
Variational autoencoders to predict DNA-methylation 
age and provide biological insights in age-related 
health and disease 
Sandra Steyaert1,*, Adriaan Verhelle1, Wim Van Criekinge1,2 
 
1H42 Inc. EdgeWater Blvd 969-G #342, Foster City, CA-94404 
2 Department of Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent, Belgium. 

*To whom correspondence should be addressed: sandra@h42.ai ,  

ORCID: https://orcid.org/0000-0002-0996-1364 

 

Abstract 
Motivation: Epigenetic ageing clocks based on age-associated changes in DNA-methylation (DNAm) 
profiles have shown great potential as predictors to quantify age-related health and disease. Most of 
these clocks are built using penalized linear regression models with the aim to predict chronological 
and/or biological age. However, the precise underlying biological mechanisms influencing these 
clocks remain unclear. In this work, we explored if a Variational Autoencoder (VAE) can be trained to 
model DNAm age, and whether this VAE captures biologically relevant features of ageing in the latent 
space. 
Results: Our results indicate that VAEs present a promising framework to construct embeddings that 
capture complex interactions and that can be used to extract biological meaningful features upon 
predicting DNAm age. By using deep learning interpretation methods, we show it is possible to 
determine which genomic loci and pathways are important in making the predictions, both on a 
population and individual level, paving the way to unravel what makes the DNAm clock tick. 
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Introduction 
 
Ageing is a gradual biological process characterized by functional decline in both physical and 
cognitive capabilities. It represents a major risk factor for age-related disorders such as 
neurodegenerative disease, rheumatoid arthritis, osteoarthritis, cancer, diabetes and cardiovascular 
diseases, and ultimately increased risk of death1. The past two decades, a growing interest in longevity 
(lifespan) and healthy ageing (healthspan) led to tremendous efforts to unravel the biological basis with 
the hope to delay or prevent age-related conditions and increase both life- and healthspan2. Ageing is 
regulated by complex cellular and molecular mechanisms, and variation in life- and healthspan 
between humans is affected by a variety of factors including genetic background but also 
socioeconomic and environmental elements3.  
 
Epigenetics connects the genotype to the phenotype and plays an important part in the response to 
environmental factors hinting at a lead role in modulating the ageing process4,5. Multiple studies indeed 
have shown the link between rate of ageing and alterations in epigenetic regulators such as DNA-
methylation (DNAm), histone modifications, non-coding RNAs and chromatin organization6,7. As 
epigenetic modifications are potentially reversible, these findings greatly facilitated the emerging anti-
ageing field and the development of ageing-delaying or even reverse-ageing therapies8,9. Especially 
DNAm levels have been the focus of many age-related studies as DNAm has been well-reported to 
dynamically change with age5. For example, DNAm levels tend to increase with age at some CpG 
islands whereas loci outside CpG islands usually lose methylation6. 
 
Interestingly, these studies further showed that the DNA methylome, and in particular specific 
collections of individual 5-methylcytosine sites, can be used to predict chronological age of a variety 
of tissues10,11, and in 2013 Horvath introduced the concept of the “epigenetic or DNAm clock”12. 
Furthermore, apart from being a predictor for chronological age, DNAm may also serve as a valuable 
biomarker for healthy versus unhealthy ageing and disease risk, and thus a proxy for “biological age”13. 
Importantly, while chronological age is independent of genetic background, lifestyle, health and 
disease, biological age can be highly variable between people of the same chronological age. Indeed, 
disparity between an individuals’ chronological and biological age may reflect the impact of specific 
genetic and environmental factors, leading to an acceleration or deceleration of age-related functional 
decline compared to peers of the same chronological age14,15. Multiple methods have been proposed 
to measure biological age, including physiological16 (e.g. blood, cardiovascular, cognitive and physical 
parameters) as well as some molecular (e.g. telomere length17, mitochondrial function18) markers. 
However, despite its potential as an objective quantification of healthspan, there is currently no 
consensus on the best method to determine biological age19,20, mainly reflecting its inherent 
complexity. However, some recent studies have stipulated that the delta between one’s DNAm age 
and true chronological age, might be a surrogate for biological age13,21. In this regard, a positive delta 
indicates an DNAm age-acceleration resulting in a biologically older individual, while a negative delta 
reflects that the individual aged slower and is biologically younger. For example, one study 
investigating blood of centenarians and their offspring reported a consistent negative delta, i.e. DNAm 
age-deceleration, for this population22.  
 
In light of these findings, there has been broad interest in the use of DNAm age. This, together with the 
advances in DNAm technologies  and the data availability, enabled the creation of several methylation 
clocks23. The first methylation clocks were created for humans but have recently also been developed 
for other organisms like mice and dogs, amongst others. The best-known human DNAm clocks are 
probably those from Horvath12 (multi-tissue), Hannum24 (blood), Levine13 (PhenoAge, blood) and Lu25 
(GrimAge, blood) but many others exist. Here, the former two are referred to as first-generation clocks 
because they were trained to predict chronological age. The latter two clocks, on the other hand, are 
labelled second-generation clocks, because they were trained on a surrogate biomarker reflecting 
ageing phenotypes to better reflect disease morbidity and mortality with the aim to predict biological 
age.  
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While each clock slightly differs in the used datasets and/or data processing approach, the vast 
majority are linear models of a set of CpGs, with or without intercept, regressing to either chronological 
age or to a proxy for biological age. Each linear model is typically built using the same general 
supervised workflow, namely by leveraging a penalized or regularized regression model like 
ElasticNet or Lasso to automatically select the most informative set of CpGs for the prediction out of 
the full methylation array after which a linear model is developed on those CpGs14,26. The final number 
of selected CpGs differs for each linear model but usually ranges between 3 and 2000. For example, 
the Horvath, Hannum, Levine and Lu clocks contain 353, 71, 513 and 1,113  CpGs respectively27. While 
regularized linear regression has been widely used to develop epigenetic clocks, there are some 
important limitations with this approach. Not only can linear regression display high bias, but it is also 
not able to capture more complex, non-linear CpG interactions28. More importantly, epigenetic clocks 
based on linear models assume that the contribution of each CpG is additive and that the rate of 
methylation change is constant over the entire lifespan. In addition, regularized regression methods 
are often sensitive to subtle differences in the used data. This is evidenced by the fact that many of the 
published clocks use completely different, non-overlapping sets of CpGs, even when trained for the 
same tissue, making it difficult to assess any biological or functional connection to the ageing process26. 
 
Deep learning (DL) has proved to be a powerful and flexible approach for many data types, including 
molecular data29-32. When provided with large, high-dimensional data, neural networks (NN) can 
capture complex linear and non-linear feature interactions. Also, for DNAm data and DNAm age 
prediction, NN models have already been successfully applied. For example, methods like 
DeepMAge33 and AltumAge28 use a deep NN for blood and pan-tissue DNAm age prediction, 
respectively. By using a multi-layer perceptron (MLP) architecture, both methods outperform 
regularized linear regression models such as Horvath in chronological age prediction, seem to be more 
resilient to noise and generalize better to new data. Furthermore, they illustrate that NNs allow to 
simultaneously use information of thousands of CpGs, can capture higher-order, complex feature 
interactions and that it is possible to determine the contribution of each CpGs by leveraging DL 
interpretation methods like Shapley Additive Explanation (SHAP)34. As such, these results show that DL 
is a very encouraging approach for epigenetic clock predictions and to unravel complex biological 
mechanisms within the context of ageing35. 
 
Among DL models, variational autoencoders (VAE) are an emerging technique that hold great potential 
in a wide range of applications. VAEs are data driven, unsupervised generative models that harness 
the power of DL and learn data distributions without the need for accurate labels36. The underlying 
architecture consists of autoencoding layers which first encode (compress) the data in a lower-
dimensional latent space after which the data is decoded (reconstructed) into its original dimension. 
Here, the aim of the encoder phase is not only to reduce the data dimensionality, but to compress the 
data by removing redundant information while at the same time keeping the most important 
information relevant for the research question in this reduced representation37. While a traditional AE 
minimizes the reconstruction error during training and results in a non-regularized latent space (the 
decoder cannot be used to generate valid input data from vectors sampled from the latent space), a 
VAE is stochastic and learns the parameters of the data distribution, i.e. mean and standard deviation, 
ensuring a latent space with generative capabilities38. Importantly, the fact that the autoencoding 
makes use of complex, non-linear activation functions, allows the VAE to learn complex, lower-
dimensional representations of the data. Because of the ability to apprehend underlying data 
manifolds, VAEs have been employed to generate meaningful biological latent spaces for various 
biological applications. For instance, Way et al. trained a VAE on TCGA pan-cancer RNA-seq data to 
model cancer gene expression and observed that the encoded lower-dimensional features contained 
biological meaningful signals39. Similarly, Kinalis et al. show that it is possible to directly deconvolute 
biological modules inherent in single cell RNA-seq data that outline cell-specific drivers, without 
making any prior assumptions40. Of late, VAEs are being used to reduce the dimensionality of DNAm 
data.  
Methylation profiles are typically measured via DNAm microarrays such as Illumina’s 
HumanMethylation27 (27K), HumanMethylation450 (450K) and the most recent 
HumanMethylationEPIC (850K), measuring approximately 27,000, 450,000 and 850,000 CpG sites, 
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respectively, and are reported as continuous beta-values ranging from 0 (no methylation), to 1 (fully 
methylated)41. Given the high number of features, VAEs have been applied to embed this data to into 
a lower-dimensional meaningful feature set42-44. For example, Levy et al. investigated the use of VAEs 
on six different DNAm datasets and demonstrated its potential to capture cancer subtype information, 
cellular differences, and smoking factors, and to make age predictions44. Two other DNAm breast 
cancer studies illustrated the use of the encoded latent space to predict cancer subtypes42,43. In 
addition, when comparing to regularized regression-based methods for feature selection, VAEs were 
able to reveal novel information about DNAm patterns in breast cancer42.  
 
Here, we explore the use of VAEs to create a biologically relevant latent space that can be used to 
extract relevant biological signals related to ageing but also to model DNAm clocks to predict 
biological age. For this, we developed framework that first performs a prior dimensionality reduction 
to ~13k CpGs which are fed into a VAE model. In a next step, the learned latent space is used as input 
of an MLP to predict age. We trained our framework using 8 publicly available DNAm 450K datasets 
totaling 2,716 blood samples originating from healthy individuals with chronological ages ranging 
between 0-103.  We present initial results from using VAEs as a dimensionality reduction method for 
DNAm ageing applications and show that this lower dimensional latent space holds relevant 
information that may lead to mechanistic hypotheses on how the methylome drives the ageing 
process. We further demonstrate that this learned latent space can subsequently be used as input 
features for models to estimate age. Additional validation on two independent cohort not only 
illustrates that the developed models can be used to calculate DNAm age, but that the VAE has the 
potential to be used to distinguish diseased from health samples for age-related disorders. 
  
Taken together, our analysis hints towards more robust DL-based methylation clocks with better 
estimates for biological age that at the same time can unravel complex biological networks involved 
in ageing and/or age-related disorders. It is our expectation that in the future, VAEs or other DL feature 
selection methods that can capture complex biological functions pave the way to combine multiple 
modalities relevant for ageing, e,g. molecular (DNAm, gene expression, metabolic profiles – single or 
multi-tissue), image data as well as socioeconomic factors and health records in one multimodal 
model for biological age prediction. 

Methods 
 
Data & Preprocessing 
 
Methylation data used in this study consisted of 2,716 blood samples measured on Illumina’s Infinium 
HumanMethylation450 BeadChip (450K) array originating from seven public datasets. Raw data was 
downloaded from the Gene Expression Omnibus (GEO)45 (six datasets, i.e. GSE3087046, GSE3214947, 
GSE4116948, GSE3606449, GSE4027924, GSE8757150) and ArrayExpress51 (SATSA dataset52 - E-MTAB-
7309). Details on the individual datasets and characteristics of the specific study cohort can be found 
in Table 1. A full description of each dataset can be found in the original reference. 
 

Table 1: Overview of used 450K methylation datasets. 

Dataset #Samples (origin) Description Median Age  
(min - max) 

GSE3087046 40 (blood PBMC) The study aimed to compare the DNAm differences 
between newborns and nonagenarians using 
methylation array technology 

44.5 (0-103) 

GSE3214947 46 (blood PBMC) DNAm study of Crohn's disease (n=14), ulcerative 
colitis (n=8) and controls (n=14). DNAm age was not 
found to be associated with disease status. 

15 (3.5-76) 

GSE4116948 95 (whole blood) Genome wide DNAm profiling of whole blood in 
schizophrenia patients and healthy subjects of 

29 (18-65) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.07.23292381doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.07.23292381
http://creativecommons.org/licenses/by-nc-nd/4.0/


different ages. Dataset included 62 schizophrenia 
patients and 33 healthy subjects from Dutch descent. 

GSE3606449 78 (blood PBMC) DNAm association study in healthy children (males) 3.1 (1-16) 
GSE4027924 656 (whole blood) Genome wide DNAm profiling of healthy individuals 

across a large age range. 
65 (19-101) 

GSE8757150 729 (whole blood) Genome wide DNAm profiling of healthy individuals 
across a large age range. 

47 (14-94) 

SATSA52 1072 (blood PBMC) DNAm of longitudinal samples from The Swedish 
Adoption/Twin Study of Aging (SATSA). ~400 
Swedish twins were sampled over 20 years (up to 5 
times per sample). 

73.5 (48-99) 

 
 
The Illumina 450K array measures bisulfite-conversion-based, single-CpG resolution DNA methylation 
levels for over 480K CpG sites and covers 96% of CpG islands in the human genome53. Unlike the 
previous 27K platform, the Illumina 450K array includes two distinct probe types, i.e. Infinium I 
(n=135,501) and Infinium II (n=350,076). In the Infinium type, each CpG cute is targeted by two 50bp 
probes: one for detecting the methylated intensity (M) and one for detecting the unmethylated 
intensity (U). In contrast, Infinium II probes detect both the M and U intensity of each CpG site by one 
single probe using different dye colors (green and red). For each CpG site, methylation values are 
indicated by the beta-value which ranges from 0 (no methylation) to 1 (fully methylated) and is 
calculated as beta=M/(M+U+alpha) where alpha generally equals 10041,53.  
 
Raw beta-values were processed in R (v4.1.2) with the RnBeads package (v2.12.2). Probes not in CpG 
context were filtered out as well as probes for which the beta-values were NA or had low variability 
(standard deviation < 0.005). Beta values of the remaining probes were next normalized using the Beta 
Mixture Quantile dilation method (BMIQ) with an Exponential-Normal mixture (Enmix) signal intensity 
background correction. After preprocessing and normalization, only probes present in all eight 
datasets were kept resulting in a final dataset of 2,716 samples and 415,594 CpG probes. Table 2 
summarizes the number of samples per age group for this population. 
 

Table 2: Number of samples per age group with their respective weights. 

Age Group # Samples Group weight 
[0, 20[ 239 0.132 

[20, 30[ 142 0.222 
[30, 40[ 136 0.232 
[40, 50[ 221 0.143 
[50, 60[ 327 0.092 
[60, 70[ 529 0.057 
[70, 80[ 594 0.050 

80+ 444 0.071 
 2,716 1 

 

Dimensionality Reduction 
 
Typically, methylation arrays inherently present a dimensionality imbalance (i.e. number of CpGs (p) >> 
number of samples (n)). To handle the dimensionality imbalance in our dataset (p = 415,594, n = 2,716), 
a prior feature selection step was performed using ElasticNets, a shrinkage technique that uses a 
weighted combination of L1 (Ridge) and L2 (Lasso) regularization. As shown in Table 2, the predictor 
variable age is not uniformly distributed our dataset, i.e. the samples are imbalanced between different 
age classes. Therefore, before fitting an ElasticNet, samples were bootstrapped with a fraction of 42% 
and sample weights equal to the respective age class weight (Table 2). Figure 1 shows the original age 
density distribution (panel A) and the resulting density distribution of one such bootstrap (panel B). 
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This bootstrapping procedure was performed 42 times, and for each bootstrapped distribution an 
ElasticNet was fitted with an L1/L2 ratio of 0.5 and the non-zero coefficients stored. On average, each 
ElasticNet had 895 non-zero coefficients with a range of [821; 955]. In a next step, the non-zero 
coefficients from all bootstrap iterations were combined, resulting in 13,242 unique non-zero 
coefficients, i.e. CpGs, out of the initial 415,594 (=3.19%). 
 

 
Figure 1: Age distribution of sample population. (A) original age density distribution. (B) age density distribution of first 
weighted bootstrap. 

 
Model Development 
 
Variational Autoencoder Model 
 
We employed a variational autoencoder (VAE), an unsupervised deep learning architecture that 
consists of two neural network parts: an encoder and a decoder (Figure 2A). The encoder converts the 
input (our MxN data matrix with M=2,716 samples, and N=13,242 CpGs) to a lower dimensional latent 
space consisting of two feature vectors representing the input as a jointly Gaussian distribution. The 
decoder then randomly samples from this latent distribution to regenerate the data. Here, the 
effectiveness of the model is evaluated by comparing reconstructed data to the original input data. 
Importantly, the latent space (also called embedding) is the key concept of the VAE: each of the input 
features is combined in a weighted (nonlinear) pattern that contributes to the learned latent 
representation36. Hence the encoder can be seen as a complex feature extractor selecting relevant 
signals in the data while removing the noise.  
 
We constructed a VAE with 2 linear layers for encoding with dimensions 4096 and 2048 respectively, 
a latent space of size 242 and a two linear decoding layers with dimensions 2048 and 4096, respectively 
(Figure 2A). Between each linear layer, a 1D batch normalization was performed and the non-linear 
ReLu function was used as activation function. The input of the VAE was limited to the 13,242 CpGs 
selected by the ElasticNet analysis. The VAE model was trained using the ADAM optimizer54 with two 
loss functions: (i) a Mean Squared Error (MSE) loss function capturing the reconstruction loss and (ii) a 
Kullback-Leibler divergence (KLD) loss function measuring the distance between two distributions.  
Two KLD implementations were tested: (i) one that determines the KLD between the latent distribution 
and a Gaussian distribution, thereby assuming hence forcing the sampling in the representation layer 
to approximate a normal random variable, and (ii) a Monte Carlo approximation of KLD which is 
distribution-agnostic, i.e. without making any prior assumptions about the underlying distribution55. The 
total training loss was defined as: MSEloss + w*KLDloss with w the weight of the KLD term varying 
between 0-1 following a cyclical sigmoid annealing scheduling to mitigate KLD-vanishing56. 
 

Age Age

D
en
si
ty

D
en
si
ty

0
0

0
0

100 10030 60 30 60

0.020 0.020

0.0100.010

A B

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.07.23292381doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.07.23292381
http://creativecommons.org/licenses/by-nc-nd/4.0/


Samples were shuffled in a training and test set at an 80/20 ratio with stratification on age class. This 
test set was left out during model training and only used for final model performance. A 10-fold cross 
validation (CV) performed on the training set. Hyperparameters were empirically determined. Each CV 
model was trained for 100 epochs using a batch size of 64, a learning rate of 1e-3. To prevent exploding 
gradients during VAE training, a weight decay (L2 regularization) of 1e-4 was set and gradients were 
clipped with a norm of 0.01. For each CV, the weights were saved for the epoch with the lowest loss 
on the validation set. The best model was chosen based on the CV configuration with the highest 
validation accuracy. This final model was next evaluated on the test set. 
 
 

 
Figure 2: Overview of Model Architecture. (A) Variational Autoencoder (VAE) to embed the methylation data into a 
latent space. (B) Three-layer Multi-Layer Perception (MLP) for age prediction using the VAE embedding as input 
features. 
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Multi-Layer Perceptron 
 
In order to test the utility of the learned latent methylation space to predict age, a three-layer multi-
layer perceptron (MLP) was trained with input layer of size 242 (= size of latent space), 3 hidden layers 
of size 128, 64 and 32 and output layer of size 1 (Figure 2B). Before each layer, a dropout with probability 
0.42 was implemented and the non-linear ReLu function was used as activation function. As for the 
VAE, the ADAM optimizer was used together with a weighted MSE loss function, where the error on 
each sample was weighted according to its age class weight (Table 2). The MLP was trained for 100 
epochs, using a batch size of 32, learning rate of 1e-3 and weight decay of 1e-4. Also here, the best 
model was selected as the epoch with the highest performance on the validation set and evaluated 
on the test set. 
 
Model Validation 
 
To evaluate the VAE and MLP models, additional validation was done on two independent datasets. A 
first dataset consisted of 418 DNAm samples originating from an African American sibling cohort from 
the Genetic Epidemiology Network of Arteriopathy (GENOA) study (GEO accession GSE210254)57. 
DNAm age was calculated for each sample, and performance evaluated by calculating the mean 
absolute error (MAE) and r2 . Results were further compared to Horvath, Hannum and PhenoAge DNAm 
age predictions.  
 
A second dataset consisted of 689 peripheral blood leukocytes samples from a DNAm study to 
determine whether rheumatoid arthritis (RA) patients have methylation differences comparing to 
normal controls (GEO accession GSE42861)58. Here, although with a small effect size (age difference of 
1.2 years), the researchers found a significant (p=0.0049) difference between the two groups58. While 
Horvath did not find a significant difference of negative age acceleration between the diseased versus 
healthy samples12, we wanted to evaluate if our models could pick up any clinical signal or deviation 
in RA patients. To test this, we first computed a universal measure of age acceleration (AgeAcc) as the 
DNAm age predicted by our model divided by chronological age. We also calculated AgeAcc using 
DNAm age predicted by Horvath, Hannum and PhenoAge clocks. 
 
To assess if the latent space encoded by our VAE can be used as a biological feature extractor for age-
related features, we trained a simple logistic regression model to predict RA status (Figure 3). The 
dataset was split in an 80/20 ratio with stratification on RA status and a Logistic Regression (Logit) 
model was trained on the training set using sklearn’s default LogisticRegressionCV function with L1 
penalty and the saga solver. Performance was measured on the test set by calculating the confusion 
matrix and generating the Receiver Operating Characteristic (ROC) curves. 
 
These datasets were not used in any training or fine-tuning step but kept as a separate independent 
cohort for final model validation. 
 

Model Interpretation 
 
While DL can extract predictive features from complex data, these are usually abstract. Here, we 
propose a method that leverages the VAE to biologically interpret the latent space in a post-hoc 
manner. The relation with the input features (13,242CpGs) was determined by backpropagation of the 
VAE model and calculating the model gradients. The importance of each gene was next assessed by 
averaging the gradients of the gene-associated CpGs. Likewise, the importance of each pathway in 
each neuron was assessed by averaging the gene importances of the associated gene set. Here, gene 
sets were defined by mapping individual genes to the Reactome pathway collection (C2:CP collection 
v7.5, downloaded from https://data.broadinstitute.org/gsea-msigdb/msigdb/release/7.5/)59,60.  
 



A cluster analysis was performed by visualizing the latent space embeddings on a 2D and 3D space by 
calculating t–Stochastic Neighborhood Embedding (t-SNE) and Uniform Manifold Approximation and 
Projection (UMAP) projections using their respective python packages61,62. 
 
 

 
Figure 3: Logistic regression model for binary classification to predict RA status from the VAE embedding. 

Results 
 
Model development for epigenetic age prediction 
 
Two VAE frameworks were developed and evaluated for epigenetic age prediction. The first 
framework employs a VAE with the KLD calculated between the latent distribution and a Gaussian 
distribution, while the second framework utilizes a distribution-agnostic approach for KLD calculation. 
For each framework, an MLP was trained using 10-fold CV to predict age using the learned latent 
spaces of the samples as input (Figure 2). The performance of the models was evaluated using two 
standard evaluation metrics: Mean Absolute Error (MAE) and the coefficient of determination, denoted 
as r-squared (r2). Table 3 presents the CV model performances, including the mean score of the 10-
fold CV with standard deviation for both frameworks on the training, validation, and test sets. 
Remarkably, the agnostic framework consistently outperformed the Gaussian framework in all 
datasets, exhibiting lower MAE and higher r2 values. Further statistical analysis, specifically a pairwise 
comparison using the Wilcoxon signed-rank test, confirmed the significantly improved performance 
of the agnostic framework over the Gaussian framework, as depicted in Figure 4. 
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Table 3: Performance analysis of the variational autoencoder (VAE) combined with a multilayer perceptron (MLP) framework for 
the prediction of epigenetic age. The table includes results of the Mean Absolute Error (MAE) and the coefficient of determination 
(r2) obtained from cross-validation (CV) on the training, validation, and test datasets. The performances are reported in terms of 
the mean values, along with the corresponding standard deviations (stdev), for both the Gaussian Kullback-Leibler Divergence 
(KLD) strategy and the distribution-agnostic KLD strategy. 

Dataset Metric KLD strategy 
Gaussian Agnostic 

Training Mean (MAE) CV  
± stdev 

7.00 
± 0.23 

6.35 
± 0.25 

Mean(r2) CV 
± stdev 

0.84  
± 0.01 

0.87 
± 0.01 

Validation Mean (MAE) CV 
± stdev 

6.83  
± 0.43 

6.20 
± 0.38 

Mean(r2) CV 
± stdev 

0.85 
± 0.01 

0.87  
± 0.02 

Test Mean(r2) CV 
± stdev 

7.22 
± 0.31 

6.54 
± 0.28 

Mean(r2) CV 
± stdev 

0.83 
± 0.01 

0.85 
± 0.01 

 
 

 
Figure 4: Boxplots illustrating the model performance of each Kullback-Leibler Divergence (KLD) strategy on the validation (N=218) 
and test (N=543) datasets. Subfigure (A) presents the distribution of Mean Absolute Error (MAE) obtained from 10-fold cross-
validation (CV), while subfigure (B) displays the coefficient of determination (r2) scores for each CV fold. Statistical significance 
between the KLD strategies was assessed using pairwise Wilcoxon signed-rank test, with significance levels denoted by asterisks 
(*P value <0.05, **P value <0.01, and ***P value <0.005), indicating the level of significance in relation to the comparison of the 
two strategies. 

Figure 5 showcases the predictions and evaluation metrics of the best-performing CV distribution-
agnostic model for all samples included in the training, validation, and test sets. The x-axis represents 
the chronological age of each sample, while the y-axis displays the age predicted by the model. This 
final optimized model, referred to as methVAgE in subsequent analyses, achieved an MAE of 6.34 and 
an r2 of 0.86 on the test set. 
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Figure 5: Predictions and evaluation metrics of the best-performing CV distribution-agnostic model for all samples in training (A), 
validation (B), and test (C) sets. For each panel, the x-axis represents chronological age, and the y-axis model-predicted DNAm 
age. 

 
Model evaluation on external datasets 
 
After pre-processing the methylation data of the GENOA57 (African American sibling cohort from the 
Genetic Epidemiology Network of Arteriopathy) and rheumatoid arthritis58 (RA) datasets, the developed 
model was subsequently validated on these two external cohorts. 
 
Figure 6 illustrates the predictions on 418 GENOA samples from three epigenetic clocks, namely (i) our 
VAE+MLP framework (referred to as methVAgE), and two other widely used linear model clocks, (ii) 
Horvath12 and (iii) PhenoAge13. Additionally, we calculated the age acceleration (AgeAcc) of each 
sample by dividing the predicted DNAm age by the chronological age. An AgeAcc value greater than 
1 indicates accelerated biological ageing, whereas a value lower than 1 implies decelerated biological 
ageing, which is preferable. Figure 6 also displays the mean AgeAcc of all samples for each clock. 
 
Notably, the DNAm age predictions of our methVAgE model consistently trend lower than the 
corresponding chronological ages at the cohort level, as evidenced by the lower AgeAcc compared 
to the other two clocks. This observation is intriguing considering previous findings63 demonstrating 
that African Americans tend to exhibit significantly lower extrinsic DNAm ages compared to whites. 
Although both Horvath and PhenoAge clocks also exhibit an average AgeAcc below 1 for this cohort, 
the effect is less pronounced, suggesting that our framework may better capture underlying biological 
signals. Additionally, we calculated the AgeAcc for Hannum24, another established epigenetic clock 
(not shown in Figure 6), which yields an average AgeAcc of 1.06, indicating that this biological 
phenomenon is not adequately captured by this particular clock. 
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Figure 6: Epigenetic clock predictions on GENOA samples. Comparison of methVAgE (our VAE+MLP framework) with Horvath and 
PhenoAge (two widely used linear model clocks). X-axis represents chronological age, and y-axis the predicted DNAm age. The 
mean age acceleration (AgeAcc) - calculated as predicted DNAm age divided by chronological age averaged over all samples -  is 
also displayed for each clock. 

 
Figure 7 depicts the model predictions of the epigenetic clocks for the second cohort, specifically the 
rheumatoid arthritis (RA) dataset comprising 689 samples, with 335 (49%) being healthy control 
samples and 354 (51%) diagnosed with RA. A significant age difference between these two groups was 
identified by the researchers in this study (P value=0.0049), albeit with a small effect size of 1.2 years58. 
In contrast, Horvath's study12 did not find a significant difference in negative age acceleration between 
diseased and healthy samples, as also evident in Figure 7B where we computed the DNAm age 
predictions and mean AgeAcc using Horvath's algorithm. Interestingly, the average AgeAcc is slightly 
higher for the healthy cohort (Wilcoxon rank sum test P value = 0.0035). Conversely, for the other three 
algorithms, the diseased samples exhibit increased AgeAcc, with a marginal difference when using 
Hannum's clock (0.3, Wilcoxon rank sum test P value = 0.0372), and a more pronounced difference in 
AgeAcc of 0.5 (Wilcoxon rank sum test P value < 0.0001) and 0.6 (Wilcoxon rank sum test P value = 
0.0006)  for PhenoAge and our methVAgE model, respectively. Notably, compared to PhenoAge, our 
model yields an average cohort AgeAcc > 1 for the RA samples, indicating that, on average, the RA 
subgroup is characterized by accelerated biological ageing. 
 
Moreover, in addition to evaluating AgeAcc, we investigated whether the latent space encoded by our 
VAE harbors biological signals that could serve as input for a classifier aimed at predicting age-related 
diseases. The rationale behind this approach is that the encoded feature space may exhibit differences 
between healthy and diseased samples, and a model could be trained to leverage these differences 
for disease classification. To test this hypothesis on the RA dataset, we trained a simple binary logistic 
regression model utilizing the VAE embeddings as input (as shown in Figure 3). The performance of 
this model on the training and test sets is presented in Figure 8. The left panel displays the ROC curves 
with the corresponding area under the curve (AUC) and F1 score, while the right panel depicts the 
confusion matrix. The results obtained with this simple model suggest that the VAE embeddings do 
indeed contain encoded biological signals that have the potential to discriminate between diseased 
and healthy samples. 
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Figure 7: Model predictions of epigenetic clocks for the rheumatoid arthritis (RA) dataset. A. methVAgE, B. Horvath, C. Hannum 
and D. PhenoAge. Statistical significance between the AgeAcc of the diseased and normal samples was assessed using Wilcoxon 
rank sum test, with significance levels denoted by asterisks (*P value <0.05, **P value <0.01, and ***P value <0.005), indicating 
the level of significance in relation to the comparison of the two groups. 

 
Figure 8: Performance of the binary logistic regression model using VAE embeddings as input for discriminating between diseased 
and healthy samples in the RA dataset. The left panel shows the Receiver Operating Characteristic (ROC) curves with the 
corresponding area under the curve (AUC) and F1 score, while the right panel displays the confusion matrix. 
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Model interpretation 
 
Based on the findings described above, we further conducted an unsupervised cluster analysis to 
determine if, when provided only with the VAE embeddings as input, such an analysis would 
independently reveal differences between the two groups. Figure 9A displays a 2D visualization of two 
different unsupervised cluster methods, namely t-SNE61 and UMAP62. Notably, most of the RA 
embeddings are clustered together in one group, while most normal samples are clustered in a distinct 
group. This observed independent clustering based solely on the VAE embeddings provides further 
evidence that the embeddings indeed contain relevant signals that may be associated with RA. In 
Figure 9B we present the same information, but with the samples colored according to their respective 
labels from the confusion matrix shown in Figure 8. It is noteworthy that the false positive samples are 
predominantly located within the RA cluster, while the false negative samples are mainly located 
outside the RA cluster. This observation suggests that the RA-related (biological) signals captured by 
the VAE embeddings are consistent with the classification results obtained from the logistic regression 
model. 
 
Certainly, this type of analysis can be extended to explore differences among other groups of interest, 
such as different age-groups. In this regard, we performed a similar unsupervised clustering analysis 
using a dataset containing samples from both newborns and nonagenarians (GSE3087046, as described 
in Table 1), and the results are displayed in Figure 9C. Notably, the embeddings of these two age-
groups are clustered in distinct groups, suggesting that the VAE embeddings contains relevant 
information that may be utilized to uncover mechanistic networks associated with the ageing process.  
 
In addition to cluster analysis, the encoded feature representation in the VAE latent space can also be 
utilized to investigate biological mechanisms related to ageing and age-related disease. One approach 
to elucidate the biological signals is through pathway analysis of the model gradients, which allows for 
comparisons of pathway differences at both the individual and group levels. We applied this approach 
to compare RA and normal samples by backpropagating the VAE model and calculating gradients for 
each gene in the embedding. These individual gene gradients were then aggregated into Reactome 
pathways, and average pathway gradients were computed. Subsequently, these pathway gradients 
were compared between the two groups. Supplementary Table 1 provides the full results, and Table 
4 highlights some of the top pathways that exhibited notable differences between the RA and healthy 
groups.  
 
The first column displays the pathway name, while the second column shows the ratio of pathway 
importance in the RA group compared to the normal group. The third column provides references on 
the involvement of each pathway in RA. For example, the negative feedback regulation of the MAPK 
pathway showed a ratio of 10.91, indicating a nearly 11-fold higher presence in the RA group compared 
to the normal group. This finding is consistent with previous studies that have established the 
importance of the MAPK pathway in RA64,65. On the other hand, the activation of the AP1 family of 
transcription factors was barely represented in the RA group but prominent in the normal group, which 
aligns with previous findings of diminished AP1 activity during ageing and in age-related diseases66,67. 
 



 
Figure 9: Unsupervised cluster analysis of VAE embeddings to reveal group differences. A. t-SNE and UMAP clustering results for 
RA dataset with the color indicating disease (RA vs normal). B. Same RA cluster analysis, but with the samples colored according 
to their labels from the confusion matrix shown in Figure 8. C. Cluster analysis for the GSE3087046  dataset comparing newborns 
versus nonagenarians.  
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Table 4: Pathways that exhibited notable differences between the RA and healthy groups. The first column displays the pathway 
name, while the second column shows the ratio of pathway importance in the RA group compared to the normal group. The third 
column provides references on the involvement of each pathway in RA and/or ageing. 

Pathway RA/normal 
ratio 

References 

NEGATIVE FEEDBACK REGULATION OF MAPK PATHWAY 10.91 64,65 

P75NTR NEGATIVELY REGULATES CELL CYCLE VIA SC1 2.00 68 

NF KB IS ACTIVATED AND SIGNALS SURVIVAL 1.59 69 

N GLYCAN TRIMMING AND ELONGATION IN THE CIS GOLGI 1.52 70 

FGFR3 LIGAND BINDING AND ACTIVATION 1.50 71 

TNFR1 MEDIATED CERAMIDE PRODUCTION 0.61 72 

SIGNALING BY MST1 0.53 73 

COMPETING ENDOGENOUS RNAS CERNAS REGULATE PTEN 
TRANSLATION 0.53 74 

SYNTHESIS OF GDP MANNOSE 0.005 75 

ACTIVATION OF THE AP1 FAMILY OF TRANSCRIPTION FACTORS <0.001 66,67 

 
Again, a similar pathway analysis was performed to investigate potential differential representation of 
specific biological pathways in the comparison between newborns and nonagenarians. While 
Supplementary Table 2 provides the full results, Table 5 highlights some interesting pathways that 
exhibited notable differences between these two groups. 
 
For instance, the pathway "Diseases associated with N-glycosylation of proteins" is 200 times more 
important in nonagenarians compared to newborns. Ageing-associated glycosylation changes often 
resemble those observed in inflammatory conditions, and in fact, one of the most reproducible markers 
of both calendar and biological ageing is the presence of specific N-glycans76,77. On the other hand, 
the involvement of transcription factors POU5F1, OCT4, SOX2, and NANOG is higher in newborns. 
Indeed, these transcription factors have been well-documented to be important in early differentiation 
and development78. 
 
Lastly, there is an upregulated presence of gluconeogenesis in the nonagenarian population. 
Gluconeogenesis has been linked to healthy ageing, making this pathway especially relevant and not 
surprisingly linked to this nonagenarian population79.  
 
Table 5: Pathways that exhibited notable differences between the newborn and nonagenarian groups. The first column displays 
the pathway name, while the second column shows the ratio of pathway importance in the nonagenarian group compared to the 
newborn group. The third column provides references on the involvement of each pathway in ageing. 

Pathway Nonagenarian 
/ newborn 

ratio 

References 

DISEASES ASSOCIATED WITH N GLYCOSYLATION OF PROTEINS 201.82 76,77 

EICOSANOIDS 6.69 80 

ELECTRIC TRANSMISSION ACROSS GAP JUNCTIONS 4.97 81 

NR1H2 NR1H3 REGULATE GENE EXPRESSION LINKED TO 
GLUCONEOGENESIS 4.03 79 

SYNTHESIS OF LEUKOTRIENES LT AND EOXINS EX 2.23 82 

REGULATION OF BACH1 ACTIVITY 2.22 83 

MECP2 REGULATES TRANSCRIPTION FACTORS 0.37 84 

ERYTHROCYTES TAKE UP OXYGEN AND RELEASE CARBON DIOXIDE 0.33 85 

CRISTAE FORMATION 0.27 86 

POU5F1 OCT4 SOX2 NANOG ACTIVATE GENES RELATED TO 
PROLIFERATION 0.19 78 



Discussion 
 
Advances in DNAm arrays and data availability, has led to the creation of several methylation clocks, 
including those for humans but also other organisms. The best-known human DNAm clocks include 
those developed by Horvath12, Hannum24, Levine13, and Lu25, with the latter two being labeled as 
second-generation clocks due to their training on surrogate biomarkers reflecting ageing phenotypes 
to better predict biological age. Most methylation clocks are linear models of CpGs, selected through 
penalized or regularized regression methods like ElasticNet or Lasso. However, linear regression has 
limitations, such as high bias, inability to capture non-linear CpG interactions, and assumptions of 
additive contribution and constant methylation change rate over lifespan. DL has shown promise in 
DNAm age prediction with deep NN architectures outperforming linear regression models in 
chronological age prediction, being more resilient to noise, and capturing higher-order complex 
feature interactions28,33. DL also allows for leveraging thousands of CpGs and interpreting their 
contribution using specific DL interpretation methods, making it a promising approach for epigenetic 
clock predictions, and understanding complex biological mechanisms in the context of ageing. 
 
VAEs are a type of DL model that has shown great potential in various applications. VAEs are 
unsupervised generative models that use DL to learn data distributions without the need for accurate 
labels. They consist of encoding and decoding layers that compress the data into a lower-dimensional 
latent space and then reconstruct it back to its original dimension. The aim of the encoder phase is not 
only to reduce data dimensionality, but also to compress the data by removing redundant information 
while retaining important information. Unlike traditional autoencoders. VAEs can learn complex, lower-
dimensional representations of the data due to the use of complex, non-linear activation functions. 
VAEs have already been successfully used in various biological applications. 
 
In this study, we aimed to leverage the power of VAEs to construct a latent space in which methylation 
signals are encoded related to ageing that can subsequently be used to predict biological age. Using 
data from multiple cohorts (N = 2,716), two VAEs were trained, one with a KLD based on a Gaussian 
distribution and one with a distribution agnostic KLD implementation. The learned latent spaces of both 
implementations were subsequently used as input of an MLP to predict epigenetic age. Using MAE 
and r2 as performance metrics, the distribution-agnostic strategy achieved better epigenetic age 
predictions, with the final model having an MAE of 6.34 and r2 of 0.86 on the test set. 
 
Models were next evaluated on two external datasets, i.e. one from an African American cohort 
(GENOA57, N=418) and a second dataset58 (N=689) containing both normal and RA samples. For the 
GENOA cohort, our methVAgeE framework consistently predicted DNAm ages that trended lower than 
the chronological ages at the cohort level (Figure 6). This observation is particularly intriguing in the 
context of previous findings that have demonstrated lower extrinsic DNAm ages in African Americans 
compared to whites. For Horvath and PhenoAge clocks this effect was less pronounced, suggesting 
that our framework may capture and emphasize these specific underlying biological signals associated 
with decelerated DNAm age. On the second cohort, i.e. the RA dataset, while Horvath’s clocks didn’t 
find accelerated ageing in the RA population compared to the healthy controls - in fact, AgeAcc was 
slightly higher for the healthy cohort (Wilcoxon rank sum test P value = 0.003) – Hannum’s, PhenoAge 
and  methVAgE algorithms showed increased AgeAcc in diseased versus healthy samples, with 
marginal differences using Hannum's clock (0.3 with P value = 0.037) and more pronounced differences 
of 0.5 (Wilcoxon rank sum test P value < 0.0001) and 0.6 (Wilcoxon rank sum test P value = 0.0006) for 
the PhenoAge and methVAgE models, respectively (Figure 7), confirming the original study’s results58. 
Compared to PhenoAge, the methVAgE model showed an average AgeAcc > 1 for the RA samples, 
thereby suggesting that the RA subgroup indeed experiences accelerated biological ageing. 
 
In a next step, we investigated whether the latent space encoded by the VAE contains biological 
signals that could be utilized to predict age-related diseases. As a proof of concept, we trained a simple 
binary logistic regression model using the VAE embeddings as input, and disease labels as dependent 
variables. The results shown in Figure 8 show that the VAE embeddings indeed contained encoded 



biological signals that have the potential to discriminate between RA and healthy samples (Figure 8). 
This is further evidenced by the subsequent cluster analysis (Figure 9). Most of the RA embeddings 
were found to be clustered together in one group, while most of the normal samples were clustered 
in another distinct group, consistent with the results obtained from the classification model. Taken 
together, this suggests that the RA embeddings contain meaningful signals that may be associated 
with RA. To unravel these biological signals, we performed a pathway analysis by backpropagating the 
model embeddings and fetching the CpG and corresponding gene gradients. After computing and 
comparing the average pathway gradients between the RA and healthy groups, valuable insights and 
potential associations with specific pathways underlying RA were found (Table 4). For example, the 
activation of the AP1 family of transcription factors was found to be barely represented in the RA group 
but prominent in the normal group, aligning with previous findings of diminished AP1 activity during 
ageing and in age-related diseases66,67. The MAPK pathway on the other hand, was found to be highly 
important in the RA samples compared to normal samples, again consistent with previous studies 
emphasizing the importance of the MAPK pathway in RA64,65. Overall, the pathway analysis of model 
gradients provides insights into the differential representation of specific biological pathways in the 
VAE latent space between the RA and normal groups, shedding light on potential pathways that may 
be involved in the pathogenesis of RA. 
 
This type of analysis can be extended to explore differences other groups of interest, including other 
(age-related) diseases but also for healthy individuals such as different age-groups. As an example, 
we conducted the same type of analysis on a dataset containing data from both newborns and 
nonagenarians. Also here, the unsupervised clustering shows distinct groups (Figure 9C), suggesting 
that in addition to disease-networks, the VAE embeddings can potentially be utilized to uncover 
mechanistic networks associated with the ageing process itself. The subsequent pathway analysis 
indeed shows some notable differences between these two groups, with pathways upregulated in 
nonagenarians that have been already linked to ageing-associated processes, but also pathways more 
prominent in the newborn samples that have shown to be important for development (Table 5). This 
finding further underscores the potential utility of the VAE embeddings in capturing biologically 
meaningful signals in diverse contexts beyond disease datasets and highlights the versatility and 
applicability of this approach in exploring other populations of interest. 
 
These results shows that VAE-based approaches may offer advantages in prediction biological age 
and understanding the complex dynamics of ageing. However, there are a couple of important remarks 
that come with our proposed methodology. Firstly, in the context of methylation data, the main 
strength of DL methods is their ability to simultaneously use information of thousands of CpGs, and to 
capture higher-order, complex CpG interactions. However, to reduce computational needs, we initially 
performed a prior dimensionality reduction by employing a bootstrapping ElasticNet procedure. This 
resulted in a reduced set of around 13k CpGs that were used as input features for training the VAE 
model. As such, the VAE does not leverage the full DNAm array during training. However, given the 
computational needs for training, such a prior subset procedure might be an advisable trade-off for 
computational resources versus efficiency. Here, as we were interested age-related health and diseae, 
we choose an ElasticNet selection with chronological age as dependent variable. And, although our 
strategy results in a significant larger subset of CpGs compared to other DNAm clocks (typically 3-
2000 CpGs), the downside of this method is that it is linear by nature. Depending on the use case or 
research question, other methods and/or dependent variables can be chosen or can be even 
preferable. The same is true for our MLP model. Here we developed an MLP to predict DNAm age as 
a proof of concept for the utility of the VAE embeddings. But of course, other models or methods could 
also be chosen. While this model shows good performance for DNAm age and was mostly in line with 
PhenoAge (a second generation DNAm clock), the actual strength of this VAE framework is its 
applicable for multiple applications, exemplified by the RA classification and the pathway analysis. 
Indeed, an important remark that we want to make is that the potential is not limited to DNAm age. 
There has been a recent explosion in available clocks, and the debate which one is the best is – in our 
opinion – often subjective and mostly not relevant. In most cases it really drills down to the research 
purpose and being consistent. Often not the absolute values are important (and these can be highly 
biased by the used training set), but rather the relative differences between different samples or 



treatments/interventions or time points. The real added value of our framework lies when comparing 
between groups of interest and the potential to unravel biological meaningful insights. As a last remark, 
while we show the performance of our framework for a couple of different datasets, further 
investigations are warranted to fully assess the performance and utility of our proposed framework in 
different populations and settings. 
 
In summary, the ability of DL methods to handle non-linear relationships and complex patterns in data 
holds great promise for interpreting various types of complex biological data within the context of 
ageing. As our understanding of ageing and its underlying mechanisms continues to advance, and as 
more complex and diverse data becomes available, such methods can play a critical role in extracting 
meaningful insights from these data. Here, we showed the potential of VAEs in combination with DNAm 
data to improve epigenetic age prediction and enhance our understanding of complex biological 
mechanisms underlying ageing and age-related diseases. Ultimately, the goal is to detect new 
biomarkers which can lead to the development of targeted interventions to delay or mitigate the 
effects of ageing and age-related diseases. However, further research and validation of these models 
in larger and diverse cohorts are needed to fully establish their utility and robustness in clinical and 
translational applications. 
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