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eFigure 1. Flow chart of the exclusion process  
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eTable 1. Prediction ability of machine learning for multisite pain incidence among 

adolescents. Results for the Move! set. 

      Prediction ability   

Multisite pain incidence Cases/N AUC (95 % CI)   Sensitivity   Specificity   

All body sites   
 

         

  Boys 25/168 0.59 (0.56 to 0.62) 0.69 (0.60 to 0.78) 0.59 (0.50 to 0.68) 

  Girls 63/225 0.38 (0.34 to 0.41) 0.98 (0.98 to 0.98) 0.01 (0.00 to 0.02) 

     

Musculoskeletal sites     

  Boys 17/170 0.44 (0.40 to 0.47) 0.71 (0.53 to 0.90) 0.40 (0.18 to 0.63) 

  Girls 34/225 0.35 (0.31 to 0.40) 0.85 (0.72 to 0.99) 0.17 (0.00 to 0.34) 
AUC results are estimated from the out-of-bag observations using the 10-fold cross-validation.  

eTable 2. Prediction ability of machine learning for multisite pain incidence among 

adolescents. Results for the full set. 

      Prediction ability   

Multisite pain incidence Cases/N   AUC (95 % CI)   Sensitivity   Specificity   

All body sites       

  Boys   28/169 0.46 (0.42 to 0.50) 0.89 (0.85 to 0.93) 0.19 (0.13 to 0.26) 

  Girls   65/230 0.68 (0.66 to 0.70) 0.64 (0.55 to 0.74) 0.65 (0.52 to 0.78) 

       

Musculoskeletal sites       

  Boys   18/172 0.54 (0.49 to 0.59) 0.69 (0.56 to 0.82) 0.51 (0.37 to 0.65) 

  Girls   35/230 0.58 (0.56 to 0.60) 0.63 (0.53 to 0.73) 0.61 (0.49 to 0.73) 
AUC results are estimated from the out-of-bag observations using the 10-fold cross-validation.  

eTable 3. Prediction ability of machine learning for multisite pain incidence among 

adolescents. Results for the Move! set, balanced with SMOTE-NC. 

      Prediction ability   

Multisite pain incidence Cases/N   AUC (95 % CI)   Sensitivity   Specificity   

All body sites               

  Boys   25/168 0.65 (0.54 to 0.77) 0.35 (0.19 to 0.52) 0.80 (0.72 to 0.88) 

  Girls   63/225 0.44 (0.39 to 0.49) 0.39 (0.27 to 0.51) 0.54 (0.46 to 0.63) 

       

Musculoskeletal sites       

  Boys   17/170 0.52 (0.37 to 0.66) 0.15 (0.00 to 0.30) 0.85 (0.80 to 0.91) 

  Girls   34/225 0.30 (0.21 to 0.40) 0.17 (0.05 to 0.28) 0.64 (0.54 to 0.75) 
Results are estimated from the validation set observations using the 10-fold cross-validation.  
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eTable 4. Prediction ability of machine learning for multisite pain incidence among 

adolescents. Results for the selected data set, balanced with SMOTE-NC. 

    Prediction ability  

Multisite pain incidence Cases/N  AUC (95 % CI)  Sensitivity  Specificity  

All body sites           

  Boys  28/175  0.61 (0.52 to 0.71) 0.00a 0.98 (0.95 to 1.00) 

  Girls  66/235  0.44 (0.39 to 0.49) 0.39 (0.27 to 0.51) 0.54 (0.46 to 0.63) 

       

Musculoskeletal sites       

  Boys  17/178  0.72 (0.61 to 0.82) 0.65 (0.40 to 0.91) 0.63 (0.50 to 0.76) 

  Girls  36/235  0.50 (0.42 to 0.58) 0.03 (0.00 to 0.10) 0.95 (0.92 to 0.98) 
Results are estimated from the validation set observations using the 10-fold cross-validation. aDue to automated threshold selection that 

maximized the f-measure during training for OOB observations, some sensitivity and specificity values were taken from a suboptimal point 
in the ROC curve, leading to sensitivity values very close to or even equal to zero. 

eTable 5. Prediction ability of machine learning for multisite pain incidence among 

adolescents. Results for the full set, balanced with SMOTE-NC. 

      Prediction ability   

Multisite pain incidence Cases/N   AUC (95 % CI)   Sensitivity   Specificity   

All body sites               

  Boys   28/169 0.61 (0.49 to 0.72) 0.07 (0.00 to 0.15) 0.97 (0.94 to 1.00) 

  Girls   65/230 0.69 (0.61 to 0.77) 0.09 (0.01 to 0.17) 0.96 (0.91 to 1.00) 

       

Musculoskeletal sites       

  Boys   18/172 0.60 (0.47 to 0.73) 0.00a 1.00a 

  Girls   35/230 0.54 (0.45 to 0.63) 0.03 (0.00 to 0.07) 0.98 (0.96 to 1.00) 
Results are estimated from the validation set observations using the 10-fold cross-validation. aDue to automated threshold selection that 

maximized the f-measure during training for OOB observations, some sensitivity and specificity values were taken from a suboptimal point 
in the ROC curve, leading to sensitivity values very close to or even equal to zero. 
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eFigure 2. Permutation importance estimates for boys in the Move! set for all sites 
(AUC 0.59). Red panel, risk factors; bDirection of the association not calculated for 
nominal variables 
 
 

 

eFigure 3. Permutation importance estimates for girls in the full set for all sites (AUC 
0.68). Only the top 25 predictors are presented. Red panel, risk factors;  nsNot 
significant, variable significance calculated based on t-test in MATLAB, slightly 
differing from the manually calculated confidence intervals. 
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Higher perceived fitness █ 

First foreign language in school 
Lower grade in mathematics █ 

More frequent lower back pain or ache █ 
Teachers are interested in how I am doing █ 

Higher total amount of cycling █ 
I don’t trust my teachers █ 
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eFigure 4. Permutation importance estimates for girls in the full set for 
musculoskeletal sites (AUC 0.58). Only the top 25 predictors are presented. Red 
panel, risk factors; bDirection of the association not calculated for nominal variables
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Supplementary methods 

 

The training phase included procedures to optimize pain class prediction with RF and the training 

data. Bayesian optimization was employed to estimate the optimal hyperparameters (e.g. the 

method parameters that must be defined beforehand) for RF. The F-measure, which balances the 

precision and sensitivity of the classifier by computing their harmonic mean, was used as the 

optimization target for the RF out-of-bag samples. It is defined as 

𝐹 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
, 

where 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

and 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. 

In the above equations, TP (true positives) refers to the number of correctly detected pain class 

cases. FP (false positives) is the number of cases incorrectly identified as belonging to the pain class 

and FN (false negatives) is the number of cases incorrectly identified as belonging to the no pain 

class. Since the Bayesian optimization aims to minimize the given objective, the final target for 

optimization was 1 − 𝐹.  

 

The predicted probabilities of the RF model for the two classes were used to make receiver 

operating characteristic (ROC) curves, using OOB observations. During Bayesian optimization, the F-

measure was taken from the point in the ROC curve that maximized the value. Afterwards, the best 

estimated hyperparameters were used when the RF model was trained again. The presented 

prediction results were then recorded using the OOB observations. Additionally, the threshold that 

maximized F-measure was recorded and later used when validating the results using the separate 

validation data portion in each fold. These separate results are presented only for the setup using 

SMOTE-NC, since the OOB estimates in RF are considered to be good for assessing prediction 

performance and generalizability.1 

 

In addition to abovementioned equations, specificity, defined as 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
, 

was employed as a performance metric. 

 

After training, a validation phase was implemented where the validity of the findings was tested 

against the left-out fold in 10-fold CV. During this phase, the measures used to estimate the 

prediction performance were AUC, sensitivity and specificity. 

 

Additionally, accuracy, defined as 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

was utilized in estimating the variable importances. Mean change in accuracy was used as the 

estimate for individual variable importance. 

 

For handling the missing values in data, the original random forest method suggested two ways of 

imputing the missing values.1 The TreeBagger implementation in MATLAB employs a surrogate 

decision split especially for handling the missing values in data. When the surrogate decision splits 

flag is set to “on”, a similar or correlated predictor value is used instead of the missing value. 
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Four RF hyperparameters in MATLAB's TreeBagger function were optimized: 

1. NumPredictorsToSample: The number of variables to select at random for each decision split 

(range to search was from 1 to total_number_of_variables_in_data-1) 

2. MinLeafSize: The minimum number of observations per tree leaf (range from 2 to 15). 

3. MaxNumSplits: The maximum number of decision splits (range from 1 to 30). 

4. Surrogate: Surrogate decision splits flag (options included on, off and all). 

 

Static modified RF parameters included: 

1. The number of trees in the forest was set to 500. 

2. Nominal variables in the data were set as categorical variables (option CategoricalPredictors). 

3. Algorithm used to select the best split predictor (option PredictorSelection) was set to interaction-

curvature. 

 

In addition, two static parameters were modified in MATLAB's Bayesian optimization (bayesopt) 

function: 

1. MaxObjectiveEvaluations was set to 30, meaning that there are 30 iterations to search for optimal 

hyperparameters, after which the optimization was terminated. 

2. AcquisitionFunctionName was set to expected-improvement-plus. 
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