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The Cross-population Sum of Single Effect (SuSiEx) Model 

 

The multiple-population single effect regression (SER) model. We first describe the SER model 

for multiple populations, which is the building block for the SuSiEx model. Consider the following linear 

regression: 

 

𝒚𝑠 = 𝑿𝑠𝒃𝑠 + 𝝐𝑠,          𝝐𝑠 ~ N(𝟎, 𝜎𝑠
2𝑰),          𝑠 = 1, 2, … , 𝑆, 

 

𝒃𝑠 = 𝑏𝑠𝜸,          𝜸 ~ Mult(1, 𝝅),          𝑏𝑠 ~ N(0, 𝜏𝑠
2), 

 

where for population 𝑠 (e.g., European, Asian or African), 𝒚𝑠 is a vector of standardized phenotypes 

(zero mean and unit variance) from 𝑁𝑠  individuals, 𝑿𝑠 = [𝒙𝑠1, 𝒙𝑠2, … , 𝒙𝑠𝑀]  is an 𝑁𝑠 × 𝑀  matrix of 

standardized genotypes (each column 𝒙𝑠𝑗 is mean centered and has unit variance) in a genomic region 

that harbors at least one strong association signal, 𝒃𝑠 is a vector of SNP effect sizes, and 𝝐𝑠 is a vector 

of residuals with i.i.d. elements, each following a normal distribution with zero mean and variance 𝜎𝑠
2. 

The vector 𝒃𝑠 has exactly one non-zero element with effect 𝑏𝑠. The position of the non-zero element is 

determined by the binary vector 𝜸, which follows a multinomial distribution. 𝝅 = [𝜋1, 𝜋2 , … , 𝜋𝑀]T is a 

vector that gives the prior probability of a SNP being causal, and 𝜏𝑠
2 is the prior variance on the effect 

size 𝑏𝑠 of the causal SNP. We note that all populations share the same underlying causal SNPs (i.e., 

𝜸 does not depend on 𝑠), but the effect sizes of the causal SNP are allowed to vary across populations 

(i.e., 𝑏𝑠 depends on 𝑠). 

 

Posterior under the multi-population SER. Conditional on the 𝑗-th SNP being causal, the least 

squares estimate of its effect size in population 𝑠 is �̂�𝑠𝑗 = (𝒙𝑠𝑗
T 𝒙𝑠𝑗)
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𝑣𝑠𝑗
2 = 𝜎𝑠
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2𝑁𝑠
−1 and the corresponding z score 𝑧𝑠𝑗 = �̂�𝑠𝑗/𝑣𝑠𝑗. The Bayes Factor (BF) for 

comparing this model with the null model (i.e., 𝑏𝑠 = 0) in population 𝑠 is: 

 

BF𝑠𝑗  = BF(𝒚𝑠, 𝒙𝑠𝑗) =
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2 ). 

 

Let 𝒚 = {𝒚𝑠}𝑠=1
𝑆 , 𝝈2 = {𝜎𝑠

2}𝑠=1
𝑆  and 𝝉2 = {𝜏𝑠

2}𝑠=1
𝑆 , the collection of 𝒚𝑠, 𝜎𝑠

2 and 𝜏𝑠
2 across populations, the 

posterior distribution on 𝒃𝑠 = 𝑏𝑠𝜸 can be computed as: 

 

𝜸 | 𝒚, 𝝈2, 𝝉2 ~ Mult(1, 𝜶), 

 

𝑏𝑠  | 𝒚𝑠, 𝜎𝑠
2, 𝜏𝑠

2, 𝛾𝑗 = 1 ~ N(𝜇𝑠𝑗 , 𝜙𝑠𝑗
2 ), 

 

where 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝑀]T is a vector of posterior inclusion probabilities (PIPs) with 

 

𝛼𝑗 = 𝑝(𝛾𝑗 = 1 | 𝒚, 𝝈2, 𝝉2) =
∏ p(𝒚𝑠 | 𝛾𝑗 = 1)𝑝(𝛾𝑗 = 1)𝑆

𝑠=1

∑ ∏ p(𝒚𝑠 | 𝛾𝑗′ = 1)𝑆
𝑠=1

𝑀
𝑗′=1 𝑝(𝛾𝑗′ = 1)
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                               =
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𝜙𝑠𝑗
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The likelihood of the multi-population SER model is: 

 

ℓSER(𝒚; 𝝈2, 𝝉2) = ∑ ∏ 𝑝(𝒚𝑠 | 𝛾𝑗 = 1)𝑆
𝑠=1

𝑀
𝑗=1 𝑝(𝛾𝑗 = 1) = ∏ 𝑝0(𝒚𝑠 | 𝜎𝑠

2)𝑆
𝑠=1 ∑ 𝜋𝑗 ∏ BF𝑠𝑗

𝑆
𝑠=1

𝑀
𝑗=1 , 

 

where 𝑝0(𝒚𝑠 | 𝜎𝑠
2) = 𝑝(𝒚𝑠 | 𝑏𝑠 = 0, 𝜎𝑠

2) = (2𝜋𝜎𝑠
2)−

𝑁𝑠
2 exp (−

1

2𝜎𝑠
2 𝒚𝑠

T𝒚𝑠). 

 

 

The Cross-population Sum of Single Effects (SuSiEx) model. We extend the multi-population SER 

model to the SuSiEx model that allows for multiple causal effects in a genomic locus: 

 

𝒚𝑠 = 𝑿𝑠𝜷𝑠 + 𝝐𝑠,          𝝐𝑠 ~ N(𝟎, 𝜎𝑠
2𝑰),          𝑠 = 1, 2, … , 𝑆, 

 

𝜷𝑠 = ∑ 𝒃𝑠𝑙
𝐿
𝑙=1 ,          𝒃𝑠𝑙 = 𝜸𝑙𝑏𝑠𝑙 ,          𝜸𝑙 ~ Mult(1, 𝝅),          𝑏𝑠𝑙 ~ 𝑁(0, 𝜏𝑠𝑙

2 ),  

 

where the overall effect vector 𝜷𝑠  is the sum of 𝐿  single-effect vectors 𝒃𝑠𝑙 , 𝑙 = 1, 2, … , 𝐿, each has 

exactly one non-zero element.  

 

Variational approximation to the SuSiEx model. We use variational approximation to fit the SuSiEx 

model. Assuming that 𝜏𝑠𝑙
2  is fixed, the evidence lower bound (ELBO) of the model is: 

 

𝐹(𝝈2, 𝑞; 𝒚) = log ℓ(𝒚; 𝝈2, 𝝉2) − 𝐷𝐾𝐿(𝑞 || 𝑝post), 

 

where ℓ(𝒚; 𝝈2, 𝝉2) is the likelihood of the SuSiEx model, 

 

𝐷𝐾𝐿(𝑞 || 𝑝) =  ∫ 𝑞(𝜷)log
𝑞(𝜷)

𝑝(𝜷)
d𝜷 

 

is the Kullback-Leibler (KL) divergence between the two distributions 𝑝 and 𝑞, and 𝑝post = 𝑝(𝜷 | 𝒚) is 

the posterior distribution of the causal effects. We fit the model by maximizing the ELBO 𝐹 over a 

class of distributions 𝑄 that factorize over the 𝐿 single effects: 𝑞(𝒃𝑠1, 𝒃𝑠2, … , 𝒃𝑠𝐿) = ∏ 𝑞𝑙(𝒃𝑠𝑙)
𝐿
𝑙=1  for any 

𝑞 in 𝑄. Let E𝑞[∙] denote the expectation with respect to the distribution 𝑞, 

 

𝐹 = log[𝑝(𝒚)] − E𝑞 [log
𝑞(𝜷)

𝑝(𝜷 | 𝒚)
] = E𝑞 [log

𝑝(𝒚)𝑝(𝜷 | 𝒚)

𝑞(𝜷)
] = E𝑞[log 𝑝(𝒚 | 𝜷)] + E𝑞 [log

𝑝(𝜷)

𝑞(𝜷)
] 
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ERSS𝑠 + ∑ E𝑞𝑙

[log
𝑝𝑙(𝜼𝑙)

𝑞𝑙(𝜼𝑙)
]

𝐿

𝑙=1
 

 

where ‖∙‖ denotes the Euclidean norm, and ERSS is the expected residual sum of squares under the 

variational approximation 𝑞, 𝜼𝑠𝑙 = 𝑿𝑠𝒃𝑠𝑙 and 𝜼𝑙 = {𝜼𝑠𝑙}𝑠=1
𝑆 . We optimize 𝐹 over 𝑞 and 𝜎𝑠

2 by iteratively 

updating each 𝑞𝑙 , 𝑙 = 1, 2, … , 𝐿, while keeping 𝜎𝑠
2 and other elements of 𝑞 fixed, along with a separate 

step for updating 𝜎𝑠
2 with all elements of 𝑞𝑙 fixed. Specifically, to update 𝜎𝑠

2, we note that 

 

𝜕𝐹

𝜕𝜎𝑠
2

= −
𝑁𝑠

2𝜎𝑠
2

+
1

2𝜎𝑠
4

ERSS𝑠. 

 

Setting this derivative to zero and solving for 𝜎𝑠
2 gives �̂�𝑠

2 = ERSS𝑠/𝑁𝑠. 

 

To update 𝑞𝑙 with 𝑞𝑙′ , 𝑙′ ≠ 𝑙 fixed, we have 

 

𝐹 = − ∑
𝑁𝑠

2
log(2𝜋𝜎𝑠

2)
𝑆

𝑠=1
− ∑

1

2𝜎𝑠
2

𝑆

𝑠=1
E𝑞‖𝒓𝑠𝑙 − 𝜼𝑠𝑙‖2 + E𝑞𝑙

[log
𝑝𝑙(𝜼𝑙)

𝑞𝑙(𝜼𝑙)
] + const 

 

                           = − ∑
𝑁𝑠

2
log(2𝜋𝜎𝑠

2)
𝑆

𝑠=1
− ∑

1

2𝜎𝑠
2

𝑆

𝑠=1
E𝑞𝑙

‖�̅�𝑠𝑙 − 𝜼𝑠𝑙‖2 + E𝑞𝑙
[log

𝑝𝑙(𝜼𝑙)

𝑞𝑙(𝜼𝑙)
] + const, 

 

where const denotes terms that do not depend on 𝑞𝑙, 𝒓𝑠𝑙 = 𝒚𝑠 − ∑ 𝜼𝑠𝑙𝑙′≠𝑙 , and �̅�𝑠𝑙 = E𝑞[𝒚𝑠 −

∑ 𝜼𝑠𝑙𝑙′≠𝑙 ] = 𝒚𝑠 − ∑ �̅�𝑠𝑙 =𝑙′≠𝑙 𝒚𝑠 − ∑ 𝑿𝑠�̅�𝑠𝑙′𝑙′≠𝑙  is the expected residual under 𝑞𝑙′ , 𝑙′ ≠ 𝑙. We note that 

maximizing 𝐹 with 𝑞𝑙′ , 𝑙′ ≠ 𝑙 fixed is equivalent to maximizing the ELBO for the multi-population SER 

model in which the observed phenotypes 𝒚𝑠 are replaced by the expected residual �̅�𝑠𝑙. Further, the 

optimization of the SER model does not restrict the form of 𝑞𝑙 and has a closed form solution. 

Therefore, the SuSiEx model can be fitted using an extension of the iterative Bayesian stepwise 

selection (IBSS) algorithm. 

 

The iterative Bayesian stepwise selection (IBSS) algorithm. With an initialization of the posterior 

mean effect size of 𝒃𝑠𝑙 , denoted as �̅�𝑠𝑙 (e.g., �̅�𝑠𝑙 = 0 for all 𝑠 and 𝑙), the fitting procedure updates the 

posterior of 𝒃𝑠𝑙, given estimates of other effects 𝒃𝑠𝑙′ , 𝑙′ ≠ 𝑙, and then updates 𝜎𝑠
2 with all estimates of 

𝒃𝑠𝑙 fixed, until convergence: 

 

• Compute the expected residuals: 

 

�̅�𝑠𝑙 = 𝒚𝑠 − ∑ 𝑿𝑠�̅�𝑠𝑙′

𝑙′≠𝑙

,          𝑠 = 1, 2, … , 𝑆. 

 

• Compute the posterior inclusion probabilities (PIPs): 
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𝛼𝑙𝑗 = p(𝛾𝑙𝑗 = 1 | �̅�𝑠𝑙 , 𝝈2, 𝝉2) =
𝜋𝑗 ∏ BF(�̅�𝑠𝑙 , 𝒙𝑠𝑗)𝑆

𝑠=1

∑ 𝜋𝑗′
𝑀
𝑗′=1 ∏ BF(�̅�𝑠𝑙 , 𝒙𝑠𝑗′)𝑆

𝑠=1

,          𝑗 = 1, 2, … , 𝑀, 

 

where 

BF(�̅�𝑠𝑙 , 𝒙𝑠𝑗) = √
𝑣𝑠𝑗

2

𝜏𝑠𝑙
2 + 𝑣𝑠𝑗

2 exp (
𝑧𝑠𝑙𝑗

2

2

𝑣𝑠𝑗
2

𝜏𝑠𝑙
2 + 𝑣𝑠𝑗

2 ), 

 

�̂�𝑠𝑙𝑗 = (𝒙𝑠𝑗
T 𝒙𝑠𝑗)

−1
𝒙𝑠𝑗

T �̅�𝑠𝑙 = 𝑁𝑠
−1𝒙𝑠𝑗

T �̅�𝑠𝑙 , 𝑣𝑠𝑗
2 = 𝜎𝑠

2(𝒙𝑠𝑗
T 𝒙𝑠𝑗)

−1
= 𝜎𝑠

2𝑁𝑠
−1, 𝑧𝑠𝑙𝑗 = �̂�𝑠𝑙𝑗/𝑣𝑠𝑗. 

 

• Update the posterior distribution for 𝑏𝑠𝑙: 

 

𝑏𝑠𝑙  | �̅�𝑠𝑙 , 𝜎𝑠
2, 𝜏𝑠

2, 𝛾𝑙𝑗 = 1 ~ 𝑁(𝜇𝑠𝑙𝑗 , 𝜙𝑠𝑙𝑗
2 ),          𝜙𝑠𝑙𝑗

2 = (𝑣𝑠𝑗
−2 + 𝜏𝑠𝑙

−2)
−1

,         𝜇𝑠𝑙𝑗 = (
𝜙𝑠𝑙𝑗

2

𝑣𝑠𝑗
2 ) �̂�𝑠𝑙𝑗 . 

   

• Update the posterior moments for 𝒃𝑠𝑙 : 

 

�̅�𝑠𝑙 = E[𝒃𝑠𝑙] = 𝜶𝑙 ∘ 𝝁𝑠𝑙 ,         �̅�𝑠𝑙
2  = E[𝒃𝑠𝑙

2 ] = 𝜶𝑙 ∘ (𝝁𝑠𝑙
2 + 𝝓𝑠𝑙

2 ), 

 

where 𝜶𝑙 = [𝛼𝑙1, 𝛼𝑙2, … , 𝛼𝑙𝑀]T , 𝝁𝑠𝑙 = [𝜇𝑠𝑙1, 𝜇𝑠𝑙2, … , 𝜇𝑠𝑙𝑀]T , 𝝓𝑠𝑙 = [𝜙𝑠𝑙1, 𝜙𝑠𝑙2, … , 𝜙𝑠𝑙𝑀]T , and ○ is 

element-wise multiplication. 

 

• Update 𝜎𝑠
2: 

𝜎𝑠
2 =

1

𝑁𝑠
ERSS𝑠. 

 

Model fitting with summary statistics. To fit the SuSiEx model and calculate the ELBO 𝐹 to monitor 

the convergence of the IBSS algorithm using only GWAS summary statistics, we denote �̂�𝑠𝑗 =

(𝒙𝑠𝑗
T 𝒙𝑠𝑗)

−1
𝒙𝑠𝑗

T 𝒚𝑠 = 𝑁𝑠
−1𝒙𝑠𝑗

T 𝒚𝑠 as the marginal least squares effect size estimate of the 𝑗-th SNP in 

populations 𝑠, and 𝑫𝑠 = [𝒅𝑠1, 𝒅𝑠2, … , 𝒅𝑠𝑀] = 𝑿𝑠
T𝑿𝑠/𝑁𝑠 as the LD matrix for population 𝑠, and note that 

when computing the expected residuals in the IBSS algorithm, we have: 

 

𝒙𝑠𝑗
T �̅�𝑠𝑙 = 𝒙𝑠𝑗

T 𝒚𝑠 − 𝒙𝑠𝑗
T ∑ 𝑿𝑠�̅�𝑠𝑙′

𝑙′≠𝑙

= 𝑁𝑠�̂�𝑠𝑗 − 𝑁𝑠 ∑ 𝒅𝑠𝑗
T �̅�𝑠𝑙′

𝑙′≠𝑙

. 

 

Therefore, instead of �̅�𝑠𝑙, we update 𝒙𝑠𝑗
T �̅�𝑠𝑙 in each iteration, which can be calculated from summary 

statistics and can be used to update �̂�𝑠𝑙𝑗 = 𝑁𝑠
−1𝒙𝑠𝑗

T �̅�𝑠𝑙. In addition, we have 
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ERSS𝑠 = E𝑞 ‖𝒚𝑠 − ∑ 𝜼𝑠𝑙

𝐿

𝑙=1
‖

2

= 𝒚𝑠
T𝒚𝑠 − 2 ∑ �̅�𝑠𝑙

T
𝐿

𝑙=1
𝒚𝑠 + ∑ E𝑞[𝜼𝑠𝑙

T 𝜼𝑠𝑘]
𝐿

𝑙,𝑘=1
 

 

  = 𝒚𝑠
T𝒚𝑠 − 2 ∑ �̅�𝑠𝑙

T
𝐿

𝑙=1
𝑿𝑠

T𝒚𝑠 + ∑ �̅�𝑠𝑙
T 𝑿𝑠

T𝑿𝑠�̅�𝑠𝑘

𝐿

𝑙,𝑘=1
− ∑ �̅�𝑠𝑙

T 𝑿𝑠
T𝑿𝑠�̅�𝑠𝑙

𝐿

𝑙=1
+ ∑ E𝑞𝑙

[𝒃𝑠𝑙
T 𝑿𝑠

T𝑿𝑠𝒃𝑠𝑙]
𝐿

𝑙=1
 

          

             = 𝑁𝑠 − 2𝑁𝑠 ∑ �̅�𝑠𝑙
T

𝐿

𝑙=1
�̂�𝑠 + 𝑁𝑠 ∑ �̅�𝑠𝑙

T 𝑫𝑠�̅�𝑠𝑘

𝐿

𝑙,𝑘=1
− 𝑁𝑠 ∑ �̅�𝑠𝑙

T 𝑫𝑠�̅�𝑠𝑙

𝐿

𝑙=1
+ 𝑁𝑠 ∑ ∑ �̅�𝑠𝑙𝑗

2
𝑀

𝑗=1

𝐿

𝑙=1
. 

 

Lastly,  

 

E𝑞𝑙
[log

𝑝𝑙(𝜼𝑙)

𝑞𝑙(𝜼𝑙)
] = log ℓSER(�̅�𝑠𝑙) + ∑

𝑁𝑠

2
log(2𝜋𝜎𝑠

2)
𝑆

𝑠=1
+ ∑

1

2𝜎𝑠
2

𝑆

𝑠=1
E𝑞𝑙

‖�̅�𝑠𝑙 − 𝜼𝑠𝑙‖2 

 

= log ℓSER(�̅�𝑠𝑙) + ∑
𝑁𝑠

2
log(2𝜋𝜎𝑠

2)
𝑆

𝑠=1
+ ∑

1

2𝜎𝑠
2

𝑆

𝑠=1
[�̅�𝑠𝑙

T �̅�𝑠𝑙 − 2�̅�𝑠𝑙
T 𝑿𝑠

T�̅�𝑠𝑙 + E𝑞𝑙
(𝒃𝑠𝑙

T 𝑿𝑠
T𝑿𝑠𝒃𝑠𝑙)] 

 

              = log ∑ 𝜋𝑗 ∏ BF(�̅�𝑠𝑙 , 𝒙𝑠𝑗)

𝑆

𝑠=1

𝑀

𝑗=1
+ ∑

1

2𝜎𝑠
2

𝑆

𝑠=1
[−2�̅�𝑠𝑙

T 𝑿𝑠
T�̅�𝑠𝑙 + 𝑁𝑠 ∑ �̅�𝑠𝑙𝑗

2
𝑀

𝑗=1
]. 

 

Therefore, both the IBSS algorithm and the ELBO 𝐹 can be computed using GWAS summary statistics. 

In practice, the IBSS algorithm terminates when the increase in 𝐹 between successive iterations is 

smaller than a small non-negative number (e.g., 1e-4).  

 

Construction of credible sets. The PIPs 𝜶𝑙 can be used to compute a level-𝜌 credible set 𝐶𝑆(𝜶𝑙 ; 𝜌), 

which has a probability no less than 𝜌 of containing at least one causal SNP. Specifically, let 

(𝑖1, 𝑖2, … , 𝑖𝑀) denote the indices that sort 𝛼𝑙𝑗 in decreasing order, i.e., 𝛼𝑙𝑖1
> 𝛼𝑙𝑖2

> ⋯ > 𝛼𝑙𝑖𝑀
, and let 

𝑆𝑘 = ∑ 𝛼𝑙𝑖𝑗

𝑘
𝑗=1 . Then 𝐶𝑆(𝜶𝑙 ; 𝜌) ≔ {𝑖1, 𝑖2, … , 𝑖𝑘0

}, where 𝑘0 = min{𝑘: 𝑆𝑘 ≥ 𝜌}. When 𝐿 exceeds the 

number of detectable effects in the data, some 𝜶𝑙 become diffuse and the corresponding credible 

sets will be large, containing many weakly SNPs. Such credible sets have no inferential value and 

can be discarded if they have purity below a threshold (e.g., 0.5), where purity is defined as the 

smallest absolute correlation among all pairs of variants within the credible set. 

 

Post hoc probabilities of causal configurations. After fitting the SuSiEx model, we provide a post 

hoc probability of whether a credible set is shared across populations or population-specific. Let 

𝝎𝑙𝑚 = [𝜔1𝑙𝑚 , 𝜔2𝑙𝑚 , … , 𝜔𝑆𝑙𝑚]T, 𝑚 = 1, 2, … , 2𝑆 denote a total of 𝑊 = 2𝑆 activation configurations of the 𝑙-

th credible set, with 𝜔𝑠𝑙𝑚 ∈ {0,1} being a binary indicator of whether the signal in the 𝑙-th credible set 

is causal in population 𝑠 under the 𝑚-th configuration. We assume that the activation indicator vector 

𝝎𝑙𝑚 ∈ {0,1}𝑆 follows a multivariate Bernoulli distribution with a uniform prior for each configuration. 

For a given credible set, the posterior probability of a causal configuration, conditional on the 

posterior estimates of other credible sets �̅�𝑙 = {�̅�𝑠𝑙}𝑠=1
𝑆 , can be calculated as: 
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𝑝(𝝎𝑙𝑚  | �̅�𝑙) =  
∑ p(�̅�𝑙 | 𝝎𝑙𝑚 , 𝛾𝑙𝑗 = 1)𝑝(𝛾𝑙𝑗 = 1)𝑝(𝝎𝑙𝑚)𝑀

𝑗=1

∑ ∑ p(�̅�𝑙 | 𝝎𝑙𝑚′ , 𝛾𝑙𝑗 = 1)𝑝(𝛾𝑙𝑗 = 1)𝑝(𝝎𝑙𝑚′)𝑀
𝑗=1

𝑊
𝑚′=1

 

 

                          =
∑ ∏ p(�̅�𝑠𝑙 | 𝝎𝑙𝑚 , 𝛾𝑙𝑗 = 1)𝑝(𝛾𝑙𝑗 = 1)𝑠:𝜔𝑠𝑙𝑚=1

𝑀
𝑗=1

∑ ∑ ∏ p(�̅�𝑠𝑙 | 𝝎𝑙𝑚′ , 𝛾𝑙𝑗 = 1)𝑝(𝛾𝑙𝑗 = 1)𝑠:𝜔𝑠𝑙𝑚′=1

𝑀
𝑗=1

𝑊
𝑚′=1

 

 

                                                             =
∑ 𝜋𝑗 ∏ BF(�̅�𝑠𝑙 , 𝒙𝑠𝑗)𝑠:𝜔𝑠𝑙𝑚=1

𝑀
𝑗=1

∑ ∑ 𝜋𝑗 ∏ BF(�̅�𝑠𝑙 , 𝒙𝑠𝑗)𝑠:𝜔𝑠𝑙𝑚′=1

𝑀
𝑗=1

𝑊
𝑚′=1

. 

 

The probability of the 𝑙-th credible set being causal in population 𝑠0 can then be calculated as: 

∑ 𝑝(𝝎𝑙𝑚  | �̅�𝑠𝑙)𝑚:𝜔𝑠0𝑙𝑚=1
. We use a probability threshold of 0.8 to infer whether a fine-mapped signal is 

causal or not in population 𝑠0. 

 

Additional modeling considerations. There are several reasons why we did not explicitly 

model population specificity of each causal signal in SuSiEx (e.g., by including a binary indicator 

variable for each causal variant and each population). Our initial perspective was based on the 

understanding that proving a null hypothesis is inherently unattainable. Specifically, whether a 

causal signal can be detected in a population (i.e., whether it is population-specific) depends on 

the statistical power, which is in turn determined by multiple factors including the allele 

frequency and allelic effect size of the causal variant and the discovery sample size. All these 

factors vary continuously, and it is technically impossible to distinguish a population-specific 

causal variant (exactly zero genetic effect) from a population-shared causal variant with a tiny 

genetic effect. For instance, a causal variant with an effect close to zero can be classified as 

non-causal in a small study and flip to causal as the discovery sample size increases. 

Therefore, rather than using a cutoff to make a binarized inference of whether a variant is 

causal or not in a population, we focus on estimating its effect in each population, which also 

brings substantial computational simplicity and efficiency.  

 

The rationale of our modeling assumption lies in the fact that as long as the causal variant has a 

non-zero (even tiny) effect, it can be considered as shared across populations and we can 

leverage the shared signal and data from multiple populations to improve the power and 

resolution of fine-mapping. Modeling the effect size (as a continuous variable) rather than the 

causal status (as a binary state) of an association signal allows us to take advantage of data 

from underrepresented populations which is still underpowered at this time. As the frequency 

and/or allelic effect size of a causal variant becomes smaller in a population (with zero effect on 

the extreme of this continuous spectrum), the benefits of including data from that population in 

fine-mapping become smaller, but since we allow the effect size to vary across populations 

without restrictions and does not penalize small or zero effects, the model remains valid and 

well-calibrated. 

 

Our last consideration is computational cost. While there are methods developed for the 

problem of multi-trait colocalization that can explicitly infer the causal configuration across traits 

(e.g., Foley et al. 2021, Nature Communications; Giambartolomei et al. 2018, Bioinformatics), 
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these methods all assumed that each trait has no more than one causal variant in the genetic 

locus being analyzed. Since the number of possible causal configurations grows exponentially 

with both the number of traits (in the multi-trait setting) or populations (in the multi-population 

setting) and the number of causal variants, existing techniques become computationally 

impractical when analyzing a genomic region with a handful of causal variants in more than two 

populations. For example, to fine-map a locus with a maximum of 5 causal variants (which is the 

default setting in this study) across 3 ancestries, there will be (2^5)^3 = 32768 causal 

configurations to search through, which is highly computationally expensive even with 

sophisticated approximation techniques and quickly exhausts the power of non-European 

datasets. 

 

 


