the meta-analysis-based finemapping method using the standard simulation setting. a, The number of identified true causal variants (true causal variants covered by a credible set). b, The coverage of credible sets. The dashed line represents the 95% coverage. The error bar represents the 95% confidence interval. The top label of each subpanel indicates the total sample size and the finemapping method. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 5.

Supplementary Figure 4: The coverage of Meta+SuSiE and SuSiEx when analyzing genetically close populations. The top label of each subpanel indicates the continental population in which the analysis was performed and the fine-mapping method. The label on the right indicates the genetic correlation between the two subpopulations. The x-axis shows the discovery sample size of each subpopulation. The y-axis shows the coverage. The dashed line represents the 95% coverage. The error bar represents the 95% confidence interval. Numerical results are available in Supplementary Table 6.

Supplementary Figure 5: The number of causal variants identified by Meta+SuSiE and SuSiEx when analyzing genetically close populations with identical causal effect sizes. The top label on each subpanel indicates the continental population in which the analysis was performed. The label on the right indicates the discovery sample size of each subpopulation. The x-axis shows the fine-mapping method. The y-axis shows the number of identified true causal variants. Numerical results are available in Supplementary Table 6.

Supplementary Figure 6: The number of causal variants identified by Meta+SuSiE, SuSiEx and Mega+SuSiE when analyzing two independent samples from the same population. The top label on each subpanel indicates the fine-mapping method. The label on the right indicates the continental population in which analysis was performed. The x-axis shows the discovery sample size. The y-axis shows the number of identified true causal variants. The approach that performs GWAS on the merged dataset and applies SuSiE to the resulting GWAS is denoted as Mega+SuSiE. Numerical results are available in Supplementary Table 7.

Supplementary Figure 7: Comparison between SuSiEx and the single-population combining method under the standard simulation setting. **a**, The number of identified true causal variants with PIP >0.95 when integrating data from different populations with different sample sizes for fine-mapping. **b**, The coverage of credible sets. The dashed line represents the 95% coverage. The error bar represents the 95% confidence interval. **c**, Distribution of the size of credible sets. **d**, Distribution of the maximum PIP. The upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively. The middle line in the box indicates the median. The top label of each subpanel indicates the total sample size and the fine-mapping method. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 5.

Supplementary Figure 8: The runtime of SuSiEx under varying sample sizes and population combinations. The y-axis shows the runtime of SuSiEx, measured in seconds, using a single CPU. Different colors indicate different population combinations. All analyses were conducted under the standard simulation settings. The total sample size is displayed at the top of each subpanel. The combinations of 'EUR+AFR' and 'EUR+EAS' were analyzed with a balanced sample size, while 'EUR+AFR+EAS' was analyzed with a sample size ratio of EUR:AFR:EAS = 2:1:1. Numerical results are available in Supplementary Table 8.

Supplementary Figure 9: The number of iterations before SuSiEx converged under varying sample sizes and population combinations. The histograms show the distributions of the number of iterations before SuSiEx converged. The red vertical line represents the average number of iterations. All analyses were conducted under the standard simulation settings. The total sample size is displayed at the top of each subpanel. The combinations of 'EUR+AFR' and 'EUR+EAS' were analyzed with a balanced sample size, while 'EUR+AFR+EAS' was analyzed with a sample size ratio of EUR:AFR:EAS = 2:1:1. Numerical results are available in Supplementary Table 8.

Supplementary Figure 10: The number of causal SNPs identified by SuSiEx under varying genetic correlations (r_g). The top label of each subpanel indicates the total sample size and the genetic correlation. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 11.

Supplementary Figure 11: The coverage of SuSiEx under varying genetic correlations (r_g). The dashed line represents the 95% coverage. The error bar represents the 95% confidence interval. The top label of each subpanel indicates the total sample size and the genetic correlation. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 11.

Supplementary Figure 12: The size of credible sets identified by SuSiEx under varying genetic correlations (r_g). The upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively. The middle line in the box indicates the median. The top label of each subpanel indicates the total sample size and the genetic correlation. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 11.

Supplementary Figure 13: The maximum PIP estimated by SuSiEx under varying genetic correlations (r_g). The upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively. The middle line in the box indicates the median. The top label of each subpanel indicates the total sample size and the genetic correlation. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 11.

Supplementary Figure 14: The number of confidently identified causal SNPs under varying genetic correlations (r_g). The top label of each subpanel indicates the total sample size and the confidence level for the credible sets. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 11.

Supplementary Figure 15: The number of causal SNPs identified by SuSiEx under varying local heritability (h^2). The top label of each subpanel indicates the total sample size and the local heritability. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 12.

Supplementary Figure 16: The coverage of SuSiEx under varying local heritability (h^2). The dashed line represents the 95% coverage. The error bar represents the 95% confidence interval. The top label of each subpanel indicates the total sample size and the local heritability. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 12.

Supplementary Figure 17: The size of credible sets identified by SuSiEx under varying local heritability (h^2). The upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively. The middle line in the box indicates the median. The top label of each subpanel indicates the total sample size and the local heritability. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 12.

Supplementary Figure 18: The maximum PIP estimated by SuSiEx under varying local heritability (h^2). The upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively. The middle line in the box indicates the median. The top label of each subpanel indicates the total sample size and the local heritability. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 12.

Supplementary Figure 19: The number of confidently identified causal SNPs under varying local heritability (h^2). The top label of each subpanel indicates the total sample size and the confidence level for the credible sets. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 12.

Supplementary Figure 20: The number of causal SNPs identified by SuSiEx under varying numbers of causal SNPs per locus (n_{csl}). The top label of each subpanel indicates the total sample size, the local heritability and the number of causal SNPs. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 13.

Supplementary Figure 21: The coverage of SuSiEx under varying numbers of causal SNPs per locus (n_{csl}). The dashed line represents the 95% coverage. The error bar represents the 95% confidence interval. The top label of each subpanel indicates the total sample size, the local heritability and the number of causal SNPs. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 13.

Supplementary Figure 22: The size of credible sets identified by SuSiEx under varying numbers of causal SNPs per locus (n_{csl}). The upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively. The middle line in the box indicates the median. The top label of each subpanel indicates the total sample size, the local heritability and the number of causal SNPs. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 13.

Supplementary Figure 23: The maximum PIP estimated by SuSiEx under varying numbers of causal SNPs per locus (n_{csl}). The upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively. The middle line in the box indicates the median. The top label of each subpanel indicates the total sample size, the local heritability and the number of causal SNPs. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 13.

Supplementary Figure 24: The number of confidently identified causal SNPs under varying numbers of causal SNPs per locus (n_{csl}). The top label of each subpanel indicates the total sample size and the confidence level for the credible sets. The bottom panels indicate the sample size from each population. Numerical results are available in Supplementary Table 13.

Supplementary Figure 25: The impact of different τ_s^2 values on the performance of SuSiEx. The top label on each subpanel indicates the discovery sample size of each population. The x-axis shows the factor by which the τ_s^2 parameter is scaled. The y-axis shows the number of identified true causal variants. Simulations were conducted under the standard parameter setting with a balanced EUR and AFR sample size. The total sample size is shown above each panel. Numerical results are available in Supplementary Table 14.

Supplementary Figure 26: The impact of different τ_s^2 values on the calibration of SuSiEx. The top label on each subpanel indicates the discovery sample size of each population. The x-axis shows the factor by which the τ_s^2 parameter is scaled. The y-axis shows the coverage. The dashed line represents 95% coverage. The error bar represents the 95% confidence interval. Simulations were conducted under the standard parameter setting with a balanced EUR and AFR sample size. The total sample size is shown above each panel. Numerical results are available in Supplementary Table 14.

Supplementary Figure 27: Performance of SuSiEx in the presence of population-specific causal SNPs. a, The number of identified true causal variants when integrating data from different populations with different sample sizes for fine-mapping. b, The number of identified causal variants with PIP >0.95 when integrating data from different populations with different sample sizes for fine-mapping. c, The coverage of credible sets. The dashed line represents the 95% coverage. The error bar represents the 95% confidence interval. d, Distribution of the size of credible sets. The upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively. The middle line in the box indicates the median. The top label of each subpanel indicates the total sample size in which SNP effects were non-null, and the bottom panels indicate the sample size from each population. Black circles indicate sample size with non-null SNP effects; gray circles indicate the sample size with null SNP effects. Simulated data were generated under the standard simulation setting. Numerical results are available in Supplementary Table 15.

Supplementary Figure 28: Performance of SuSiEx in the presence of African-specific causal variants. Left: The number of identified true causal variants when using single-population SuSiE in the AFR population vs. using cross-population SuSiEx that integrates data from the three populations. Right: The coverage of credible sets. The dashed line represents 95% coverage. The error bar represents the 95% confidence interval. Numerical results are available in Supplementary Table 15.

Supplementary Figure 29: The population-specific causal probability under the standard simulation setting. Analyses were conducted with a balanced EUR and AFR sample size. The x-axis shows the discovery sample size. The y-axis shows the population-specific causal probability of the identified credible set. The red dashed lines represent the probability of 0.8, which is used as a threshold to infer whether an identified credible set is causal in a population. The label at the top of each panel denotes the ground-truth causal configuration: "EUR specific" indicates that the variant is causal in the EUR population but not in the AFR population; "AFR specific" indicates that the variant is causal in the AFR population but not in the EUR population; "EUR+AFR" indicates that the variant is causal in both EUR and AFR populations. The fractional number on each panel represents "the number of credible sets with correct inference" among "the total number of credible sets identified by SuSiEx". The percentage represents the accuracy of the inference. Numerical results are available in Supplementary Table 16.

Supplementary Figure 30: The impact of allele frequency and causal effect size on the classification of population-specific causal variants. This plot corresponds to the simulation under the "EUR+AFR" scenario in Supplementary Figure 29. The x-axis shows the simulated effect sizes of the causal variants. The y-axis shows the minor allele frequencies (MAF) of the causal variants in a specific population. The label above each panel indicates the discovery sample size. Red dots represent variants that are correctly inferred to be causal in the population. Blue dots represent variants that are incorrectly inferred to be not causal in the population. Incorrectly inferred variants tend to have low MAF or small effect sizes. Numerical results are available in Supplementary Table 16.

Supplementary Figure 31: The population-specific causal probability under varying numbers of causal SNPs per locus (n_{csi}) in two-population fine-mapping analysis.

Analyses were conducted with a balanced EUR and AFR sample size. The x-axis shows the discovery sample size. The y-axis shows the population-specific causal probability of the identified credible set. The red dashed lines represent the probability of 0.8, which is used as a threshold to infer whether an identified credible set is causal in a population. The label at the top of each panel denotes the ground-truth causal configuration: "EUR specific" indicates that the variant is causal in the EUR population but not in the AFR population; "AFR specific" indicates that the variant is causal in the AFR population but not in the EUR population; "EUR+AFR" indicates that the variant is causal in both EUR and AFR populations. The label on the right indicates the number of causal SNPs per locus (*n*_{cs}). The fractional number on each panel represents "the number of credible sets with correct inference" among "the total number of credible sets identified by SuSiEx". The percentage represents the accuracy of the inference. Numerical results are available in Supplementary Table 16.

Supplementary Figure 32: The population-specific causal probability under varying genetic correlations (r_g) in two-population fine-mapping analysis. Analyses were conducted with a balanced EUR and AFR sample size. The x-axis shows the discovery sample size. The y-axis shows the population-specific causal probability of the identified credible set. The red dashed lines denote the probability of 0.8, which is used as a threshold to infer whether an identified credible set is causal in a population. The label at the top of each panel denotes the ground-truth causal configuration: "EUR specific" indicates that the variant is causal in the EUR population but not in the AFR population; "AFR specific" indicates that the variant is causal in the AFR population but not in the EUR population; "EUR+AFR" indicates that the variant is causal in both EUR and AFR populations. The label on the right indicates the cross-population genetic correlation (r_g). The fractional number on each panel represents "the number of credible sets with correct inference" among "the total number of credible sets identified by SuSiEx". The percentage represents the accuracy of the inference. Numerical results are available in Supplementary Table 16.

Supplementary Figure 33: The population-specific causal probability under varying local heritability (h^2) in two-population fine-mapping analysis. Analyses were conducted with a balanced EUR and AFR sample size. The x-axis shows the discovery sample size. The y-axis shows the population-specific causal probability of the identified credible set. The red dashed lines denote the probability of 0.8, which is used as a threshold to infer whether an identified credible set is causal in a population. The label at the top of each panel denotes the ground-truth causal configuration: "EUR specific" indicates that the variant is causal in the EUR population but not in the AFR population; "AFR specific" indicates that the variant is causal in the AFR population but not in the EUR population; "EUR+AFR" indicates that the variant is causal in both EUR and AFR populations. The label on the right indicates the local heritability (h^2). The fractional number on each panel represents "the number of credible sets with correct inference" among "the total number of credible sets identified by SuSiEx". The percentage represents the accuracy of the inference. Numerical results are available in Supplementary Table 16.

Supplementary Figure 34: The population-specific causal probability under the standard simulation setting in three-population fine-mapping analysis. Analyses were conducted with a balanced EUR, AFR and EAS sample size. The x-axis shows the discovery sample size. The y-axis shows the population-specific causal probability of the identified credible set. The red dashed lines denote the probability of 0.8, which is used as a threshold to infer whether an identified credible set is causal in a population. The label at the top of each panel denotes the ground-truth causal configuration: "EUR specific" indicates that the variant is causal in the EUR population but not in the AFR and EAS populations; "AFR specific" indicates that the variant is causal in the AFR population but not in the EUR and EAS populations; "EAS specific" indicates that the variant is causal in the EAS population but not in the EUR and AFR populations; "EUR+AFR+EAS" indicates that the variant is causal in EUR, AFR and EAS populations. The fractional number on each panel represents "the number of credible sets with correct inference" among "the total number of credible sets identified by SuSiEx". The percentage represents the accuracy of the inference. Numerical results are available in Supplementary Table 17.

Supplementary Figure 35: The impact of allele frequency and causal effect size on the classification of population-specific causal variants in three-population fine-mapping analysis. This plot corresponds to the simulation under the "EUR+AFR+EAS" scenario in Supplementary Figure 34. The x-axis shows the simulated effect sizes of the causal variants. The y-axis shows the minor allele frequencies (MAF) of the causal variants in a specific population. The label above each panel indicates the discovery sample size. Red dots represent variants that are correctly inferred to be causal in the population. Blue dots represent variants that are incorrectly inferred to be not causal in the population. Incorrectly inferred variants tend to have low MAF or small effect sizes. Numerical results are available in Supplementary Table 17.

10000	0 .0 .6 .4	UR specific /117 148/148 171/171 0% 100% 100% + +	AFR specific 297/299 334/335 355/356 99.3% 99.4% 99.7%	EAS specific 121/121 143/143 166/166 100% 100% 100%	EUR+AFR 155399 181429 203440 38.8% 42.2% 46.1%	EUR+EAS 144219 182/250 196/260 65.8% 72.8% 75.4%	AFR+EAS 393/395 425427 437/439 99.5% 99.5% 92.5%	EUR+AFR+EAS 165/473 192/491 208/492 34.9% 39.1% 42.3%
Probability in EUR	0 158 10 0 .8 .6 .4 .2	/158 208/208 278/278 0% 100% 100%	331/333 449/451 539/544 99.4% 99.6% 99.1%	141/142 198/202 252255 99.3% 98% 98.8%	209469 277/587 320685 44.5% 47.2% 46.7%	200/273 205/150 322/409 73.3% 75.7% 78.7%	458/461 577/574 667/673 99.3% 99.5% 99.1%	234/557 296/866 34/1750 42% 44.4% 44.9% 14.4% 54.9% 100 100 100 100 100 100 100 100 100 10
	0 193 10 10 10 10 10 10 10 10 10 10 10 10 10	/193 286/286 355/355 0% 100% 100%	311/312 470/471 625/630 99.7% 99.8% 99.2%	153/155 222/226 307/312 98.7% 98.2% 98.4%	258/433 340/659 427/839 52.3% 50.8% 50.9%	260/341 341/431 409/516 76.2% 79.1% 79.3%	453/457 632/636 794/801 99.1% 99.4% 99.1%	302/015 371/775 447/926 49.1% 47.9% 48.3% Sec. 1
	180 10 10 10 10 10 10 10 10 10 10 10 10 10	/180 283/283 408/408 0% 100% 100%	292/297 499/503 608/703 98.3% 99.2% 99.3%	178/180 293/295 389/394 98.9% 99.3% 98.7%	258/471 375/714 403/936 54.8% 52.5% 52.7%	250/337 393/509 489/621 74.2% 77.2% 78.7%	459/467 728/732 922/031 98.3% 99.5% 99%	306/602 427/866 536/1082 50.8% 49.3% 49.5% 50.8% 49.3% 49.5% 14
	195 10 .0 .6 .4 .2 .0	/195 331/331 472/472 0% 100% 100%	271/275 545/550 752/759 98.5% 99.1% 99.1%	1911194 325/330 446/454 98.5% 98.5% 98.2%	286/423 459/816 589/1071 58% 56.2% 55%	296/376 438/552 588/724 78.7% 79.3% 81.2%	467/474 788/7971038/1049 98.5% 98.9% 95%	340/641 498/964 638/1230 53% 51.7% 51.9% D D D D D D D D D D D D D D D D D D D
	50)K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K
1	.0 .8	UR specific	AFR specific 299/299 336/336 356/356 100% 100% 100%	EAS specific 120/121 143/143 166/166 99.2% 100% 100%	EUR+AFR 333/399 351/429 377/440 83.5% 84.1% 85.7%	EUR+EAS 217/219 249/250 259/260 99.1% 99.6% 99.2%	AFR+EAS 325/395 356/427 375/439 82.3% 83.4% 85.4%	EUR+AFR+EAS 347/473 309/491 385/492 73.4% 75.2% 78.3%
0000	.4 .2 .0	A B B B	333/333 451/451 544/544	142/142 202/202 253/255	390/469 504/587 583/685	271/273 350/350 404/409	393/461 495/574 581/673	423/557 517/666 597/760
1000000	.0.8	7% 100% 98.2%	100% 100% 100%		83.2% 85.9% 85.1%	99.3% 100% 98.8%	85.2% 86.2% 86.3%	75.9% 77.6% 78.6%
ility in AFR	.0 192 99. .0	/193 286/286 352/355 5% 100% 99.2%	312/312 471/471 638/630 100% 100% 100% T T T	152/155 223/226 300/312 98.1% 98.7% 98.7%	386/493 542/669 698/839 78.3% 81% 83.2%	337/341 428/431 508/516 98.8% 99.3% 98.4%	388/457 546/636 658/801 84.9% 85.8% 85.9%	438/615 578/775 713/926 71.2% 74.6% 77%
obab	4.2	JJJ		<u>\$\$\$</u>		<u>III</u>		
طَّ 1 00	.0 .8 .6 .4	/180 278/283 402/408 9% 98.2% 98.5%	297/297 503/503 703/703 100% 100% 100% T T	175/180 291/295 392/394 97.2% 98.6% 99.5%	373/471 593/714 760/036 79.2% 83.1% 83.3%	330/337 499/509 612/621 97.9% 98% 98.6%	371/467 592/732 790/931 79.4% 80.9% 84.9%	418/602 637/966 821/1082 69.4% 73.6% 75.9%
0	.0	/195 327/331 465/472	275/275 550/550 759/759	191/194 324/330 447/454	384/493 668/816 889/1071	371/376 543/552 717/724	369/474 643/797 878/1049	423/641 699/964 931/1230
1 0 0 0	.0 .8 .6		100% 100% 100% T T T	98.5% 98.2% 98.5%	77.9% 81.9% 83%	98.7% 98.4% 99%	77.8% 80.7% 83.7%	
0	.0 50	OK 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K
	E	UR specific	AFR specific 298/299 335/336 354/356	EAS specific	EUR+AFR 358/399 428/429 437/440	EUR+EAS	AFR+EAS	EUR+AFR+EAS
1 0 0 0 0	0.864.40		÷ \$ \$	+ + +	\$ \$ \$			
Probability in EAS	.0 .8	/158 206/208 274/278 1% 99% 98.6%	332/333 447/451 542/544 99.7% 99.1% 99.6%	142/142 202/202 255/255 100% 100% 100%	464/469 582/587 679/685 98.9% 99.1% 99.1%	189/273 248/350 295/409 69.2% 70.9% 72.1%	199/461 255/574 294/673 43.2% 44.4% 43.7%	229/557 277/666 308/760 41.1% 41.8% 40.5%
	420		\$\$\$		\$\$\$	<u> </u>	$\Psi\Psi\Psi$	\$\$\$ \$
	187. 96. 8.6 4.2	193 281/286 349/355 9% 98.3% 98.3%	308/312 466/471 624/830 98.7% 98.9% 99%	155/155 228/228 312/312 100% 100% 100%	466/493 660/669 830/839 98.5% 98.7% 98.9%	226/341 299/431 374/516 66.3% 69.4% 72.5%	216/457 205/036 382/801 47.3% 46.4% 47.7%	256/615 340/775 404/926 43.3% 43.9% 43.6%
	.0 .0 .8 .6 .4 .2	/180 276/283 399/408 3% 97.5% 97.8%	294/297 501/503 697/703 99% 99.6% 99.1%	180/180 295/295 394/394 100% 100% 100%	466/471 708/714 928/936 98.9% 99.2% 99.1%	254/337 387/509 469/621 75.4% 76% 75.5%	244/467 384/732 474/931 52.2% 52.5% 50.9%	302/602 42/866 514/1082 50.2% 48.6% 47.5% 0.2% 48.6% 47.5% 0.2% 48.6% 47.5% 0.2% 48.6% 47.5%
	.0 97. 8.6 4.2	/195 327/331 467/472 4% 96.8% 96.9%	269/275 546/550 750/759 97.8% 99.3% 98.8%	194/194 330/330 454/454 100% 100% 100%	452/493 810/8161061/1071 97.8% 99.3% 99.1%	290/376 428/552 547/724 77.1% 77.5% 75.6%	278/474 430/797 555/1049 58.6% 54% 52.9%	344/641 482/964 597/1230 53.7% 50% 48.5% 50% 148.5% 150% 150% 148.5% 150% 150% 150% 150% 150% 150% 150% 150%
Ó	.0 - 50	0K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K Sample Size	50K 100K 200K	50K 100K 200K	50K 100K 200K

Supplementary Figure 36: The population-specific causal probability under varying numbers of causal SNPs per locus (n_{csl}) in three-population fine-mapping analysis.

Analyses were conducted with a balanced EUR, AFR and EAS sample size. The x-axis shows the discovery sample size. The y-axis shows the population-specific causal probability of the identified credible set. The red dashed lines denote the probability of 0.8, which is used as a threshold to infer whether an identified credible set is causal in a population. The label at the top of each panel denotes the ground-truth causal configuration: "EUR specific" indicates that the variant is causal in the EUR population but not in the AFR and EAS populations; "AFR specific" indicates that the variant is causal in the AFR population but not in the EUR and EAS populations; "EAS specific" indicates that the variant is causal in EUR, AFR and EAS populations. The label on the right indicates the number of causal SNPs per locus (n_{csl}). The fractional number on each panel represents "the number of credible sets with correct inference" among "the total number of credible sets identified by SuSiEx". The percentage represents the accuracy of the inference. Numerical results are available in Supplementary Table 17.

Supplementary Figure 37: The population-specific causal probability under varying genetic correlations (r_g) in three-population fine-mapping analysis. Analyses were conducted with a balanced EUR, AFR and EAS sample size. The x-axis shows the discovery sample size. The y-axis shows the population-specific causal probability of the identified credible set. The red dashed lines denote the probability of 0.8, which is used as a threshold to infer whether an identified credible set is causal in a population. The label at the top of each panel denotes the ground-truth causal configuration: "EUR specific" indicates that the variant is causal in the EUR population but not in the AFR and EAS populations; "AFR specific" indicates that the variant is causal in the AFR population but not in the EUR and EAS populations; "EAS specific" indicates that the variant is causal in the AFR population but not in the EUR and AFR populations; "EUR+AFR+EAS" indicates that the variant is causal in EUR, AFR and EAS populations. The label on the right indicates the cross-population genetic correlation (r_g). The fractional number on each panel represents "the number of credible sets with correct inference" among "the total number of credible sets identified by SuSiEx". The percentage represents the accuracy of the inference. Numerical results are available in Supplementary Table 17.

	1	EUR specific	AFR specific	EAS specific 56/58 117/117 145/145	EUR+AFR 98/245 155/467 187/427	EUR+EAS 93/131 155/228 191/251	AFR+EAS	EUR+AFR+EAS
100000	1.0	100% 100% 100%	**************************************	1075 1075 1075	495 38.15 43.85	71% 68% 72.1%	99.1% 99.5% 99.5%	37.5% 38.1% 39.7% P2 = 0.05
Probability in EUR	1.0	117/117 148/148 171/171 180% 100% 108%	297/299 334/336 355/356 99.3% 99.4% 99.1%	121/121 143143 166/166 100% 100% 100%	155/390 181429 203440 38.8% 42.2% 44.1%	144/219 182/250 196/269 65.8% 75.8% 75.4%	393/395 425427 437/439 99.5% 99.5% 99.5%	165473 192491 280492 34.5% 39.1% 42.3%
	1.0	145/145 171/171 183/193 190% 100% 100%	327/329 356/352 365/386 99.4% 99.4% 99.7%	142/142 167/167 181/182 1095 1095 99.55	177/420 204/440 215/449 42.15 46.45 47.95	162/246 201/264 205/269 73.4% 76.1% 77.3%	418/421 441/443 442/444 99.3% 99.5% 99.5%	190463 210403 210493 39.5% 42.6% 44.2% P2 = 0.2
	1.0	157/157 184/184 282/202 100% 100% 100%	347/350 365/347 375/376 99.1% 99.5% 99.7%	154/154 180/181 191/192 1005 99.45 99.55	1950526 2153466 216448 45.85 47.35 48.75	189/252 205/266 212/271 75% 77.1% 78.2%	422434 447/449 447/449 99.5% 99.6% 99.6%	204/487 216/495 2211/491 41.8% 43.8% 45% H2 U U U U U U U U U U U U U U U U U U U
	1.0	160/169 191/101 211/211 100% 100% 100%	355/355 366/371 382/383 99.4% 99.5% 99.7%	165/165 154/185 197/180 169/5 99.5/5 99.5/5	2021438 2153447 218448 46.35 48.1% 48.9%	196/257 209/269 215/276 76.3% 77.7% 77.9%		207/485 218/492 220/490 42.6% 44.3% 44.3% H2 = 0.4
1000	1.0 0.8 0.6	179/179 199/199 213/213 180% 100% 100%	337/300 372/374 3860/387 90.2% 99.5% 99.7%	172/172 186/187 199/280 100% 99.5% 99.5%	200340 218348 225161 66.55 48.75 495	2022003 2122770 2177277 78.8% 78.5% 78.3%	434437 446444 449451 99.3% 99.6% 99.6%	210447 220402 222491 45.1% 44.7% 45.2% P2 0.5
Ċ	0.2 0.0	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K
100	1.0	EUR specific 81/61 120/120 151/155 190% 100% 97.4%	AFR specific 160/160 312/312 331/331 100% 108% 108% T - + +	EAS specific	EUR+AFR 194245 341407 354427 73.2% 83.8% 82.9%	EUR+EAS	AFR+EAS 195/224 337/408 353/427 83.3% 82.4% 82.7%	EUR+AFR+EAS 218012 356467 362489 65.5%, 73.1%, 74%, b2 = 0
).4).2).0	116/117 146/46 169/71	299299 336336 356356	120/121 143/143 166/166	333/399 361/429 377/440	217219 249259 259269	325095 356427 375439	¥ ¥ ¥ G
100000	1.0	98.1% 100% 98.8%	108% 108% 108%	1925 1075 1075 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B3.5% B4.1% B3.7%	91.15 91.45 91.25	82.3% 83.4% 85.4%	73.4% 75.2% 78.3%
Probability in AFR	1.0	144145 170/171 191/103 99.3% 99.4% 99%	229/329 352/352 366/366 100% 108% 108%	140142 1661187 1821182 98.6% 99.4% 100%	362/420 375/340 202/440 83.8% 85.5% 87.3%	245248 263264 257269 98.8% 99.6% 99.3%	356421 378443 384444 84.5% 85.3% 86.5%	3664483 383/403 75.8%, 777.7%, 79.7%, 8 0.2
	1.0).8).6).4	156/157 184/184 220/202 39.4% 100% 39%	356/350 387/387 376/376 100% 100% 100%	152/154 179/181 192/182 98/75 98/95 199%	373/438 388/446 294/448 85.5% 87.2% 87.9%	250/252 288/208 288/271 90.2% 180% 98.9%	3711434 3871449 3901449 85.5% 86.2% 86.9%	377/487 393/495 398/491 77.4% 79.4% 80.7% P2 10.33
	1.0 0.6		355/355 371/371 383/383 100% 100% 100% 100%		377/436 323/447 325/448 86.55 87% 88.2%	255/257 269/269 273/276 99.2% 180% 98.9%	367/431 389/449 394/451 85.2'5 88.6'5 87.4'5 ••••••••••••••••••••••••••••••••••••	378/486 392/492 398/490 77.8% 79.7% 81.2%
Č).2).0	178/179 199/199 210/213 99.4% 100% 98.5%	366/360 374/374 387/387 100% 100% 108%	170/172 187/187 208/280 98.8%, 109%, 109%,	382/440 392/448 398/451 86.8%, 87.5%, 88.2%,	260/263 270/278 273/277 98.9% 180% 98.6%	374/437 390/448 390/451 85.4% 87.1% 87.8%	387/487 395/492 399/491 79.5% 80.3% 81.3%
1 0 0 0 0	0.8	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K
		EUR specific	AFR specific	EAS specific	EUR+AFR	EUR+EAS	AFR+EAS	EUR+AFR+EAS
Probability in EAS 0000001 0000001 0000001 0000001 0000001 0000001 00000001 0000001 0000001 00000001 0000000000	1.0	61/61 119/120 153/155 100% 99.2% 98.7%	166/160 312/312 329/331 100% 100% 99.4%	56/56 117/117 145/145 100% 100% 100% T	245/245 405/407 424/427 100% 99.8% 99.3%	88/131 158/228 176/261 61.1% 63.8% 7£.1%	86/234 152468 177/427 38.8% 37.3% 41.5%	107/012 168/487 188/489 34.3% 34.5% 38.4% P2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
	1.0	1177117 1477148 1894721 190% 99.3% 98.3%	299/299 335/336 354/356 39.7% 29.7% 99.4%	121/121 143/143 108/106 109% 109% 109%	398/399 428/429 437/440 90.75 90.85 90.35	145219 174250 188200 66.2% 69.4% 72.3%	153/395 179/427 193/439 38.7% 41.9% 44%	1884473 1884491 2804492 35.5% 38.3% 40.7% P2 = 0.1
	1.0	145/145 170/171 181/193 100% 99.4% 99%	328/329 351/352 364/366 99.7% 99.7% 99.5%	142/142 167/167 182/182 169% 109% 109% 109%	415/420 438/440 446/449 99.8% 99.5% 99.3%	172/248 199/264 201/269 69.4% 72% 74.7%	174421 190443 293/444 41.3% 44.2% 45.7%	1054453 198403 288403 38.3% 40.2% 42.2%
).4).2).0	156/157 182/184 200202 96.0% 98.0% 98.0%	346/350 355/387 374/376	154/154 151/181 192/182 169% 499% 499%	435/38 444/46 445/46 89,85 89,85 89,85	¥ ¥ ¥ 169/252 197/265 204/271 71/475 74.1% ¥ 54	182434 203449 208449 182434 203449 208449	191/467 296/405 212/491 39.2% 41.0% 41.2%
	1.0	***	+++	• • • •	+++		\$ \$\$	h2 = 0.3
	1.0	168/169 189/191 210211 99.4% 99% 99.5%	353-355 399-371 381-383 99.4% 99.5% 99.5%	165/165 165/185 198/198 109% 109% 109%	435438 445447 445448 99.3% 99.6% 99.3%	188/257 209/269 207/276 72.4% 74.3% 75%	187431 204449 210451 43.4% 45.4% 46.6%	197488 238462 215460 40.55 42.35 43.55 10 10 10 10 10 10 10 10 10 10 10 10 10 1
	1.0).8).6	1781179 197/109 212213 98.4% 99% 99.5%	350360 372/374 385387 99.4% 99.5% 99.5%	172/172 187/187 208/280 100% 100% 100%	435/446 445/445 445/451 99.8% 99.6% 99.3%	192/263 202/270 20N/277 73% 74.8% 75.1%	195437 204448 210461 44.8% 45.5% 48.6%	202467 230402 214431 41.5% 42.5% 43.8% P2 = 0.5
).2).0	50K 100K 200K	50K 100K 200K	50K 100K 200K	50K 100K 200K Sample Size	50K 100K 200K	50K 100K 200K	50K 100K 200K

Supplementary Figure 38: The population-specific causal probability under varying local heritability (*h*²**) in three population fine-mapping analysis.** Analyses were conducted with a balanced EUR, AFR and EAS sample size. The x-axis shows the discovery sample size. The y-axis shows the population-specific causal probability of the identified credible set. The red dashed lines denote the probability of 0.8, which is used as a threshold to infer whether an identified credible set is causal in a population. The label at the top of each panel denotes the ground-truth causal configuration: "EUR specific" indicates that the variant is causal in the EUR population but not in the AFR and EAS populations; "AFR specific" indicates that the variant is causal in the variant is causal in the EUR and EAS populations; "EAS specific" indicates that the variant is causal in the AFR population but not in the EUR and EAS populations; "EUR+AFR+EAS" indicates that the variant is causal in EUR, AFR and EAS populations. The label on the right indicates the local heritability (*h*²). The fractional number on each panel represents "the number of credible sets with correct inference" among "the total number of credible sets identified by SuSiEx". The percentage represents the accuracy of the inference. Numerical results are available in Supplementary Table 17.

Supplementary Figure 39: Comparison of fine-mapping analyses between in-sample LD and external reference LD. Simulation was performed using the standard simulation setting with 200K EUR and 200K AFR samples. **a**, The number of identified true causal variants (true causal variants covered by a credible set). **b**, The coverage of credible sets. The dashed line indicates 95% coverage. The error bar indicates the 95% confidence interval. The top label of each subpanel indicates the reference panel used in the analysis. In-sample LD indicates that in-sample LD was used for both EUR and AFR samples. 1000 Genomes European reference LD indicates that reference LD from 1000 Genomes EUR subpopulations (CEU, GBR, IBS, TSI, FIN) was used for EUR samples but in-sample LD was used for AFR samples. 1000 Genomes AFR subpopulations (ESN, LWK, GWD, MSL, YRI, ACB, ASW) was used for AFR samples but in-sample LD was used for EUR samples. Numerical results are available in Supplementary Table 18.

• $PIP_{SuSiEx} > 0.95, \max(PIP_{single-pop}) < 0.5$ • $PIP_{SuSiEx} > 0.95, \max(PIP_{single-pop}) < 0.8$ • $PIP_{SuSiEx} < 0.5, \max(PIP_{single-pop}) > 0.95$

Supplementary Figure 40: Cross-population fine-mapping analysis after removing the variants with quality issues in biobanks. a, The distribution of the maximum PIP across 99% credible sets. b, The distribution of the size of 99% credible sets. c, The number of variants mapped to PIP >95% across 99% credible sets. d, The number of variants mapped to PIP >95% in single-credible-set loci. e, The maximum PIP from SuSiEx versus the maximum value of the maximum PIP in the three single-population fine-mapping using SuSiE. Only genomic loci with a single credible set aligned across analyses were included. f and g, The marginal per-allele effect size of the maximum PIP variant in EUR vs. EAS and EUR vs. AFR populations. Variants in single-credible-set loci with PIP >95% estimated by SuSiEx and minor allele frequencies >5% in all populations were included. In a-b, red dots represent the mean, the middle line in the box represents the median, and the upper and lower bounds of the box represent the 75th and 25th percentiles, respectively.

Supplementary Figure 41: The marginal per-allele effect size of the maximum PIP variant across populations. We included variants in single-credible-set loci with PIP >95% estimated by SuSiEx and minor allele frequencies >5% in all populations. **a**, EUR vs. EAS; **b**, EUR vs. AFR; **c**, EUR vs. EAS (TWB batch 1).