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Abstract 21 

Background 22 

Many miRNA-based diagnostic models have been constructed to distinguish 23 

diseased individuals. However, due to the inherent differences across different platforms 24 

or within multi-center data, the models usually fail in the generalization for medical 25 

application. 26 

Results 27 

Here, we proposed to use the within-sample expression ratios of related miRNA 28 

pairs as markers, by utilizing the internal miRNA: miRNA interactions. The ratio of the 29 

expression values between each miRNA pair turned out to be more stable cross multiple 30 

data source. Moreover, we adopted the genetic algorithm to solve the curse of dimensions 31 

when exploring the features. 32 

Conclusions 33 

The application results on three example datasets demonstrated that the expression 34 

ratio of interacting miRNA pair is a promising type of biomarker, which is insensitive to 35 

batch effects and has better performance in disease classifications. 36 

Keywords: biomarker, miRNA interactions, batch effect, multi-center data, disease 37 

classifications 38 

 39 

Introductions 40 

MicroRNAs (miRNAs) have emerged as valuable biomarkers for the early diagnosis 41 

of diseases due to their tissue-specific expression profiles and better specificity [1]. 42 

However, the expression levels of miRNAs may vary across different platforms or 43 

protocols, which limits the application of diagnostic models. This phenomenon, known 44 
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as batch variance, is prevalent in all types of high-throughput biological platforms[2], and 45 

exists commonly in multi-center data[3–6]. The difference in data distribution from 46 

multiple centers is an obstacle to obtaining reliable conclusions in joint analysis, and it 47 

prevents the models learned in one dataset from working in other external datasets[3,7,8]. 48 

Thus, effectively handling batch effects in the integration of different datasets is one of 49 

the frontiers in large-scale biological data analysis[9].  50 

Several batch effect correction methods have been developed to facilitate the joint 51 

use of multi-center data. For example, the ‘ComBat-seq’ tool based on the negative 52 

binomial regression model was developed specifically for RNA-seq count data[10]; the 53 

‘removeBatchEffect’ function in ‘limma’ package can be used to correct the data variation 54 

caused by the batch effects[11]. However, these correction methods force the data shapes 55 

to be transformed artificially, which may introduce false discoveries[12] In contrast, the 56 

intrinsic regulatory pathways are not affected by experimental conditions, which makes 57 

the relationships between genes have the potential to be a type of normalizer-free and 58 

batch-insensitive markers. Under this consideration, we propose the ratio of the 59 

expression values between related miRNAs (ERRmiR) as a promising novel form of 60 

biomarkers for facilitating aggregation analysis of data from multiple sources. 61 

To discover ERRmiR features with biological significance, a miRNA interaction 62 

network is needed as prior knowledge. It is widely known that miRNAs not only regulate 63 

the expression of mRNAs but also target non-coding RNAs, including long non-coding 64 

RNAs and miRNAs[13]. miRNAs can directly bind to the 3’UTR of transcription factors 65 
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(TF), which can also reversely activate or repress miRNA expressions [14]. For example, 66 

miR-181b affects the expression of miR-21 through the transcription factor FOS, a critical 67 

signaling protein for glioma progression[15]; miR-660-5p has been reported to control 68 

the expression of miR-486-5p via mouse double minute2 (MDM2) and p53 (also known 69 

as TP53) in a study of lung cancer[16]. A recent review also summarizes numerous 70 

examples of miRNA-TF and TF-miRNA interactions in various cancers, demonstrating 71 

the importance of the interaction between miRNA and pluripotent transcription factor in 72 

determining the occurrence of human cancers[14]. All these examples provide important 73 

clues for understanding the role of the TF-mediated miRNA functional network in tumor 74 

regulation. 75 

In this study, we constructed a TF-mediated miRNA interaction network using public 76 

databases and demonstrated that the ERRmiR features were relatively insensitive to batch 77 

effects in multi-center studies. We then adopted a genetic algorithm in the feature 78 

screening process to avoid the dimension curse, which had a great capacity for selecting 79 

markers with stable performances in developing diagnostic models. Lastly, we used three 80 

independent examples involving plasma and tissue samples to illustrate this method and 81 

exhibit its effects.  82 

Materials and methods 83 

Construction of miRNA interaction network 84 

The TF-mediated miRNA: miRNA interaction network was constructed by 85 

combining the data of miRNA-TF and TF-miRNA relationships. If a transcription factor 86 
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regulated by miRNA_a was able to regulate miRNA_b, miRNA_a was assumed to be 87 

able to influence miRNA_b. Then, they were connected in the miRNA interaction 88 

network.  89 

The data of those relationships were collected from several public databases. The 90 

microRNA-target interactions validated experimentally were collected from miRTarBase 91 

[17], among which 8014 targets were recognized as transcription factors based on the 92 

hTFtarget[18] and AnimalTFDB[19] databases. On the other hand, 1266 records of 93 

transcription factors regulating precursor miRNAs were obtained from the TransmiR[20] 94 

v2.0 database. Combining these two parts of data, a total of 51,770 miRNA:pre-miRNA 95 

indirect interactions were obtained. Then pre-miRNAs were mapped to mature miRNAs 96 

according to the mirbase gff3 file. Finally, the miRNA: miRNA interaction network 97 

included 75,507 unique records of the indirect interaction relationships.  98 

Feature generation  99 

Features were generated by calculating the ratio of expression values between each 100 

related miRNA pair in the miRNA interaction network constructed above. miRNAs were 101 

filtered based on an expression threshold of 100 to ensure that miRNAs could be detected 102 

stably. To avoid the divisor being zero, the denominator was added by one. The feature 103 

constructed with the connected pair of miRNA_a and miRNA_b was denoted as 104 

ERRmiR(a,b), then the formula was as follows:  105 

𝐸𝑅𝑅𝑚𝑖𝑅(𝑎, 𝑏)  =  
𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑚𝑖𝑅𝑁𝐴𝑎

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑚𝑖𝑅𝑁𝐴𝑏 + 1
 106 
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Data collection and pre-processing 107 

The data used to display the robustness of ERRmiR features on multi-source data 108 

from different library preparation kits were obtained from GSE133719 and GSE141658 109 

datasets on Gene Expression Omnibus (GEO)[21] database. Three examples, including 110 

SARS-CoV-2-19, RCC, and LUAD projects, were used to verify the method in this study. 111 

Data of the three projects were collected from the NCI Genomic Data Commons 112 

(GDC)[22] database and GEO (detailed in Table1). The miRNA expression matrices in 113 

the CPTAC[23]/TCGA[24] database were downloaded using the GDC tool. ExceRpt[25] 114 

was used to perform annotation and quantification of the raw data from GEO to obtain 115 

the expression matrices of miRNAs. For comparison of the results among different 116 

datasets within the same project, counts of reads were uniformly converted to RPM (reads 117 

per million mapped reads) values. In the SARS-CoV-2 project, the plasma of persons with 118 

non-severe symptoms (mild patients and healthy) were used as the controls, and the 119 

plasma of those with serious symptoms were used as the disease samples. In the RCC and 120 

LUAD projects, normal tissues were used as the controls, and primary tumor tissues were 121 

used as the disease samples. 122 

 123 

Table1: Sample information in detail 124 

Project Dataset Number of 

control cases 

Number of 

disease cases 

Platform Source 

SARS-CoV-2 GSE178246* 272 264 Illumina NextSeq 500 Plasma 

GSE176498 29 16 Illumina NextSeq 550 Plasma 

RCC CPTAC-3-RCC 148 311 Illumina tissue 

TCGA-KIRP 34 34 Illumina HiSeq 2000 tissue 

GSE109368 12 12 Illumina NextSeq 500 tissue 
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LUAD CPTAC-3-LUAD 102 111 Illumina tissue 

 GSE110907 48 48 Illumina HiSeq 2000 tissue 

 GSE196633 10 10 Illumina HiSeq 2500 tissue 

* In this data set, each sample has four pieces of sequencing data, which were treated as four cases.  125 

Feature screening and classification modelling  126 

In each project, the dataset with the most samples was divided into a training set and 127 

a test set proportionally and randomly according to 0.75:0.25, and the training set was 128 

used to perform target screening. Univariate screening of the ERRmiR features was 129 

performed based on the foldchange of the mean expression in diseased samples compared 130 

to that in the controls and the p-adjust value of t-test between the two groups. The 'sklearn-131 

genetic' package was used parallel for 100 times to obtain the optimal subsets of features. 132 

The features with higher appearance frequencies in the optimal subsets were selected as 133 

targets for the disease.  134 

The 'scikit-learn' package was used to build models for disease classifications. 135 

During model training, the learning curves were used to detect whether the estimator was 136 

overfitting. The trained model was validated on a test set and other external validation 137 

datasets within the same project. 138 

Statistical analysis and visualization 139 

The quartile plots of miRNA expression / ERRmiR feature values were drawn by 140 

the 'matplotlib' tool. The significance analyses were conducted using 'scipy'. The miRNA 141 

network was visualized using 'pyvis' and 'seaborn' tools. In miRNA pathway enrichment 142 

analyses, target genes of miRNAs were first identified through the database 'tarbase' using 143 
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the 'multMiR' package in R language, then pathway enrichments were performed using 144 

'clusterProfiler'. 145 

Results 146 

The schematic of ERRmiR signatures generation and screening 147 

We developed a screening process for ERRmiR signature generation based on 148 

machine learning methods (Figure 1). We first constructed a miRNA interaction network 149 

by integrating several databases, including miRTarBase, hTFtarget, AnimalTFDB, and 150 

TransmiR v2.0. The network contained 75,507 unique records of indirect interaction 151 

relationships between miRNAs. We then calculated the expression ratios of related 152 

miRNA pairs as ERRmiR features. The screening dataset was randomly divided into a 153 

training set and a test set, and the features were filtered in the training set using univariate 154 

analyses such as t-test and the foldchange of the mean expressions between two groups. 155 

We used a genetic algorithm to screen the features, and those with higher frequencies in 156 

the screening processes were selected as candidate markers. The trained model was 157 

validated on the test set within the same screening dataset and evaluated on external 158 

validation datasets. This approach was suitable for discovering biomarkers for various 159 

samples. 160 
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 161 

Figure 1: Overview of the ERRmiR marker discovery process. First, the miRNA network 162 

was constructed based on the TF-mediated interactions. Then, the ERRmiR features were 163 

calculated between the connected genes in the network as new variables for subsequent 164 

process. Finally, target screening and model construction were performed on the 165 

screening dataset and verified on the validation dataset. 166 

Construction of a miRNA interaction network 167 

We constructed a miRNA interaction network based on indirect interactions 168 

mediated by transcription factors. The interactions mediated by transcription factors, 169 

induce the expression of one miRNA to impact the activation or inhibition of other 170 

miRNAs. Take miR-183-5p as an example to show how miRNAs regulate other miRNAs 171 

through transcription factors (Figure 2A). Here the pentagram-labeled miR-183-5p is a 172 

regulatory miRNA, which regulates the square-labeled transcription factors and further 173 

affects the round-labeled target miRNAs. The blue linkages represented the interaction of 174 
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miR-183-5p acting on the transcription factors, and the pink linkages represented the 175 

effects of transcription factors on other miRNAs. The network contained 75,507 unique 176 

records of indirect interaction relationships between miRNAs. The miRNA interaction 177 

network was visualized, and its degree distribution and several topological characteristics 178 

were presented in Figure 2B and Figure 2C. 179 

 180 
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Figure 2: Illustration of the miRNA interaction network. (A) TF-mediated miRNA: 181 

miRNA indirect interactions. Pentagrams denoted the regulating miRNAs, squares 182 

denoted the transcription factors, and rounds denoted the regulated miRNAs. (B) Degree 183 

distribution of the miRNA interaction network followed a power-law tail. (C) Topological 184 

characteristics of the interaction network. 185 

 186 

Characterization of ERRmiR signatures 187 

To verify the hypothesis that the expression ratios between interacted miRNAs 188 

would be more stable across multi-center data, the distribution of ERRmiR values was 189 

displayed compared to the distribution of the miRNA expression levels of the same 190 

samples (Figure 3). The experiment was about the sequencing data of the peripheral 191 

blood CD8+ T cells in triplicate from rheumatoid arthritis (RA) patients and healthy 192 

controls, by parallel receiving different library construction methods. The Quartile plots 193 

showed that the original miRNA expression data generated by different library 194 

preparation kits had significant differences on the scale and distributions (Figure 3, upper 195 

panel), while the distribution variation of ERRmiR values decreased (Figure 3, lower 196 

panel), which demonstrated the potential of ERRmiR features as batch-insensitive 197 

markers. We presented three application examples from various sample types and diseases. 198 
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 199 

Figure 3: Quartile plots of miRNA expression (upper panel) and log2-ratios of every two 200 

miRNAs (below panel) for each sample. Each plot was represented with the median (a 201 

solid point), the 0.25 quartile and the 0.75 quartile of the distribution. 202 

 203 

Example 1: Classification of COVID-19 patients with severe symptoms using plasma 204 

samples 205 

The advantage of ERRmiR features was first compared to the miRNA expression 206 

values on the dataset of COVID-19 plasma samples. The dataset GSE178246 was divided 207 

into a training set and a test set randomly, and the dataset GSE176498 was used as the 208 

external independent validation set. According to the protocol, there were 42 ERRmiR 209 

targets in total obtained during conducting the genetic algorithm for 100 times on the 210 

screening dataset. As shown in Figure 4A, the frequency distribution of target appearance 211 

was very steep: the highest frequency was up to 60, but there were only three targets with 212 
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frequencies greater than 10. We selected the top 3 high-frequency features as markers, 213 

and tested them on the validation set. As expected, they were significantly different 214 

between the serious and non-serious groups (P<0.05) and showed relatively consistent 215 

trends across multiple datasets (Figure 4B). Based on these markers, an SVC model that 216 

was established on the training set, showed stable high performances on both the test set 217 

and the validation dataset (Figure 4D). To confirm the batch-insensitive nature of the 218 

ERRmiR features, the protocol of biomarker selection was also used on the expression 219 

matrix of miRNAs directly. As displayed in Figure 4C, the targets screened from the 220 

expression matrix of miRNAs lost effectiveness across batches of data, with miR-1224-221 

5p even showing opposite regulation trends. Accordingly, the model with miRNA 222 

expression values had a high AUC of 0.906 on the test set, but failed on the independent 223 

validation set with an AUC of 0.783 (Figure 4E). In addition, the five miRNAs that 224 

comprised the three ERRmiR markers were used for pathway enrichment, and the top 20 225 

pathways were shown in Figure 4F. Infection pathways of bacteria and viruses, including 226 

Salmonella infection and Human papillomavirus infection, were significantly enriched.  227 
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 228 

Figure 4: Analysis of ERRmiR features in the SARS-CoV-2 project. (A) The occurrence 229 

frequencies of the ERRmiR features in the 100 times genetic algorithm. (B-C) the top 3 230 

high-frequency ERRmiRs showed relatively stable regulatory trend in both datasets rather 231 

than miRNAs. ROC curves of the models based on ERRmiR markers (D) and miRNA 232 

markers (E). (F) Pathway enrichment analysis of miRNAs involved in ERRmiR markers. 233 
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Example 2: Diagnostic model of RCC using tissue samples 234 

The strategy of marker discovery was also validated on the dataset of RCC tissue 235 

samples. Data from CPTAC-RCC dataset were used for screening targets and building 236 

the model. The TCGA-KIRP and GSE109368 datasets were used for external validations. 237 

After conducting the genetic algorithm, we obtained 115 targets with the frequency 238 

distribution shown in Figure 5A. As the same as in Example 1, the top 3 high-frequency 239 

ERRmiR features were selected as biomarkers, and presented significant differences 240 

between the cancer and control groups (P<0.05) with consistent regulation trends across 241 

multiple datasets (Figure 5B). Although part of the miRNAs in ERRmiR markers, such 242 

as miR-221-3p and miR-221-5p, didn’t display significant differential between the two 243 

sample groups in all the datasets (Figure 5C). A prediction model using the SVC 244 

algorithm was established on the screening dataset, and was able to achieve high AUC 245 

values on both two independent validation datasets (Figure 5D). The five miRNAs 246 

comprising the three ERRmiR markers were significantly enriched in several pathways 247 

associated with cancers (Figure 5E). Especially the p53 signaling pathway, and Hippo 248 

signaling pathway had been widely reported to be associated with RCC[26,27]. 249 
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 250 

Figure 5: ERRmiR markers discovered in the RCC project. (A) Statistics of the 251 

frequencies of the ERRmiR features. Violin plots of the top 3 high-frequency ERRmiR 252 

features (B) and the miRNAs involved in them (C) among the three independent datasets. 253 
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(D) ROC curves of the model based on the ERRmiR markers. (E) Pathway enrichment 254 

analysis of miRNAs in the ERRmiR markers. 255 

 256 

Example 3: Diagnostic model of LUAD using tissue samples 257 

In the LUAD project, the CPTAC-LUAD dataset was used for screening targets and 258 

building the model. The GSE110907 and GSE196633 datasets were used for external 259 

validations. There were 31 targets obtained by conducting the genetic algorithm 100 times, 260 

with a relatively flat frequency distribution shown in Figure 6A. Then the top 3 high-261 

frequency ERRmiR features were selected, and presented significantly differences 262 

between the cancer and control groups (P<0.05) with consistent regulation trends across 263 

multiple datasets (Figure 6B). The model trained in the screening set, had high AUC 264 

values of 0.995 and 0.91 in the GSE110907 and GSE196633 validation sets separately 265 

(Figure 6C). The five miRNAs comprising the three ERRmiR markers were significantly 266 

enriched in the p53 signaling, Cell cycle, PI3K-Akt pathways and so on, which had been 267 

widely reported to be associated with LUAD[28–30] (Figure 6D). 268 
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 269 

Figure 6: Discovery results on the LUAD project. (A) Statistics of the frequencies of 270 

ERRmiR features. (B) Violin plots of ERRmiR features ranked the top 3 by frequency. 271 

(C) ROC curves of the models based on ERRmiR markers. (D) Pathway enrichment 272 

analysis of miRNAs involved in the ERRmiR markers. 273 

 274 

Discussion and Conclusions 275 

Using this protocol, we discovered some miRNAs with biological significance in all 276 

three examples, reflecting a low discovery rate in the ERRmiR markers. These miRNAs 277 
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are disease-related and have been validated in previous studies. The results further 278 

demonstrate that the approach of this study is more helpful in implying the pathogenic 279 

mechanisms of diseases. 280 

miRNA biomarkers have shown initial success in disease diagnosis and prognosis 281 

monitoring [31] , but the noncontrollable experimental factors can cause deviation across 282 

different batches, making it difficult to use normalization of expression matrices alone for 283 

multi-center applications. In this study, we proposed an algorithm based on features 284 

formed by calculating the expression ratio of interacted miRNAs to remove batch effects. 285 

Coordinated with an integrated screening method utilizing the genetic algorithm, the 286 

algorithm can distinguish negative samples from positive samples on data from multi-287 

sources. We demonstrated the effectiveness of this strategy at tissue and plasma levels 288 

with three examples, indicating its capacity for universal usage in developing diagnosis 289 

and classification models.  290 

However, in previous studies, the lack of considering biological significance has led 291 

to improper strategies for construction and screening of expression ratio biomarkers. For 292 

example, some studies constructed expression ratio signatures by matching pairs with an 293 

upgraded gene and a downgrade gene, which ignores many worthy interactions[32,33]. 294 

Besides, this DE-dependent method would ignore many worthy interactions, and the 295 

construction method by pairing every two genes makes the number of features explode 296 

extremely, increasing the false discovery rate of targets and bringing tremendous pressure 297 

and difficulty to feature screening on small-sample biological data. 298 

To address these issues, we constructed the expression ratio features based on a prior 299 
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knowledge of miRNA interactions, which not only reduces the dimension of features but 300 

also helps to discover true relation markers. We included three types of miRNA:miRNA 301 

interaction (direct interactions, indirect interactions, and global interactions) summarized 302 

in a previous review[34] and considered the indirect miRNA interactions mediated by 303 

transcription factors. We constructed a TF-mediated miRNA interaction network to guide 304 

the generation of ERRmiR features, and with new miRNA regulatory relationships being 305 

discovered, the interaction network will likely expand, and new markers may gradually 306 

be revealed. 307 

An efficient screening strategy is crucial to obtain stable biomarkers with excellent 308 

performance, especially for high-dimensional data and small sample size. In this study, 309 

we demonstrated that the expression ratios of miRNA pairs were more stable relative to 310 

the expression of individual miRNAs, and we preliminarily excluded low-expressed 311 

miRNAs to reduce the false discover rate and the dimension in calculating the feature 312 

matrix. The screening process comprised univariate analyses and multivariate genetic 313 

algorithm, and we repeated the genetic algorithm one hundred times to obtain high-314 

frequency features, which were considered to be reliable. 315 

Using this protocol, we discovered some miRNAs with biological significance in all 316 

three examples, reflecting a low discovery rate in the ERRmiR markers. Let-7b-5p, which 317 

is in a selected marker for predicting severe COVID-19 in the first example, has been 318 

reported to play a role in regulating ACE2 and DPP4 receptors and be significantly 319 

downregulated in nasopharyngeal swabs of patients[35]. Meanwhile, miR-21-3p which 320 
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is regulated by let-7b-5p, shows an upregulation trend in this project and is consistent 321 

with the previous experiments of mice infected with SARS-CoV-2[36]. miR-106b-3p and 322 

miR-214-5p in the ERRmiR marker that has been selected in the RCC project, are both 323 

found to be critical oncogenes in previous studies. The high expression of miR-106b-3p 324 

may be an important factor in predicting poor prognosis in RCC patients[37,38], and the 325 

overexpression of miR-214-5p attenuates cell proliferation and metastasis[39]. In the 326 

LUAD project, the pairs containing miR-30a-3p or miR-30c-2-3p have been screened out. 327 

The role of the miR-30 family as tumor suppressors has been validated in previous 328 

reports[40], especially miR-30c-2-3p is reported to inhibit tumor progression in 329 

esophageal squamous cell carcinoma, breast cancer, and hepatocellular carcinoma[41–330 

43]. miR-9-5p and miR-503-5p which are related with miR-30 in the markers, have also 331 

been reported to be associated with cell proliferation, migration, and invasion in non-332 

small cell lung cancer[44,45]. These miRNAs are disease-related and have been validated 333 

in previous studies. The results further demonstrate that the approach of this study is more 334 

helpful in implying the pathogenic mechanisms of diseases. 335 

 336 

 337 

 338 

 339 

 340 

 341 
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