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Abstract 14 

L-type Amino Acid Transporter 1 (LAT1) facilitates the uptake of specific essential amino acids, 15 
and due to this quality, it has been correlated to worse patient outcomes in various cancer types. 16 
However, the relationship between LAT1 and various clinical factors, including menopausal 17 
status, in mediating LAT1’s prognostic effects remains incompletely understood. This is 18 
particularly true in the unique subset of tumors that are both obesity-associated and responsive to 19 

immunotherapy, including breast cancer. To close this gap, we employed 6 sets of transcriptomic 20 
data using the Kaplan-Meier model in the Xena Functional Genomics Explorer, demonstrating 21 
that higher LAT1 expression diminishes breast cancer patients’ survival probability. 22 
Additionally, we analyzed 3′-Deoxy-3′-18F-Fluorothymidine positron emission tomography-23 
computed tomography (18F-FLT PET-CT) images found on The Cancer Imaging Archive 24 
(TCIA). After separating all patients based on menopausal status, we correlated the measured 25 
18F-FLT uptake with various clinical parameters quantifying body composition, tumor 26 

proliferation, and immune cell infiltration. By analyzing a wealth of deidentified, open-access 27 
data, the current study investigates the impact of LAT1 expression on breast cancer prognosis, 28 
along with the menopausal status-dependent associations between tumor proliferation, 29 
immunometabolism, and systemic metabolism. 30 

 31 

Introduction 32 

As the second leading cause of cancer deaths in women, breast cancer has become a major 33 
clinical and social burden, with annual out-of-pocket costs for breast cancer care in the U.S. 34 
exceeding $3 billion in 2019 [1]. Because breast cancer has high economic and social costs, it 35 
has become increasingly necessary to identify potential risk factors, biomarkers, and treatments. 36 
Nearly 30% of breast cancer deaths are caused by modifiable risk factors like excess body 37 
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weight and alcohol consumption [2]. Several of the modifiable risk factors that predispose to 38 
breast cancer converge on metabolism. Consequently, a key priority in the cancer field has been 39 
to investigate tumor metabolism and how it can be affected by a patient’s lifestyle. In the 1920s, 40 
Otto Warburg discovered that in order to sustain their energetic needs while prioritizing 41 

generating the biomass and nucleotides required for rapid proliferation and growth, cancer cells 42 
have greater metabolic demands than their benign counterparts. Because of this, oncogenic 43 
metabolism is characterized by heightened glycolytic metabolism, which necessitates greater 44 
uptake of glucose. This phenomenon is now called the Warburg Effect and has greatly shaped 45 
the field of tumor metabolism [3]. However, many years after Warburg’s groundbreaking work 46 
identifying glucose metabolism as a key contributor to tumor pathogenesis, there remains 47 

relatively less investigation into the role of amino acid metabolism in tumor progression. The 48 
same can be said about amino acid metabolic reprogramming, the abnormal changes to amino 49 
acid uptake or metabolic pathways caused by tumor progression. However, past literature has 50 
shown that low concentrations of amino acids in the tumor microenvironment inhibit nearby 51 
immune cells, weakening immune responses to tumor cells and contributing to tumor 52 
progression [4,5]. These data beg further investigation of the tumor- and/or immune cell-centric 53 

metabolic role of amino acids in the tumor microenvironment. 54 
 55 
In order to leave the tumor interstitial compartment and undergo metabolism by tumor cells, 56 
amino acids must cross the plasma membrane with the help of amino acid transporters. Amino 57 
acid transporters can thus facilitate the uptake of amino acids to meet the metabolic needs of 58 
cancer cells, explaining why the expression of these transporters has been associated with the 59 

proliferation of cancer cells. One such transporter, L-type amino acid transporter 1 (LAT1) is 60 
particularly important in the amino acid transport process [4]. Encoded by the gene Solute 61 
Carrier Family 7 Member 5 (SLC7A5), LAT1 is a light-chain protein that heterodimerizes with 62 
its heavy-chain partner 4F2hc (SLC3A2) through a conserved disulfide bridge, forming the 63 
human LAT1-4F2hc complex. A sodium-independent transporter, LAT1 is an integral membrane 64 
protein that mediates the transport of large neutral amino acids like methionine, leucine, and 65 
histidine by exchanging them with intracellular glutamine [6]. LAT1 is unique in that it 66 

transports multiple essential amino acids, which cannot be synthesized by the human body and 67 
must be obtained through diet [7,8]. Considering the dietary dependence of its transported 68 
molecules, LAT1 is a particularly intriguing target to participate in the links between lifestyle, 69 
systemic metabolism, and cancer. 70 
 71 
Positron emission tomography-computed tomography (PET-CT) is a powerful tool in cancer 72 

metabolism research due to its ability to visualize thin slices of tissue in vivo and quantify cells’ 73 
metabolic activity by measuring radiotracers like 3′-Deoxy-3′-18F-Fluorothymidine (18F-FLT). 74 
An analog of the nucleoside thymidine, 18F-FLT is phosphorylated by the cytosolic enzyme 75 
thymidine kinase 1 (TK1) and taken up into the cell. During the S-phase of the cell cycle, TK1 is 76 
overexpressed nearly tenfold and 18F-FLT uptake is at its highest. In this way, concentrations of 77 
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18F-FLT and TK1 are elevated in cancer cells, making 18F-FLT uptake a quantitative marker for 78 
tumor proliferation [9–12]. Ki-67 is a nuclear nonhistone protein, and because it is only 79 
expressed in cells that are not in the G0 phase of the cell cycle, it can only be observed in 80 
actively-proliferating cells. This quality has made Ki-67 a classic proliferative marker for tumor 81 

cells [13], and is included in the datasets analyzed in the current report.  82 
 83 
Past studies have demonstrated that menopausal status affects to what extent obesity is a risk 84 
factor for developing breast cancer. In multiple studies, obesity has been observed to have a 85 
protective relationship with breast cancer risk in premenopausal patients whereas it is a risk 86 
factor for breast cancer in postmenopausal patients [14]. Because of this, we segmented our 87 

analyses based on patients’ menopausal statuses. We used body mass index (BMI) in kg/m2 as a 88 
metric for obesity. By analyzing PET-CT scans of 58 patients from The National Cancer 89 
Imaging Archive (TCIA), we correlate patients’ calculated 18F-FLT uptake and Ki-67 index 90 
values to their BMIs to study the relationship between obesity and breast cancer [10,15,16]. 91 
 92 
To demonstrate the relationship between LAT1 and poorer health outcomes with a larger sample 93 

size, we leveraged RNA-seq data in the UCSC Xena Functional Genomics Explorer [17]. This 94 
allowed us to visualize the effect of LAT1 expression on breast cancer prognosis in 95 
premenopausal and postmenopausal patients. Ultimately, we used a similar workflow to our prior 96 
published work to examine the impact of SLC7A5, a gene with a drastically different role in 97 
metabolism, in breast cancer [18]. Our analyses reveal new insights into the associations between 98 
clinical variables (obesity, menopausal status), cell proliferation, infiltration with multiple 99 

immune cell subtypes, tumor LAT1 expression, and survival in breast cancer patients, which 100 
deepen our understanding of the bidirectional relationships that may inform interventional 101 
studies targeting these variables in individuals with breast cancer. 102 

 103 

Methods 104 
18F-FLT PET-CT Quantitative Image Analysis 105 
Deidentified PET-CT images produced during the ACRIN 6688 clinical trial [10] were obtained 106 
from The Cancer Imaging Archive (TCIA). This dataset, “ACRIN-FLT-Breast (ACRIN 6688)”, 107 
can be found here: 108 
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=30671268. Because only 109 
publicly available, deidentified data were analyzed, separate ethical approval is not required. We 110 

analyzed the scans of all patients with a menopausal status, height, weight, and 5 clear CT slices 111 
(i.e., slices in which the primary breast tumor could be identified and its corresponding SUV 112 
values could be generated) present in the dataset. 58 of the 90 enrolled patients in the ACRIN 113 
clinical trial met these criteria, and all were analyzed. Of these 58 patients, 26 were 114 
premenopausal and 32 were postmenopausal. Scans taken at 3 different dates were available for 115 
most patients, and we used the earliest scan (from the baseline scanning which was defined to be 116 

4 weeks before any treatment was administered) to minimize the chemotherapeutic effect of the 117 
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treatment used in the clinical trial. Likewise, heights and weights measured on patients’ first 118 
visits were used. These data were selected for analysis because breast cancer treatment often 119 
causes some weight gain [19–22], which may obscure differences in BMI that could promote 120 
proliferation. 121 

 122 
The patients’ images were uploaded to Fiji ImageJ and we used the PET-CT Viewer plugin to 123 
view and analyze them. After identifying the primary breast tumor on the PET image, we 124 
selected the tumor and used the Brown Fat Volume tool to draw fixed-volume spheres around 125 
the interior regions of interest (ROIs) on the CT slice. 5 slices were used from each patient’s 126 
scan. SUV parameters were set at 2 to 15, and 18F-FLT uptake was calculated in the tumor tissue 127 

in the specified ROI. 18F-FLT uptake on PET-CT scans is measured by calculating and recording 128 
lean body mass-corrected standardized uptake values (SUV) of which there are 3 types: 129 
SUVMean, SUVMax, and SUVPeak. After positioning a fixed-volume sphere on a tumor, within the 130 
ROI, SUVMean represents the average SUV, SUVMax indicates the maximum SUV, and SUVPeak 131 
corresponds to the SUV derived from a localized cluster of voxels with high uptake [10,23]. The 132 
primary endpoint of image analysis was BMI (kg/m2) correlated to the 3 types of tumor SUV 133 

(g/mL).  134 
 135 

LAT1 Prognostic Analysis 136 
Using the UCSC Xena Functional Genomics Browser (https://xenabrowser.net/), we accessed the 137 
“TCGA Breast Cancer (BRCA) cohort” (found here: 138 
https://xenabrowser.net/datapages/?cohort=TCGA%20Breast%20Cancer%20(BRCA)&removeH139 

ub=http%3A%2F%2F127.0.0.1%3A7222) which included 2 datasets. The BRCA cohort had 140 
1247 total patients, and all of them had menopausal statuses recorded, which we accessed 141 
through the “Phenotypes” dataset: 142 
https://xenabrowser.net/datapages/?dataset=TCGA.BRCA.sampleMap%2FBRCA_clinicalMatri143 
x&host=https%3A%2F%2Ftcga.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.144 
gi.ucsc.edu%3A443. 1236 of the 1247 patients had survival data recorded. The “IlluminaHiSeq” 145 
dataset was used to study LAT1 expression and it can be found here: 146 

https://xenabrowser.net/datapages/?dataset=TCGA.BRCA.sampleMap%2FHiSeqV2&host=https147 
%3A%2F%2Ftcga.xenahubs.net&removeHub=http%3A%2F%2F127.0.0.1%3A7222. The 148 
“IlluminaHiSeq” dataset used fragments per kilobase of exon per million mapped fragments 149 
(FPKM) to measure gene expression. Again, only openly available human data were analyzed. 150 
1218 of the 1247 patients had LAT1 expression data. These datasets were used alongside the 151 
Kaplan-Meier model in the Xena visualization suite to analyze LAT1 and its effect on breast 152 

cancer prognosis.  153 
 154 
To analyze LAT1 expression, the following workflow was used: the 1247 patients were added to 155 
Column A. SLC7A5 was added to Column B as a genomic variable with the gene expression 156 
dataset selected, and menopause status was added to Column C as a phenotypic variable. After 157 
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removing null and duplicate samples, a Kaplan-Meier (KM) plot was generated in Column B to 158 
show LAT1 expression and its effect on prognosis in 1005 of the 1247 patients. Next, low and 159 
high-expression groups were created from these patients. After 34 patients with indeterminate 160 
menopausal statuses were removed from the dataset, 10.46 FPKM was calculated by Xena to be 161 

the median for LAT1 expression. Patients were divided at the median: 485 patients were in the 162 
low expression group (< 10.46 FPKM), and 486 patients were in the high expression group (>= 163 
10.46 FPKM). A KM plot was generated for each group using Column C, creating 2 KM plots 164 
with the premenopausal, perimenopausal, and postmenopausal patients in each expression group.  165 
 166 
In addition to the BRCA dataset, the following datasets were used to access breast cancer 167 

patients’ gene expression data: “RSEM norm-count” from the “TCGA TARGET GTEx” cohort 168 
(https://xenabrowser.net/datapages/?dataset=TcgaTargetGtex_RSEM_Hugo_norm_count&host=169 
https%3A%2F%2Ftoil.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.ed170 
u%3A443), “Desmedt 76 Gene Node-Neg Gene Exp” from the “node-negative breast cancer 171 
(Desmedt 2007)” cohort 172 
(https://xenabrowser.net/datapages/?dataset=desmedt2007_public%2Fdesmedt2007_genomicMa173 

trix&host=https%3A%2F%2Fucscpublic.xenahubs.net&removeHub=https%3A%2F%2Fxena.tre174 
ehouse.gi.ucsc.edu%3A443), “gene expression RNAseq - US projects” from the “ICGC (donor 175 
centric)” cohort 176 
(https://xenabrowser.net/datapages/?dataset=donor%2Fexp_seq.all_projects.donor.USonly.xena.t177 
sv&host=https%3A%2F%2Ficgc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.178 
gi.ucsc.edu%3A443), “Gene Expression” from the “Breast Cancer (Chin 2006)” cohort 179 

(https://xenabrowser.net/datapages/?dataset=chin2006_public%2Fchin2006Exp_genomicMatrix180 
&host=https%3A%2F%2Fucscpublic.xenahubs.net&removeHub=https%3A%2F%2Fxena.treeh181 
ouse.gi.ucsc.edu%3A443), and “Miller TP53 Gene Exp” from the “Breast Cancer (Miller 2005)” 182 
cohort 183 
(https://xenabrowser.net/datapages/?dataset=miller2005_public%2Fmiller2005_genomicMatrix184 
&host=https%3A%2F%2Fucscpublic.xenahubs.net&removeHub=https%3A%2F%2Fxena.treeh185 
ouse.gi.ucsc.edu%3A443). To measure expression, the “TCGA TARGET GTEx” dataset used 186 

FPKM, the “ICGC (donor centric)” dataset used normalized read count, and the “Node-negative 187 
breast cancer (Desmedt 2007)” and “Breast Cancer (Miller 2005)” datasets used log2 units. 188 
Although these gene expression datasets did not include menopausal status as a possible 189 
phenotypic variable, our selection criteria were to include breast cancer datasets that had RNA-190 
seq data on SLC7A5 and survival data from the same patients that could be used to produce 191 
Kaplan-Meier plots on the Xena platform. Each dataset was used in the same way: SLC7A5 was 192 

selected as a genomic variable in Column B, and after null and duplicate samples were removed, 193 
a KM plot was generated. For the “TCGA TARGET GTEx” and “ICGC (donor centric)” 194 
datasets, only patients with breast tumors were selected for the analysis. 195 
 196 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292301doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292301
http://creativecommons.org/licenses/by-nc-nd/4.0/


All of the KM plots were created with Overall Survival as the dependent variable unless 197 
otherwise specified. After patients were split at the median for the gene expression analyses, 198 
some groups had an unequal number of patients because patients with the same expression levels 199 
were put in the same group. Some patients were at the expression median, and the median was 200 

calculated to ensure they were placed in the high-expression group while keeping the sizes of 201 
each expression group roughly the same. 202 
 203 

Statistical Analysis 204 
Correlation tests were performed between patients’ SUV and BMI values. 26 premenopausal 205 
patients’ BMIs ranged from 23.829 to 142.822 kg/m2 (mean [SD] = 33.972 [22.584]), and 32 206 

postmenopausal patients’ BMIs ranged from 17.940 to 199.219 kg/m2 (mean [SD] = 40.865 207 
[36.818]). The unusually high BMI values are driven by unusually low heights reported for these 208 
patients; however, only one premenopausal and postmenopausal patient had a reported BMI 209 
above 100. Because 5 slices were used per patient, each patient had 5 SUVMax values and 5 210 
SUVPeak values but only 1 BMI. In order to correlate BMI and SUV, we needed the same number 211 
of values for each. In order to get one SUV for each patient, we took the mean of the SUVs 212 

produced from all 5 slices. For SUVMean, the calculated SUV had a margin of error indicated by a 213 
plus-minus sign. This meant that the calculation of each SUVMean yielded 2 numerical values, 214 
one being the high value and the other being the low value, so 5 slices yield 10 SUVMean values 215 
per patient. We took the mean of these 10 values for each patient. Each of these individual SUVs 216 
was then correlated with each patient’s BMI. 217 
 218 

We also correlated each patient’s 3 types of SUVs to their Ki-67 values to further inform the 219 
validity of 18F-FLT uptake as a metric for tumor proliferation. BMI was also correlated to Ki-67. 220 
All correlations were two-tailed Pearson correlation tests performed after patients’ data were 221 
segmented by menopausal status. Shapiro-Wilk tests were also performed to determine if any 222 
groups of data were normally distributed. Student’s t-tests and Mann-Whitney U tests were 223 
performed on parametric and nonparametric data, respectively, to assess difference. For both 224 
tests, all data were transformed using log2 fold changes of the mean. 225 

 226 
Unless otherwise specified, statistical analysis was done and graphs were made in Python 3.9 227 
using the pandas (version 1.5) and SciPy (version 1.10) libraries. The two-tailed Pearson 228 
correlation tests were conducted using the “pearsonr” function from the scipy.stats module. The 229 
Mann-Whitney U tests were conducted using the “mannwhitney” function, the Student’s t-tests 230 
were conducted using the “ttest_ind” function, and the Shapiro-Wilk tests were performed using 231 

the “shapiro” function, all from the scipy.stats module. All Python code can be found here: 232 
https://github.com/gramshankar/LAT1BreastCancer. For each of the KM plots, a log-rank test 233 
was conducted by Xena to compare the curves in the graph. Test statistics and p-values were 234 
calculated. Statistical significance was indicated by p-values less than 0.05, and marginally 235 
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significant results have p-values greater than 0.05 but less than 0.10.236 

 237 

Results 238 

Correlation analysis between proliferative markers, obesity, and immune cells by 239 
menopausal status 240 
In premenopausal patients, Ki-67 insignificantly positively correlated with SUVMean, SUVPeak 241 
(marginal significance), and SUVMax (marginal significance) (Fig 1A). However, the relationship 242 
between Ki-67 and tumor 18F-FLT uptake was statistically stronger in postmenopausal patients, 243 
in whom Ki-67 significantly positively correlated with SUVMean, SUVPeak, and SUVMax (Fig 1B).  244 
 245 
In premenopausal patients, BMI insignificantly negatively correlated with SUVMean, SUVPeak, 246 
and SUVMax (Fig 1A). In postmenopausal patients, BMI insignificantly positively correlated with 247 

SUVMean (marginal significance), SUVPeak, and SUVMax (Fig 1B). In premenopausal and 248 
postmenopausal patients, BMI insignificantly positively correlated with Ki-67 (Fig 1A, Fig 1B). 249 
 250 
In premenopausal patients, basophil, eosinophil, neutrophil, monocyte, and lymphocyte counts 251 
insignificantly negatively correlated with SUVMean, SUVPeak, and SUVMax. White blood cell 252 
counts insignificantly positively correlated with SUVMean, SUVPeak, and SUVMax. All immune 253 

cells insignificantly negatively correlated with Ki-67 (Fig 1A). 254 
 255 
In postmenopausal patients, basophil, eosinophil, monocyte, white blood cell, and lymphocyte 256 
counts insignificantly positively correlated with SUVMean, SUVPeak, and SUVMax. Neutrophil 257 
counts insignificantly negatively correlated with SUVMean, SUVPeak, and SUVMax. Basophil, 258 
eosinophil, monocyte, and lymphocyte counts insignificantly negatively correlated with Ki-67. 259 

Neutrophil and white blood cell counts insignificantly positively correlated with Ki-67 (Fig 1B). 260 
 261 
In premenopausal patients, BMI negatively correlated with basophil, eosinophil, monocyte, and 262 
lymphocyte counts and positively correlated with neutrophil and white blood cell counts (Fig 263 
1A). Opposite relationships were observed in postmenopausal patients, in whom BMI positively 264 
correlated with basophil, eosinophil, monocyte, and lymphocyte counts and negatively correlated 265 

with neutrophil and white blood cell counts (Fig 1B). 266 
 267 
These correlation tests’ p-values are presented in Tables 1 - 4. In addition, the results from the 268 
Mann-Whitney and Student’s t-tests performed are presented in Tables 5 - 8. 269 
 270 
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 271 
Fig 1. Correlations between clinical variables. Proliferative markers (Ki-67 and lean body 272 
mass-corrected 18F-FLT uptake measured by SUVMean, SUVPeak, and SUVMax), obesity (BMI), 273 

and immune cell counts (basophil, eosinophil, neutrophil, monocyte, white blood cell, and 274 
lymphocyte) were correlated in (A) premenopausal and (B) postmenopausal patients. Pearson r 275 
values were calculated and correlation matrices were generated in GraphPad Prism version 9.5.1. 276 

 277 
 278 

 Premenopausal Patients Postmenopausal Patients 

SUVMean 0.114 0.035 

SUVPeak 0.081 0.045 

SUVMax 0.078 0.029 

Table 1. P-values from correlations between Ki-67 and 18F-FLT uptake. Significant results 
are bolded and marginally significant results are bolded and italicized. 

 279 
  280 
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 Premenopausal Patients Postmenopausal Patients 

SUVMean 0.279 0.095 

SUVPeak 0.335 0.342 

SUVMax 0.268 0.437 

Ki-67 0.767 0.691 

Table 2. P-values from correlations between BMI and proliferative markers. Marginally 
significant results are bolded and italicized. 

 281 

 Basophils Eosinophils Neutrophils Monocytes WBC Lymphocyte 

SUVMean 0.395 0.539 0.334 0.190 0.170 0.472 

SUVPeak 0.401 0.620 0.420 0.262 0.326 0.404 

SUVMax 0.519 0.691 0.520 0.342 0.408 0.537 

Ki-67 0.394 0.712 0.626 0.417 0.769 0.132 

Table 3. P-values from correlations between immune cells and proliferative markers in 
premenopausal patients. 

 282 

 Basophils Eosinophils Neutrophils Monocytes WBC Lymphocyte 

SUVMean 0.239 0.237 0.671 0.235 0.927 0.233 

SUVPeak 0.560 0.563 0.586 0.560 0.913 0.561 

SUVMax 0.682 0.685 0.741 0.679 0.946 0.681 

Ki-67 0.781 0.737 0.986 0.723 0.783 0.762 

Table 4. P-values from correlations between immune cells and proliferative markers in 
postmenopausal patients. 

 283 
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 Premenopausal Patients Postmenopausal Patients 

SUVMean 0.959 0.291 

SUVPeak 0.926 0.528 

SUVMax 0.992 0.436 

Table 5. Mann-Whitney U tests identify no significant differences between the log2 fold change in 
Ki-67 and 18F-FLT uptake in pre- or postmenopausal patients. P-values are shown. 

 284 

 Premenopausal Patients Postmenopausal Patients 

 Test Statistic P-value Test Statistic P-value 

SUVMean 357 0.735 722 0.004 

SUVPeak 277 0.268 618 0.157 

SUVMax 295 0.437 614 0.173 

Ki-67 226 0.205 393 0.993 

Table 6. Mann-Whitney U tests identify differences between the log2 fold change in BMI and 
SUVMean in postmenopausal patients, but no other proliferative markers differed in pre- or 
postmenopausal patients. 

 285 

 Basophils Eosinophils Neutrophils Monocytes White Blood 
Cells 

Lymphocytes 

SUV

Mean 
0.339 0.619 0.213 0.184 0.803 0.115 

SUVP

eak 
0.339 0.803 0.319 0.229 0.431 0.147 

SUV

Max 
0.318 0.803 0.431 0.340 0.481 0.171 

Ki-67 0.755 a 0.901 0.135 0.584 a 0.142 a 0.245 
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Table 7. Mann-Whitney U and Student’s t-tests identify differences between Immune Cells and 
Proliferative Markers in Premenopausal Patients. The log2 fold change of each parameter was 
compared. The comparisons’ p-values are shown above. Shapiro-Wilk tests were used to assess the 
data’s normality. Based on these results, normally distributed data were compared using the Student’s t-
test, and all other analyses used the Mann-Whitney test.  
a These comparisons use the Student’s t-test. 
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 Basophils Eosinophils Neutrophils Monocytes White Blood 
Cells 

Lymphocytes 

SUV

Mean 
<0.001 <0.001 0.235 <0.001 0.792 <0.001 

SUVP

eak 
<0.001 <0.001 0.187 <0.001 0.345 <0.001 

SUV

Max 
<0.001 <0.001 0.124 <0.001 0.244 <0.001 

Ki-67 0.010 <0.001 0.091 0.002 0.379 <0.001 

Table 8. Mann-Whitney U tests identify differences between immune cells and proliferative 
markers in postmenopausal patients. The log2 fold change of each parameter was compared. The 
comparisons’ p-values are shown above. Significant results are bolded, and marginally significant 
results are bolded and italicized. 

 287 

LAT1 Expression and Survival Probability 288 
In the TCGA BRCA gene expression dataset, patients in the high LAT1 expression group 289 
experienced lower overall survival than patients in the low expression group until 4000 days 290 
after initial treatment. From that point until 6500 days and again from 6600 days until 7500 days, 291 
the low LAT1 expression group had a worse overall survival rate (Fig 2A). Similarly, patients 292 
with high LAT1 expression had a lower disease-specific survival rate than patients with low 293 
LAT1 expression until 4400 days; after that point until the end of the study, patients in the low 294 

expression group had a lower disease-specific survival rate (Fig 2B).  295 
 296 
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 297 
Fig 2. LAT1 expression and prognosis in TCGA BRCA patients. Prognosis in patients from the 298 
TCGA BRCA gene expression dataset. Patients were separated into high (>= 10.47 FPKM) and low (< 299 
10.47 FPKM) LAT1 expression groups, and (A) overall survival and (B) disease-specific survival were 300 
observed up to 8605 days after initial treatment. The median for expression level is slightly different from 301 
the median stated earlier because patients with indeterminate menopausal status were included in this 302 
analysis. 303 
 304 

In the “TCGA TARGET GTEx” gene expression dataset, patients in the high LAT1 expression 305 
group (>= 10.65 FPKM) experienced lower survival rates than the low LAT1 expression group 306 
(< 10.65 FPKM) until 4000 days after initial treatment. From 4000 days until the end of the 307 
study, the low-expression group had a lower survival rate (Fig 3A). In the “Node-negative breast 308 
cancer (Desmedt 2007)” gene expression dataset, after the first 500 days, the high LAT1 309 
expression group (>= 0.1221 log2) experienced a lower survival rate than the low LAT1 310 
expression group (< 0.1221 log2) for the remainder of the study (Fig 3B). In the “ICGC (donor 311 

centric)” gene expression dataset, the high LAT1 expression group (>= 0.00002400) had lower 312 
survival than the low LAT1 expression group (< 0.00002400) for the entire study. The high 313 
expression group’s survival probability reached 0% near 4000 days (Fig 3C). In the “Breast 314 
Cancer (Chin 2006)” gene expression dataset, except from 1.2 to 1.4 years, the high LAT1 315 
expression group experienced a lower survival rate than the low LAT1 expression group. Units 316 
were not given for this study but it most likely used log2 units (Fig 3D). In the “Breast Cancer 317 

(Miller 2005)” gene expression dataset, overall survival data were not available so disease-318 
specific survival was observed. The high LAT1 expression group (>= -0.1707 log2) experienced 319 
worse survival than the low LAT1 expression group (< -0.1707 log2) for the entire study (Fig 320 
3E). Overall, 2 of the gene expression datasets showed that low LAT1 expression conferred a 321 
poorer prognosis in breast cancer patients than high LAT expression, while 4 others showed the 322 
opposite. 323 

 324 
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 325 
Fig 3. LAT1 expression and prognosis in patients from other datasets. After patients were separated 326 
into high and low LAT1 expression groups, survival was observed in patients from the (A) “TCGA 327 
TARGET GTEx”, (B) “Node-negative breast cancer (Desmedt 2007)”, (C) “ICGC (donor centric)”, (D) 328 
“Breast Cancer (Chin 2006)”, and (E) “Breast Cancer (Miller 2005)” cohorts. 329 
 330 

Survival probability with high LAT1 expression TCGA BRCA patients by menopausal 331 
status 332 
The impact of menopausal status on survival in patients with high LAT1 expression is shown in 333 
Fig 4. After 1000 days, postmenopausal patients had the lowest survival rates. Premenopausal 334 

patients had the highest survival rates among the 3 groups until approximately 2500 days, from 335 
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which point peri-menopausal patients had the highest survival until 3600 days (Fig 4); however, 336 
our ability to draw conclusions regarding survival in peri-menopausal patients is limited by the 337 
relatively low number of patients in this group. 338 
 339 

 340 
Fig 4. High expression and prognosis in TCGA BRCA patients. Prognosis in the high expression 341 
group (>= 10.46 FPKM) from the TCGA BRCA gene expression dataset. The high expression group was 342 
separated into 3 groups: premenopausal, postmenopausal, and peri-menopausal breast cancer patients.  343 
 344 

Survival probability with low LAT1 expression TCGA BRCA patients by menopausal 345 
status 346 
The impact of menopausal status on survival in patients with low LAT1 expression is shown in 347 
Fig 5. Premenopausal patients had a higher survival rate than postmenopausal patients until 3200 348 
days. Postmenopausal patients, after 3200 days and until the end of the available survival data 349 
for premenopausal patients at approximately 3800 days, exhibited a higher survival rate 350 

compared to premenopausal patients. The few peri-menopausal patients in this study maintained 351 
a 100% survival probability throughout the duration that they were monitored. 352 
 353 
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 354 
Fig 5. Low expression and prognosis in TCGA BRCA patients. Prognosis in the low expression group 355 
(< 10.46 FPKM) from the TCGA BRCA gene expression dataset. The low expression group was 356 
separated into 3 groups: premenopausal, postmenopausal, and peri-menopausal breast cancer patients.  357 
 358 

 359 

Discussion 360 

Increasing interest in the relationship between systemic metabolism, tumor metabolism, 361 

immunometabolism, and cancer outcomes, alongside evolving technologies expanding both the 362 
available data and the community’s ability to mine it to develop new insights. To that end, in this 363 
study, we utilized multiple publicly available breast cancer datasets, including “ACRIN-FLT-364 
Breast (ACRIN 6688)”, TCGA BRCA “Phenotypes”, TCGA BRCA  “IlluminaHiSeq”, “TCGA 365 
TARGET GTEx”, “Node-negative breast cancer (Desmedt 2007)”, “ICGC (donor centric)”, 366 
“Breast Cancer (Chin 2006)”, and “Breast Cancer (Miller 2005)”, aiming to better understand the 367 
intersection between parameters of systemic metabolic health, tumor gene expression, and 368 

immune cell infiltration, and outcomes in individuals with breast cancer (Fig 6). 369 
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 370 
Fig 6. Summary of factors correlated in this analysis. Figure created with BioRender.com. 371 
 372 
As opposed to genes or metabolic fluxes involved in glucose [24–31]or lipid metabolism [31–373 

39], there exists a relative paucity of studies exploring the impact of expression of genes 374 
regulating amino acid uptake in breast cancer. Therefore, we elected to focus the current study 375 
on the expression of LAT1, which transports large amino acids including leucine, isoleucine, 376 
valine, phenylalanine, methionine, tyrosine, histidine, and tryptophan into the cell, and its 377 
relationships with body weight, tumor cell proliferation, and immune infiltration. Prior literature 378 
indicates that LAT1 is involved in protein synthesis [40,41] and mTORC1 activity [42,43], and 379 

may also modulate the anti-tumor immune response [44–47]. Overexpression of LAT1 has been 380 
observed in a plethora of tumor types ranging from lung to endometrial to liver, but fewer studies381 
of the relationship between LAT1 and breast cancer exist [48]. Furthermore, LAT1 has been less 382 
frequently associated with a poor long-term clinical prognosis in breast cancer than in other 383 
cancers. Our data, too, provide mixed evidence: while some datasets showed that high LAT1 384 
expression was worse for prognosis, others showed the opposite. Namely, the BRCA dataset 385 

showed that low LAT1 expression conferred worse survival at some points. This is likely 386 
because when compared to the high-expression group, a greater proportion of low-expression 387 
patients in the BRCA dataset had a positive margin status. Also, a greater percentage of the low-388 
expression group had a distant metastasis present. The fact that the low LAT1 expression group 389 
tended to have more positive margin status and distant metastases than patients in the high-390 
expression group may contribute to the discrepancy between our data on the predictive value of 391 
LAT1 versus others, as these have shown to be poor prognostic factors in breast cancer [49,50]. 392 

Additionally, in the “TCGA TARGET GTEx” dataset, the low-expression group also had lower 393 
survival than the high-expression group. Margin status and the presence of distant metastases 394 
could also be confounding variables in this dataset, but data were not available to determine that. 395 
In this way, we show that the relationship between LAT1 expression and survival in breast 396 
cancer patients may be more complicated than previously appreciated. 397 

ies 
s 

t. 
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 398 
Past analyses on LAT1 are not stratified by menopausal status, another unique quality of our 399 
study. In breast cancer patients with high tumor LAT1 expression, we observed worse survival in 400 
postmenopausal individuals as compared to peri- or premenopausal, but interestingly, these 401 

relationships were not observed in patients with low LAT1 expression. This discrepancy may 402 
reflect the fact that LAT1 has been shown to be estrogen-dependent in endocrine-responsive 403 
cells [51,52]. Therefore, it is likely that more of the tumors in the low LAT1 group were triple-404 
negative breast cancers, which generally have a poor prognosis independently of menopausal 405 
status. We recognize that worse survival is expected over the more than 10-year duration of 406 
follow-up in the datasets analyzed in postmenopausal patients, who are older and at greater risk 407 

for numerous conditions than their younger counterparts. Thus, the fact that survival differences 408 
were not observed in the LAT1 group implies that a regulator of LAT1 expression - such as 409 
estrogen - may obscure expected differences in survival. Additionally, we observed a positive 410 
correlation (r < 0.5) between BMI and basophil, eosinophil, monocyte, and lymphocyte counts in 411 
postmenopausal patients, a finding not seen in premenopausal patients. On the contrary, the 412 
opposite was observed in premenopausal patients. Premenopausal patients experience heightened 413 

17β-estradiol levels, dampening obesity-induced inflammation, whereas postmenopausal patients 414 
(and those with obesity) have higher levels of estrone, stimulating inflammation. The imbalance 415 
between estrone and 17β-estradiol levels that occurs after menopause results in the release of 416 
cytokines and the recruitment of nearby immune cells, which likely explains this correlation only 417 
being observed in postmenopausal patients [53][s1]. 418 
 419 
18F-fluorodeoxyglucose (18F-FDG) has been the traditional radiotracer utilized in cancer 420 
research, and it is still used in the majority of tumor radiotracer analyses. Indeed, the Positron 421 
Emission Tomography Response Criteria in Solid Tumors (PERCIST) is based on the use of 18F-422 
FDG as the radiotracer [54,55]. However, although high 18F-FDG uptake correlates with poor 423 
prognosis in numerous tumor types, including breast cancer [56–61], it is not a direct readout of 424 
tumor proliferative activity. For this, it is necessary to utilize a tracer such as 18F-FLT, an analog 425 
of thymidine which is phosphorylated by thymidine kinase prior to incorporation into DNA 426 

during cell replication. Because our study employs 18F-FLT imaging as a more direct readout of 427 
tumor proliferation rather than 18F-FDG, we provide an analysis that has previously been 428 
insufficiently explored. We observe differences in the strength of the correlation between Ki-67 429 
and 18F-FLT uptake in pre- and postmenopausal patients: in postmenopausal patients, Ki-67 430 
significantly positively correlated with 18F-FLT SUVMean, SUVPeak, and SUVMax, whereas in 431 
premenopausal patients, Ki-67 insignificantly positively correlated with 18F-FLT. These data are 432 

consistent with prior studies in which the correlation between Ki-67 and 18F-FLT was found to 433 
be relatively weak and dependent on clinical variables (pre- or post-treatment timing, hormone 434 
receptor status) [62,63]. Surprisingly, BMI barely correlated with either Ki-67 or 18F-FLT, which 435 
may mean that obesity is more involved in the appearance - and potentially recurrence - of 436 
cancer rather than its progression once a tumor is already established. Further work will be 437 
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required to better understand the nuanced relationships between these clinical variables. 438 
Additionally, it will be important to understand the relationship between LAT1 expression, 18F-439 
FLT uptake, and clinical variables including BMI and - better yet [64] - adiposity. In fact, to our 440 
knowledge, there are no studies correlating LAT1 expression to all 3 types of 18F-FLT SUVs. 441 

We recognize that a limitation of our study is that BMI is not the best metric for obesity. In the 442 
datasets analyzed, there were no clinical data including possible alternatives for BMI like 443 
visceral adiposity, so we did not have an alternative to relying on BMI. Correlating 18F-FLT 444 
uptake to both gene expression and a broad range of anthropometric indices, including visceral 445 
adiposity, will be of great interest in future studies. 446 
 447 

Conclusion 448 

Through our analyses, we show that although the extent to which this occurs is stratified by 449 
menopausal status, LAT1 expression worsens breast cancer prognosis, bolstering the role of 450 
amino acid metabolism in tumor energetics, an aspect of the literature that has been 451 

underexplored. Using various clinical variables, we correlated tumor proliferation, body 452 
composition, and immune cell populations to identify the complex relationships underlying 453 
metabolism, immune surveillance, and cancer progression. Future studies should aim to utilize a 454 
wider variety of immune cell types and metrics for body composition, while further segmenting 455 
patients based on breast cancer subtype, to gain a more comprehensive understanding of the 456 
findings we establish here. In addition, we speculate that future studies should target LAT1 or its 457 

heavy chain partner 4F2hc to inhibit the LAT1-4F2hc complex, interventions which may 458 
plausibly improve patient outcomes. 459 
 460 

Acknowledgments 461 

The authors are grateful for awards from the Lion Heart Foundation and from the Yale Cancer 462 
Center, which supported this research. 463 

 464 

  465 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292301doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292301
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 466 

1.  Tangka F, Yabroff R, Jingxuan Z, Mariotto A. The Cost of Cancer | Blogs | CDC. 26 Oct 467 
2021 [cited 5 Jul 2023]. Available: https://blogs.cdc.gov/cancer/2021/10/26/the-cost-of-468 
cancer/ 469 

2.  Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast 470 
Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians. 2022;72: 524–541. 471 
doi:10.3322/caac.21754 472 

3.  Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends 473 
Biochem Sci. 2016;41: 211–218. doi:10.1016/j.tibs.2015.12.001 474 

4.  Wang D, Wan X. Progress in research on the role of amino acid metabolic reprogramming in 475 
tumour therapy: A review. Biomedicine & Pharmacotherapy. 2022;156: 113923. 476 
doi:10.1016/j.biopha.2022.113923 477 

5.  Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, et al. Amino acid metabolism in immune cells: 478 
essential regulators of the effector functions, and promising opportunities to enhance cancer 479 
immunotherapy. J Hematol Oncol. 2023;16: 59. doi:10.1186/s13045-023-01453-1 480 

6.  Zhao Y, Wang L, Pan J. The role of L-type amino acid transporter 1 in human tumors. 481 
Intractable Rare Dis Res. 2015;4: 165–169. doi:10.5582/irdr.2015.01024 482 

7.  El Ansari R, Craze ML, Miligy I, Diez-Rodriguez M, Nolan CC, Ellis IO, et al. The amino 483 
acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer 484 
subtypes and is a key therapeutic target in luminal B tumours. Breast Cancer Research. 485 
2018;20: 21. doi:10.1186/s13058-018-0946-6 486 

8.  Yan R, Li Y, Müller J, Zhang Y, Singer S, Xia L, et al. Mechanism of substrate transport and 487 
inhibition of the human LAT1-4F2hc amino acid transporter. Cell Discov. 2021;7: 1–8. 488 
doi:10.1038/s41421-021-00247-4 489 

9.  Sanghera B, Wong WL, Sonoda LI, Beynon G, Makris A, Woolf D, et al. FLT PET-CT in 490 
evaluation of treatment response. Indian J Nucl Med. 2014;29: 65–73. doi:10.4103/0972-491 
3919.130274 492 

10.  Kostakoglu L, Duan F, Idowu MO, Jolles PR, Bear HD, Muzi M, et al. A Phase II Study of 493 
3′-Deoxy-3′-18F-Fluorothymidine PET in the Assessment of Early Response of Breast 494 
Cancer to Neoadjuvant Chemotherapy: Results from ACRIN 6688. J Nucl Med. 2015;56: 495 
1681–1689. doi:10.2967/jnumed.115.160663 496 

11.  Chang ZF, Huang DY, Hsue NC. Differential phosphorylation of human thymidine kinase in 497 
proliferating and M phase-arrested human cells. Journal of Biological Chemistry. 1994;269: 498 
21249–21254. doi:10.1016/S0021-9258(17)31956-7 499 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292301doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292301
http://creativecommons.org/licenses/by-nc-nd/4.0/


12.  PECK M, POLLACK HA, FRIESEN A, MUZI M, SHONER SC, SHANKLAND EG, et al. 500 
Applications of PET imaging with the proliferation marker [18F]-FLT. Q J Nucl Med Mol 501 
Imaging. 2015;59: 95–104.  502 

13.  Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody 503 
reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer. 504 
1983;31: 13–20. doi:10.1002/ijc.2910310104 505 

14.  García-Estévez L, Cortés J, Pérez S, Calvo I, Gallegos I, Moreno-Bueno G. Obesity and 506 
Breast Cancer: A Paradoxical and Controversial Relationship Influenced by Menopausal 507 
Status. Frontiers in Oncology. 2021;11. Available: 508 
https://www.frontiersin.org/articles/10.3389/fonc.2021.705911 509 

15.  Kinahan P, Muzi M, Bialecki B, Coombs L. Data from ACRIN-FLT-Breast. The Cancer 510 
Imaging Archive; 2017. doi:10.7937/K9/TCIA.2017.OL20ZMXG 511 

16.  Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging 512 
Archive (TCIA): Maintaining and Operating a Public Information Repository. J Digit 513 
Imaging. 2013;26: 1045–1057. doi:10.1007/s10278-013-9622-7 514 

17.  Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and 515 
interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38: 675–678. 516 
doi:10.1038/s41587-020-0546-8 517 

18.  Liu R, Ospanova S, Perry RJ. The impact of variance in carnitine palmitoyltransferase-1 518 
expression on breast cancer prognosis is stratified by clinical and anthropometric factors. 519 
PLOS ONE. 2023;18: e0281252. doi:10.1371/journal.pone.0281252 520 

19.  Levine EG, Raczynski JM, Carpenter JT. Weight gain with breast cancer adjuvant treatment. 521 
Cancer. 1991;67: 1954–1959. doi:10.1002/1097-0142(19910401)67:7<1954::AID-522 
CNCR2820670722>3.0.CO;2-Z 523 

20.  Uhelski A-CR, Blackford AL, Sheng JY, Snyder C, Lehman J, Visvanathan K, et al. Factors 524 
associated with weight gain in pre- and post-menopausal women receiving adjuvant 525 
endocrine therapy for breast cancer. J Cancer Surviv. 2023 [cited 5 Jul 2023]. 526 
doi:10.1007/s11764-023-01408-y 527 

21.  Walker J, Joy AA, Vos LJ, Stenson TH, Mackey JR, Jovel J, et al. Chemotherapy-induced 528 
weight gain in early-stage breast cancer: a prospective matched cohort study reveals 529 
associations with inflammation and gut dysbiosis. BMC Medicine. 2023;21: 178. 530 
doi:10.1186/s12916-023-02751-8 531 

22.  Ee C, Cave A, Vaddiparthi V, Naidoo D, Boyages J. Factors associated with weight gain 532 
after breast cancer: Results from a community-based survey of Australian women. The 533 
Breast. 2023;69: 491–498. doi:10.1016/j.breast.2023.01.012 534 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292301doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292301
http://creativecommons.org/licenses/by-nc-nd/4.0/


23.  Könik A, O’Donoghue JA, Wahl RL, Graham MM, Van den Abbeele AD. Theranostics: The 535 
Role of Quantitative Nuclear Medicine Imaging. Seminars in Radiation Oncology. 2021;31: 536 
28–36. doi:10.1016/j.semradonc.2020.07.003 537 

24.  Grinde MT, Moestue SA, Borgan E, Risa Ø, Engebraaten O, Gribbestad IS. 13C High-538 
resolution-magic angle spinning MRS reveals differences in glucose metabolism between 539 
two breast cancer xenograft models with different gene expression patterns. NMR in 540 
Biomedicine. 2011;24: 1243–1252. doi:10.1002/nbm.1683 541 

25.  Bawab AQA, Zihlif M, Jarrar Y, Sharab A. Continuous Hypoxia and Glucose Metabolism: 542 
The Effects on Gene Expression in Mcf7 Breast Cancer Cell Line. Endocrine, Metabolic & 543 
Immune Disorders - Drug Targets. 21: 511–519.  544 

26.  Cheng X, Jia X, Wang C, Zhou S, Chen J, Chen L, et al. Hyperglycemia induces PFKFB3 545 
overexpression and promotes malignant phenotype of breast cancer through RAS/MAPK 546 
activation. World Journal of Surgical Oncology. 2023;21: 112. doi:10.1186/s12957-023-547 
02990-2 548 

27.  Jekabsons MB, Merrell M, Skubiz AG, Thornton N, Milasta S, Green D, et al. Breast cancer 549 
cells that preferentially metastasize to lung or bone are more glycolytic, synthesize serine at 550 
greater rates, and consume less ATP and NADPH than parent MDA-MB-231 cells. Cancer 551 
& Metabolism. 2023;11: 4. doi:10.1186/s40170-023-00303-5 552 

28.  Tucker JD, Doddapaneni R, Lu PJ, Lu QL. Ribitol alters multiple metabolic pathways of 553 
central carbon metabolism with enhanced glycolysis: A metabolomics and transcriptomics 554 
profiling of breast cancer. PLOS ONE. 2022;17: e0278711. 555 
doi:10.1371/journal.pone.0278711 556 

29.  Zhu P, Liu G, Wang X, Lu J, Zhou Y, Chen S, et al. Transcription factor c-Jun modulates 557 
GLUT1 in glycolysis and breast cancer metastasis. BMC Cancer. 2022;22: 1283. 558 
doi:10.1186/s12885-022-10393-x 559 

30.  Ambrosio MR, Mosca G, Migliaccio T, Liguoro D, Nele G, Schonauer F, et al. Glucose 560 
Enhances Pro-Tumorigenic Functions of Mammary Adipose-Derived Mesenchymal 561 
Stromal/Stem Cells on Breast Cancer Cell Lines. Cancers (Basel). 2022;14: 5421. 562 
doi:10.3390/cancers14215421 563 

31.  Lee R, Lee H-B, Paeng JC, Choi H, Whi W, Han W, et al. Association of androgen receptor 564 
expression with glucose metabolic features in triple-negative breast cancer. PLOS ONE. 565 
2022;17: e0275279. doi:10.1371/journal.pone.0275279 566 

32.  Monaco ME. ACSL4: biomarker, mediator and target in quadruple negative breast cancer. 567 
Oncotarget. 2023;14: 563–575. doi:10.18632/oncotarget.28453 568 

33.  Tang L, Lei X, Hu H, Li Z, Zhu H, Zhan W, et al. Investigation of fatty acid metabolism-569 
related genes in breast cancer: Implications for Immunotherapy and clinical significance. 570 
Translational Oncology. 2023;34: 101700. doi:10.1016/j.tranon.2023.101700 571 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292301doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292301
http://creativecommons.org/licenses/by-nc-nd/4.0/


34.  Miyashita M, Bell JSK, Wenric S, Karaesmen E, Rhead B, Kase M, et al. Molecular 572 
profiling of a real-world breast cancer cohort with genetically inferred ancestries reveals 573 
actionable tumor biology differences between European ancestry and African ancestry 574 
patient populations. Breast Cancer Research. 2023;25: 58. doi:10.1186/s13058-023-01627-2 575 

35.  Qian L, Liu Y-F, Lu S-M, Yang J-J, Miao H-J, He X, et al. Construction of a fatty acid 576 
metabolism-related gene signature for predicting prognosis and immune response in breast 577 
cancer. Front Genet. 2023;14: 1002157. doi:10.3389/fgene.2023.1002157 578 

36.  Qian Z, Chen L, Liu J, Jiang Y, Zhang Y. The emerging role of PPAR-alpha in breast 579 
cancer. Biomedicine & Pharmacotherapy. 2023;161: 114420. 580 
doi:10.1016/j.biopha.2023.114420 581 

37.  Yousuf U, Sofi S, Makhdoomi A, Mir MA. Identification and analysis of dysregulated fatty 582 
acid metabolism genes in breast cancer subtypes. Med Oncol. 2022;39: 256. 583 
doi:10.1007/s12032-022-01861-2 584 

38.  Chang X, Xing P. Identification of a novel lipid metabolism-related gene signature within 585 
the tumour immune microenvironment for breast cancer. Lipids in Health and Disease. 586 
2022;21: 43. doi:10.1186/s12944-022-01651-9 587 

39.  Pham D-V, Park P-H. Adiponectin triggers breast cancer cell death via fatty acid metabolic 588 
reprogramming. Journal of Experimental & Clinical Cancer Research. 2022;41: 9. 589 
doi:10.1186/s13046-021-02223-y 590 

40.  Collao N, Akohene-Mensah P, Nallabelli J, Binet ER, Askarian A, Lloyd J, et al. The role of 591 
L-type amino acid transporter 1 (Slc7a5) during in vitro myogenesis. American Journal of 592 
Physiology-Cell Physiology. 2022;323: C595–C605. doi:10.1152/ajpcell.00162.2021 593 

41.  Nishikubo K, Ohgaki R, Okanishi H, Okuda S, Xu M, Endou H, et al. Pharmacologic 594 
inhibition of LAT1 predominantly suppresses transport of large neutral amino acids and 595 
downregulates global translation in cancer cells. Journal of Cellular and Molecular Medicine. 596 
2022;26: 5246–5256. doi:10.1111/jcmm.17553 597 

42.  Chiduza GN, Johnson RM, Wright GSA, Antonyuk SV, Muench SP, Hasnain SS. LAT1 598 
(SLC7A5) and CD98hc (SLC3A2) complex dynamics revealed by single-particle cryo-EM. 599 
Acta Crystallogr D Struct Biol. 2019;75: 660–669. doi:10.1107/S2059798319009094 600 

43.  Li Y, Wang W, Wu X, Ling S, Ma Y, Huang P. SLC7A5 serves as a prognostic factor of 601 
breast cancer and promotes cell proliferation through activating AKT/mTORC1 signaling 602 
pathway. Ann Transl Med. 2021;9: 892. doi:10.21037/atm-21-2247 603 

44.  Solvay M, Holfelder P, Klaessens S, Pilotte L, Stroobant V, Lamy J, et al. Tryptophan 604 
depletion sensitizes the AHR pathway by increasing AHR expression and GCN2/LAT1-605 
mediated kynurenine uptake, and potentiates induction of regulatory T lymphocytes. J 606 
Immunother Cancer. 2023;11: e006728. doi:10.1136/jitc-2023-006728 607 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292301doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292301
http://creativecommons.org/licenses/by-nc-nd/4.0/


45.  Tian X, Liu X, Ding J, Wang F, Wang K, Liu J, et al. An anti-CD98 antibody displaying pH-608 
dependent Fc-mediated tumour-specific activity against multiple cancers in CD98-609 
humanized mice. Nat Biomed Eng. 2023;7: 8–23. doi:10.1038/s41551-022-00956-5 610 

46.  Liu Y-H, Li Y-L, Shen H-T, Chien P-J, Sheu G-T, Wang B-Y, et al. L-Type Amino Acid 611 
Transporter 1 Regulates Cancer Stemness and the Expression of Programmed Cell Death 1 612 
Ligand 1 in Lung Cancer Cells. Int J Mol Sci. 2021;22: 10955. doi:10.3390/ijms222010955 613 

47.  Kuriyama K, Higuchi T, Yokobori T, Saito H, Yoshida T, Hara K, et al. Uptake of positron 614 
emission tomography tracers reflects the tumor immune status in esophageal squamous cell 615 
carcinoma. Cancer Sci. 2020;111: 1969–1978. doi:10.1111/cas.14421 616 

48.  Häfliger P, Charles R-P. The L-Type Amino Acid Transporter LAT1—An Emerging Target 617 
in Cancer. Int J Mol Sci. 2019;20: 2428. doi:10.3390/ijms20102428 618 

49.  Xiao W, Zheng S, Yang A, Zhang X, Zou Y, Tang H, et al. Breast cancer subtypes and the 619 
risk of distant metastasis at initial diagnosis: a population-based study. Cancer Manag Res. 620 
2018;10: 5329–5338. doi:10.2147/CMAR.S176763 621 

50.  Bundred JR, Michael S, Stuart B, Cutress RI, Beckmann K, Holleczek B, et al. Margin status 622 
and survival outcomes after breast cancer conservation surgery: prospectively registered 623 
systematic review and meta-analysis. BMJ. 2022;378: e070346. doi:10.1136/bmj-2022-624 
070346 625 

51.  Sevigny CM, Sengupta S, Luo Z, Liu X, Hu R, Zhang Z, et al. SLCs contribute to endocrine 626 
resistance in breast cancer: role of SLC7A5 (LAT1). bioRxiv; 2019. p. 555342. 627 
doi:10.1101/555342 628 

52.  Shennan DB, Thomson J, Gow IF, Travers MT, Barber MC. l-Leucine transport in human 629 
breast cancer cells (MCF-7 and MDA-MB-231): kinetics, regulation by estrogen and 630 
molecular identity of the transporter. Biochimica et Biophysica Acta (BBA) - 631 
Biomembranes. 2004;1664: 206–216. doi:10.1016/j.bbamem.2004.05.008 632 

53.  Qureshi R, Picon-Ruiz M, Aurrekoetxea-Rodriguez I, Paiva VN de, D’Amico M, Yoon H, et 633 
al. The Major Pre- and Postmenopausal Estrogens Play Opposing Roles in Obesity-Driven 634 
Mammary Inflammation and Breast Cancer Development. Cell Metabolism. 2020;31: 1154-635 
1172.e9. doi:10.1016/j.cmet.2020.05.008 636 

54.  Sato M, Harada-Shoji N, Toyohara T, Soga T, Itoh M, Miyashita M, et al. L-type amino acid 637 
transporter 1 is associated with chemoresistance in breast cancer via the promotion of amino 638 
acid metabolism. Sci Rep. 2021;11: 589. doi:10.1038/s41598-020-80668-5 639 

55.  Kitajima K, Nakatani K, Yamaguchi K, Nakajo M, Tani A, Ishibashi M, et al. Response to 640 
neoadjuvant chemotherapy for breast cancer judged by PERCIST - multicenter study in 641 
Japan. Eur J Nucl Med Mol Imaging. 2018;45: 1661–1671. doi:10.1007/s00259-018-4008-1 642 

56.  Cremoux P de, Biard L, Poirot B, Bertheau P, Teixeira L, Lehmann-Che J, et al. 18 FDG-643 
PET/CT and molecular markers to predict response to neoadjuvant chemotherapy and 644 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292301doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292301
http://creativecommons.org/licenses/by-nc-nd/4.0/


outcome in HER2-negative advanced luminal breast cancers patients. Oncotarget. 2018;9: 645 
16343–16353. doi:10.18632/oncotarget.24674 646 

57.  Groheux D, Martineau A, Teixeira L, Espié M, de Cremoux P, Bertheau P, et al. 18FDG-647 
PET/CT for predicting the outcome in ER+/HER2- breast cancer patients: comparison of 648 
clinicopathological parameters and PET image-derived indices including tumor texture 649 
analysis. Breast Cancer Research. 2017;19: 3. doi:10.1186/s13058-016-0793-2 650 

58.  Humbert O, Riedinger J-M, Charon-Barra C, Berriolo-Riedinger A, Desmoulins I, Lorgis V, 651 
et al. Identification of Biomarkers Including 18FDG-PET/CT for Early Prediction of 652 
Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Clin Cancer Res. 653 
2015;21: 5460–5468. doi:10.1158/1078-0432.CCR-15-0384 654 

59.  Groheux D, Sanna A, Majdoub M, Cremoux P de, Giacchetti S, Teixeira L, et al. Baseline 655 
Tumor 18F-FDG Uptake and Modifications After 2 Cycles of Neoadjuvant Chemotherapy 656 
Are Prognostic of Outcome in ER+/HER2− Breast Cancer. Journal of Nuclear Medicine. 657 
2015;56: 824–831. doi:10.2967/jnumed.115.154138 658 

60.  Cochet A, David S, Moodie K, Drummond E, Dutu G, MacManus M, et al. The utility of 18 659 
F-FDG PET/CT for suspected recurrent breast cancer: impact and prognostic stratification. 660 
Cancer Imaging. 2014;14: 13. doi:10.1186/1470-7330-14-13 661 

61.  Jacobs MA, Ouwerkerk R, Wolff AC, Gabrielson E, Warzecha H, Jeter S, et al. Monitoring 662 
of neoadjuvant chemotherapy using multiparametric, 23Na sodium MR, and multimodality 663 
(PET/CT/MRI) imaging in locally advanced breast cancer. Breast Cancer Res Treat. 664 
2011;128: 119–126. doi:10.1007/s10549-011-1442-1 665 

62.  Romine PE, Peterson LM, Kurland BF, Byrd DW, Novakova-Jiresova A, Muzi M, et al. 666 
18F-fluorodeoxyglucose (FDG) PET or 18F-fluorothymidine (FLT) PET to assess early 667 
response to aromatase inhibitors (AI) in women with ER+ operable breast cancer in a 668 
window-of-opportunity study. Breast Cancer Research. 2021;23: 88. doi:10.1186/s13058-669 
021-01464-1 670 

63.  Su T-P, Huang J-S, Chang P-H, Lui K-W, Hsieh JC-H, Ng S-H, et al. Prospective 671 
comparison of early interim 18F-FDG-PET with 18F-FLT-PET for predicting treatment 672 
response and survival in metastatic breast cancer. BMC Cancer. 2021;21: 908. 673 
doi:10.1186/s12885-021-08649-z 674 

64.  Leitner BP, Givechian KB, Ospanova S, Beisenbayeva A, Politi K, Perry RJ. Multimodal 675 
analysis suggests differential immuno-metabolic crosstalk in lung squamous cell carcinoma 676 
and adenocarcinoma. npj Precis Onc. 2022;6: 1–10. doi:10.1038/s41698-021-00248-2 677 

 678 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.06.23292301doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.06.23292301
http://creativecommons.org/licenses/by-nc-nd/4.0/

