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Supplemental Methods

Here, we describe mathematical details of the predictive and hypothesis testing methods in the isoTWAS
pipeline.

Predictive modeling

For a gene G with M isoforms across N samples, with expression measured across R inferential replicates,
we consider the following multivariate linear model:

Y∗
G = XGBG + EG, (1)

where

• Y∗
G is the N × M matrix of isoform expression for gene G,

• XG is the N × P matrix of genotype dosages (coded as 0,1, or 2 alternative alleles at a SNP) for
SNPs within a cis-window of the body G,

• BG is the P × M matrix of SNP effects on isoform expression, and

• EG is a matrix of random errors, such that vec(EG) ∼ NNM

(
0, Σ = Ω−1 ⊗ IN

)
. Here, Σ is the

variance-covariance matrix of the random errors, with Ω = Σ representing the precision matrix. The
columns of XG can be standardized to mean 0 and variance 1 to remove the intercept term from the
model.

We implement 4 different multivariate methods to estimate B̂G.

Multivariate elastic net

Multivariate elastic net is an extension of elastic net regression for a multivariate response variable. The
optimization here, fit through coordinate descent, solves

argminBG

 1
2N

N∑
i=1

∥yi − BT
GxG,i∥2

F + λ

(1 − α)∥BG∥2
F /2 + α

P∑
j=1

∥βG,j∥2

 .
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Here, βG,j is the jth row of the SNP effects matrix BG. There is a group-lasso penalty on each M -length
vector of isoform effects for a single SNP. This penalty works on the whole group of coefficients for each
response: either all coefficients are 0, or none are 0. All coefficients are shrunk by the λ penalty, optimally
selected through cross-validation. Intuitively, multivariate elastic net should be optimal in settings where
the causal isoQTLs are the shared across different isoforms of the same gene. We fit this model using the
glmnet package in R1 for the mixing parameter α ∈ {0, .5, 1}.

Multivariate Regression with LASSO with Covariance Estimation

From Equation 1, we jointly estimate BG and Ω by minimizing the following objective function:

(
B̂G, Ω̂

)
= argminBG,Ω

g(BG, Ω) + λ1
∑
j′ ̸=j

|ωj′,j | + λ2

p∑
j=1

q∑
k=1

|bjk|

 ,

where

g(BG, Ω) = tr
[
n−1(Y∗

G − XGBG)T (Y∗
G − XGBG)Ω

]
− log |Ω|.

This objective function can be iteratively minimized for both matrix parameters. In any given iteration, we
first solve of B̂G with a fixed Ω using coordinate descent. Then, we can solve for Ω̂ with the fixed B̂G at
the given iteration with graphical lasso. We iterate until the convergence tolerance parameter is met. Full
details are outlined in Rothman et al2.

Multivariate elastic net regression using stacked generalization

We employ Rauschenberger and Glaab’s joinet R package3 that uses a stacked generalization for multi-
variate elastic net regression. In general, joinet has two steps for prediction:

1. In the first step, or layer, each column of Y∗
G is predicted from XG using elastic net regression via

cross-validation to prevent data leakage. This gives us a predicted vector Y
(cv)

g,m of isoform expression
for each isoform m, and taken together, a predicted matrix of isoform expressions Y(cv)

G .

2. In the second layer, each column of Y∗
G is predicted from Y(cv)

G with LASSO regression.

Through this two-step prediction, we can estimate a matrix of predicted SNP-isoform effects B̂G. For each
SNP, this stacking process exchanges information among the estimated effects on the isoforms, such that
the final estimated effect one a single isoform combines the initial SNP effect estimates on all isoforms
linearly.

Sparse partial least squares

Lastly, we use sparse partial least squares4, as implemented in the spls R package. First, it is important to
note that partial least squares is a alternative to ordinary least squares for linear regression models without
proper conditions. Partial least squares hinges on a dimension reduction technique that assumes that there
is a latent decomposition of the response matrix (matrix of isoform expression in the case of isoTWAS)
and the predictor matrix (the design matrix of SNPs). This latent decomposition is represented with a K-
dimensional matrix T. Partial least squares estimates T = XGW through successive optimization steps to
find the columns of W using an objective function that depends on the columns of W and the covariance
between the response and predictor matrices.
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Sparse partial least squares identifies this latent decomposition with added parameters to induce sparsity.
In short, let M = X′

GY∗
GY′∗

GXG. Sparse partial least squares attempts to minimize the following objective
function for ω and c, subject to ω′ω = 1:

−κω′Mω + (1 − κ)(c − ω)′M(c − ω) + λ1∥c∥1 + λ2∥c∥2
2.

There are four parameters that require tuning through cross-validation (κ, λ1, λ2, K). In isoTWAS, we find
the optimal κ ∈ {0.1, 0.2, 0.3, . . . , 0.9}, K ∈ {1, 2, . . . , ⌊M/2⌋}, λ1 and λ2 through 5-fold cross-validation.

The isoTWAS package also allows the user to fit a univariate model for each isoform. We use this as a
baseline to compare the advantages of multivariate modelling to this univariate approach.

Univariate modeling

The simplest method implemented is univariate predictive modelling, as implemented in Gusev et al’s FU-
SION software5. We ignore the correlation structure between isoforms and train a univariate model. For the
mth isoform, we fit:

y∗
G,m = XGβG,m + ϵG,m (2)

We include three univariate methods:

1. Elastic net regression with elastic net mixing parameter α = 0.51. This procedure finds the β̂G,m

that minimizes

L(βG,m) = 1
2N

N∑
i=1

(yG,m,i − xT
G,iβG,m)2 + λ[(1 − α)∥βG,m∥2

2/2 + α∥βG,m∥1].

We use the glmnet package in R for implementation with cross-validation.

2. Best linear unbiased predictor (BLUP) using a linear mixed model6. Here, we assume, in Equa-
tion 2, that βG,m are random SNP effects on the isoform m, such that βG,m ∼ N

(
0,

σ2
m

P IN

)
. Here, σ2

m

is a variance parameter for the SNP effects. We can calculate the BLUP of βG,m with the following
solution of the Henderson mixed-model6:

β̂G,m = σ̂2
m

M
XT

GV̂−1y∗
G,m,

where σ̂2
m and V = σ2

mXGXT
G/P + σ2

ϵ IN are estimated with restricted maximum likelihood estima-
tion and subsequent matrix multiplication. We implement an estimation to this model using ridge
regression with the rrBLUPpackage in R.

3. Sum of Single Effects (SuSiE) regression. Here, we assume that, in Equation 2, βG,m =∑L
i=1 βl,G,m, where βl,G,m has exactly one non-zero element. SuSiE estimates the variance compo-

nents using maximum likelihood prior to the estimating βG,m using an empirical Bayes approach. We
implement this procedure using the susieR package in R7.
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Association testing procedure

We employ a stage-wise testing procedure, similar to the stageR method8.

1. We impute genetically-regulated expression of each isoform and estimate associations between each
isoform using (1) the appropriate linear regression if we have access to individual-level genotypes in
the GWAS and (2) the weighted burden test if we only have access to GWAS summary statistics5.
We use an LD reference panel that appropriately matches the ancestry of the GWAS sample and the
eQTL sample the predictive models were trained with.

2. Given the Wald-type test statistics Z1, . . . , Zm for a given gene, we run an omnibus test to aggregate
the test statistics of isoforms of the same gene. We employ either (1) minimum P-value aggregation
(i.e. set the gene-level omnibus P-value to the minimum isoform-level P-value), (2) an aggregated
Cauchy association test (ACAT)9, or (3) Chi-square aggregation, where we define the gene-level test
statistic TG =

∑m
i=1 Z2

i and compare to the Chi-square distribution with m degrees of freedom. We
correct for multiple comparisons using the Benjamini-Hochberg procedure.

3. We then run an isoform-level multiple testing procedure using the Shaffer MSRB method to assess all
isoform-level associations8. This procedure controls the family-wide error rate when hypotheses are
correlated within the family (i.e. isoforms of the same gene).

Given any overlapping isoforms (i.e. isoforms within 0.5 Megabases of one another), we use transcript-level
probabilistic fine-mapping10 to generate a 90% credible set of associated isoforms.

Simulation framework and parameters

Here, we adopt techniques from Mancuso et al’s twas_sim package11 to simulate multivariate isoform
expression. We consider the following model

Y = XB + U + ϵ,

where, for n total samples, Y is an n × m matrix of expression values for m isoforms, X is an n × p matrix of
p SNPs within 1 Megabase of the isoforms in Y, B is an p × m matrix of SNP-isoform effects, U is the non-
cis genetic effects on isoforms that are correlated between both isoforms and samples, and ϵ represents
the independent noise added to each isoform separately. We first simulate the SNPs in X by selecting all
the SNPs within 1 Megabase of 22 randomly selected genes (1 per chromosome), by using the linkage
disequilibrium matrix from European samples of the 1000 Genomes Project and the framework outlined in
twas_sim. We then simulate B by selecting pc proportion of the SNPs in X as “causal” and generating
a non-zero effect size for these SNPs. We allow for a proportion, ps, of these “causal” SNPs to be shared
across different isoforms. For example, if we set ps = 0.50, we select 0.5pc of the SNPs to be shared across
all isoforms and assign, for each isoform, a non-zero effect for these selected shared SNPs. For each
isoform, an additional 0.5pc proportion of the SNPs will be randomly selected as non-zero effect SNPs. We
then scale each column of B to ensure that the genetically-determined portion of each column of Y equals
the isoform expression heritability parameter h2

g.

Next, we simulate U ∼ MV N(0, σhV, σhW ). σh is a tunable parameter for controlling the proportion of
variance in isoform expression explained, and V and W are correlation matrices between isoforms and
samples, respectively. As simulating positive-semidefinite matrices, especially of large dimension, is diffi-
cult, we employ a heuristic that roughly generates dense correlation matrices (off-diagonals are far from
0) for V and sparser correlation matrices (off-diagonals are closer to 0) for W . For V and W , we first
generate V1 , an m × m matrix, and W1, an n × n matrix, where each off-diagonal element is drawn from
Unif(−.5, .5) or Unif(−0.02, 0.02), respectively, and the diagonal is set to 1. We then set V = V ′

1V1/max(V1)
and W = W ′

1W1/max(W1). Lastly, we draw ϵi ∼ N(0, σ2
eI), where σ2

e = 1 − σh − h2
g.

We conduct these simulations 10,000 times across the following set of parameters:
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• n ∈ {200, 500, 1000}

• pc ∈ {0.001, 0.01, 0.05}

• h2
g ∈ {0.05, 0.10, 0.25}

• ps ∈ {0, 0.5, 1}

• σh ∈ {0.1, 0.25}

For the GWAS dataset, we first generate genotypes and genetically-regulated isoform expression using the
same framework as the QTL dataset and the same causal B matrix. We then estimate traits in 3 scenarios
with a GWAS sample size of 50,000:

1. Only gene-level expression has a non-zero effect on trait. Here, we sum the isoform expression
to generate a simulated gene expression. We randomly simulate the effect size and scale the error to
ensure trait heritability h2

t ∈ {0.01, 0.05, 0.10}.

2. Only 1 isoform has a non-zero effect on the trait. Here, we generate a multivariate isoform expres-
sion matrix with 2 isoforms and scale the total gene expression value such that one isoform (called
the effect isoform) makes up pg ∈ {0.10, 0.30, 0.50, 0.70, 0.90} proportion of total gene expression.
We then generate effect size for one of the isoforms and scale the error to ensure trait heritability
h2

t ∈ {0.01, 0.05, 0.10}.

3. Two isoforms with different effects on traits. Here, we generate a multivariate isoform expression
matrix with 2 isoforms that make up equal portions of the total gene expression. We then generate an
effect size of α for one isoform and peα for the other isoform, such that pe ∈ {−1, −0.5, −0.2, 0.2, 0.5, 1}.
We then scale the error to ensure trait heritability h2

t ∈ {0.01, 0.05, 0.10}.

We also benchmark transcript-level fine-mapping using FOCUS10. Here, we use a similar framework, as
above. We simulate a gene with 5 or 10 isoforms with the same QTL architecture parameters. We randomly
selected one of the isoforms to be the “causal” effect isoform on the trait in Scenario 2 above. Then, we run
transcript-level fine-mapping using FOCUS and record the size of the 90% credible set of isoforms and the
sensitivity of the 90% credible set (i.e., the proportion of credible sets that contain the “causal” isoform).
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