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Abstract: 

 

Background: Many automatic approaches to brain tumor segmentation employ 
multiple magnetic resonance imaging (MRI) sequences. The goal of this project was 
to compare different combinations of input sequences to determine which MRI 
sequences are needed for effective automated brain metastasis (BM) segmentation.  

 

Methods: We analyzed preoperative imaging (T1-weighted sequence ± contrast-
enhancement (T1/T1-CE), T2-weighted sequence (T2), and T2 fluid-attenuated 
inversion recovery (T2-FLAIR) sequence) from 339 patients with BMs from six 
centers. A baseline 3D U-Net with all four sequences and six U-Nets with plausible 
sequence combinations (T1-CE, T1, T2-FLAIR, T1-CE+T2-FLAIR, T1-CE+T1+T2-
FLAIR, T1-CE+T1) were trained on 239 patients from two centers and subsequently 
tested on an external cohort of 100 patients from five centers.  

 

Results: The model based on T1-CE alone achieved the best segmentation 
performance for BM segmentation with a median Dice similarity coefficient (DSC) of 
0.96. Models trained without T1-CE performed worse (T1-only: DSC = 0.70 and T2-
FLAIR-only: DSC = 0.73). For edema segmentation, models that included both T1-
CE and T2-FLAIR performed best (DSC = 0.93), while the remaining four models 
without simultaneous inclusion of these both sequences reached a median DSC of 
0.81-0.89. 

 

Conclusions: A T1-CE-only protocol suffices for the segmentation of BMs. The 
combination of T1-CE and T2-FLAIR is important for edema segmentation. Missing 
either T1-CE or T2-FLAIR decreases performance. These findings may improve 
imaging routines by omitting unnecessary sequences, thus allowing for faster 
procedures in daily clinical practice while enabling optimal neural network-based 
target definitions. 
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Introduction 
Brain metastasis (BM) delineation is a time-consuming process in clinical practice and 
research alike. Automated BM segmentation algorithms can be used to assist in this task. 
They require only a fraction of the time an experienced clinician needs to perform delineation 
while achieving an overlap with the reference segmentation within the range of interrater 
variability [1,2]. 
We have previously developed a model for the simultaneous segmentation of both contrast-
enhancing BMs and surrounding T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) 
hyperintense edema [1]. Like many other approaches to brain tumor segmentation, such as 
the BraTS challenge [3] or FeTS [4], our model uses four magnetic resonance imaging (MRI) 
sequences as input, namely a T1-weighted sequence (T1), a T1-weighted sequence with 
contrast enhancement (T1-CE), a T2-weighted sequence (T2) and T2-FLAIR. 
Using fewer input sequences is clearly advantageous. In clinical practice, individual 
sequences may not be of the required quality, e.g., due to motion artifacts [5]. Furthermore, 
while a complete brain imaging protocol averages a scan time of about 21 minutes [6], an 
adapted protocol with only two sequences can decrease duration by about ten minutes. Also, 
shorter scan times are, in turn, known to reduce patient motion [5]. In addition, using fewer 
sequences reduces the amount of data that needs to be processed. This results in faster pre-
processing times and leaner neural networks. 
Although the administration of MRI contrast agents generally results in fewer and less severe 
adverse effects than the use of iodine-based computed tomography contrast agents, there 
are still some adverse reactions including rare, life-threatening anaphylactoid reactions [7]. 
Their use should therefore be carefully considered. Nevertheless, contrast-enhanced 
sequences are part of many imaging routines, such as in the radiation therapy planning of 
brain tumors [8]. Thus, BM segmentation algorithms that work without contrast would be of 
great use. 
While some authors have built neural networks for BM segmentation using only T1-CE, they 
focused only on the BM itself without the surrounding T2-FLAIR hyperintense edema [9,10]. 
While edema segmentation currently has no relevance for the radiotherapy (RT) planning of 
BMs, it can be relevant for glioma [11]. Moreover, the delineation of edema may provide 
valuable information for downstream analysis with techniques such as radiomics [12] or 
neural network-based feature extraction.  
This project aimed to compare neural networks with different combinations of input 
sequences for the segmentation of the contrast-enhancing metastasis and the surrounding 
T2-FLAIR hyperintense edema. All neural networks were tested in a multicenter international 
external test cohort composed of 100 patients from five different centers to investigate the 
contribution of different MRI sequences to the segmentation of contrast-enhancing BMs and 
their surrounding edema. 
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Methods 

Automatic segmentation of brain metastases 
In our previous work, we focused on how to improve the detection and segmentation of BMs 
[1]. This project aimed to quantify the contribution of individual MRI sequences to the quality 
of segmentation. In the following, we will refer to our previous publication and highlight the 
changes in our workflow. 

AURORA study 
Data were collected as part of the A Multicenter Analysis of Stereotactic Radiotherapy to the 
Resection Cavity of Brain Metastases (AURORA) retrospective study conducted by the 
Radiosurgery and Stereotactic Radiotherapy Working Group of the German Society for 
Radiation Oncology (DEGRO) [13]. Inclusion criteria were a resected BM with a known 
primary tumor and stereotactic RT with radiation dose > 5 Gy per fraction. Exclusion criteria 
were an interval between surgery and RT > 100 days, premature discontinuation of the RT, 
and any previous cranial RT. Synchronous unresected BMs were allowed but had to be 
treated concurrently with stereotactic RT [1]. Institutional ethical approval was obtained (main 
approval at the Technical University of Munich: 119/19 S-SR; 466/16 S). While the study 
focuses clinically on the postoperative situation, we analyzed only the preoperative imaging. 

Dataset 
We received data from 481 patients from seven centers in total (TUM: Klinikum rechts der 
Isar of the Technical University of Munich, USZ: University Hospital Zurich, FD: General 
Hospital Fulda, FFM: Saphir Radiochirurgie/University Hospital Frankfurt, FR: University 
Hospital Freiburg, HD: Heidelberg University Hospital, KSA: Kantonsspital Aarau). As an 
extension of the previous study, an additional center was included in the test group (FR). 
We analyzed preoperative MRI scans only. For our established preprocessing workflow, we 
needed four MRI sequences from each patient: T1, T1-CE, T2, and T2-FLAIR. 
Unlike in our last workflow [1], only the T2 sequence was allowed to be missing because it 
was not available for a large fraction of the cohort. If other sequences besides the T2 
sequence or multiple sequences were missing, the patient was excluded.  
The required sequences were available in sufficient quality for a total of 339 patients (70% of 
total). We divided the patients into a training cohort of 239 patients from two centers (TUM 
and USZ) and a test cohort of 100 patients from five centers (FD, FFM, FR, HD, and KSA). 

Data preprocessing 
We used the same established preprocessing workflow as previously [1]. In short, we used 
BraTS-Toolkit [14] to generate co-registered, skull-stripped sequences with an isotropic 
resolution of 1 millimeter in BraTS space. 
A total of 123 T2 sequences were missing (106 (44%) in the training cohort and 17 (17%) in 
the test cohort). These were synthesized with a generative adversarial network (GAN) [15] by 
feeding the remaining three sequences into the GAN. The synthesized sequences passed 
visual inspection.  

Annotation 
All images were segmented by a doctoral student (JAB) using the open-source software 3D 
Slicer (version 4.13.0, stable release, https://www.slicer.org/) [16]. Two separate, non-
overlapping labels were segmented: The metastasis label, consisting of the contrast-
enhancing metastasis and necrosis, and the T2-FLAIR hyperintense edema label. The 
segmentations of the test set patients were reviewed by a senior radiation oncologist (JCP). 
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Sequence combinations 
To reduce the number of models to be trained, we did not train with every possible 
combination of input sequences, but instead only analyzed clinically plausible combinations 
by following these considerations: To identify the exact outline of the BM, T1-CE is required 
[17]. To quantify the added benefit of administering contrast agents, a comparison between 
T1 and T1-CE may provide further insight. If the main interest is edema, T2-FLAIR may be 
sufficient. Additional sequences may further improve the quality of segmentations. We did 
not train a T2-only model to prevent neural networks from receiving only synthetic data from 
some patients without original data as input. The model trained with all four sequences is 
referred to as baseline for the remainder of this manuscript. Overall, we trained models with 
the following sequence combinations:  
 

• T1-CE + T1 + T2 + T2-FLAIR (baseline) 
• T1-CE only 
• T1 only 
• T2-FLAIR only 
• T1-CE + T2-FLAIR 
• T1-CE + T1 
• T1-CE + T1 + T2-FLAIR 

Neural Network 
We kept all training parameters the same as in our previous study [1]. We implemented 
spatial flips, Gaussian noise, and random affine transformations to augment our training 
data. As loss function, we chose an equally weighted Dice + Binary Cross Entropy (BCE) 
loss, as used by Isensee et al. [18]. We trained all networks for a total of 500 epochs. The 
best model was chosen based on the lowest overall loss in the training set.  
All models were trained on a workstation equipped with an Intel 9940X CPU combined with 
two NVIDIA RTX 8000 GPUs using CUDA version 11.4 in conjunction with Pytorch version 
1.13.1 [19] and MONAI version 1.1.0 [20]. 

Metrics 
We calculated the Dice similarity coefficient (DSC) with the Python package pymia [21]. 
Unless otherwise noted, segmentation metrics were derived from all segmented BMs. We 
also calculated the metastasis-wise DSC for each BM. To quantify the correlation between 
BM volume and metastasis-wise DSC, the Spearman correlation coefficient was used. To 
assess the BM detection performance, we used a pipeline created by Pan et al. [22] to 
determine the F1-score (F1), sensitivity, and precision. The performance of multiple models 
was compared with the Kruskal-Wallis rank sum test. Numeric and categorial data in the 
patient cohorts was compared with the Kruskal-Wallis rank sum test and Pearson's Chi-
squared test, respectively. 
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Results 
The mean number of BMs, patient demographics, and the number of patients with 
synthesized T2 sequences in each center are shown in Table 1. 
 
Table 2 summarizes our model evaluation results. Regarding metastasis segmentation, all 
models that included T1-CE in their selected sequences showed similar performance, with a 
small but significant difference (median DSC = 0.93-0.96, p < 0.001). In contrast, the models 
trained only on T2-FLAIR and only on T1 reached a significantly lower median DSC for the 
metastasis of 0.73 (IQR = 0.54-0.84) and 0.70 (IQR = 0.46-0.81). The models trained only on 
T1-CE or T1-CE and T1 performed even better than baseline with a median DSC of 0.96 and 
0.95, respectively.  
 
To determine the relationship between BM size and segmentation performance, we divided 
BMs into three equal groups according to their size: small, medium, and large BMs with a 
median volume of 1.16, 7.15, and 25.68 milliliters, respectively. The median metastasis-wise 
DSC in each group is shown in Supplementary Table 1. Our T1-CE-only model achieved a 
median metastasis-wise DSC of 0.92, 0.96 and 0.95 in the three groups. In total, five BMs of 
135 total BMs (3.7%) were missed by the T1-CE-only model. Two examples are shown in 
Supplementary Figure 1. There was a weak to moderate correlation between metastasis-
wise DSC and volume for this model with a Spearman correlation coefficient of 0.32. The 
baseline model again performed worse than the T1-CE model, with the largest difference 
seen in the small BMs. The T1-only and T2-FLAIR-only models both struggled to segment 
small BMs, achieving a median metastasis-wise DSC of 0.00 and 0.15, respectively, in this 
group. 
 
For edema segmentation, all models which included both T1-CE and T2-FLAIR (baseline, 
T1-CE + T2-FLAIR, T1-CE + T1 + T2-FLAIR) performed best with a median DSC of 0.93. 
The remaining three models with only one of these two sequences (T1-CE-only, T2-FLAIR-
only, T1-CE + T1) reached a median DSC of 0.87-0.89. Again, the T1-only model performed 
worst with a median DSC of 0.81 (IQR = 0.66-0.87). A segmentation of the metastasis and 
edema generated by our T1-CE-only model is shown in Figure 1. 
 
When evaluating the metastasis and edema labels as a combined whole lesion label, the T2-
FLAIR-only model exhibited only minimally worse performance than the T1-CE + T2-FLAIR 
model with median DSCs of 0.94 and 0.95, respectively. This demonstrates that the 
boundary between metastasis and edema rather than the outline of the whole lesion poses a 
challenge to the T2-FLAIR-only model. The segmentation metrics for the whole lesion label 
for all models are summarized in Supplementary Table 2. Qualitative inspection of the 
segmentations supports this thesis (see Supplementary Figure 2). 
 
To check the generalizability of the models, the performance in the individual centers of the 
test set was compared. As an example, the performance of our T1-CE + T2-FLAIR model for 
the metastasis and edema labels is shown in Figure 2 for each center separately. No 
significant differences were found between the centers. The median DSC for the T1-CE-only 
model for the metastasis ranged from 0.94 (FFM and FR) to 0.96 (FD, HD and KSA). 
Excluding the 17 patients with synthetic T2 showed largely similar results: If there was any 
change at all, it was a slight change in DSC of 0.01-0.02. In the baseline model, the only 
model that included the T2 sequences among the selected sequences, there was no change 
in median DSC for metastasis and whole lesion and an increase from 0.93 to 0.94 for 
edema. The segmentation performance of all 83 patients with four available sequences is 
shown in Supplementary Table 3. 
 
In total, we differentiated between seven different histology groups of primary tumors: non-
small cell lung carcinoma (NSCLC), small-cell lung carcinoma (SCLC), melanoma, renal cell 
carcinoma (RCC), breast cancer, gastrointestinal cancer (GI), and others. Four models (T1-
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CE, T1-CE + T1, and T1-CE + T1 + T2-FLAIR, T1) showed a significant difference between 
groups for the segmentation of the BM (p = 0.033, 0.033, 0.013, and 0.047 respectively). The 
T1-CE-only model reached a DSC between 0.92 (Melanoma) and 0.98 (SCLC). The 
remaining models performed stable independent of the histology of the primary tumor 
(Supplementary Table 5). 
 
Table 3 summarizes the BM detection performance. Only mean values are given since the 
performance was calculated on a per-patient basis and the median performance across all 
patients was often 1. Patients in our test cohort had 1.4 BMs on average. While all models 
including T1-CE among their selected sequences showed a high sensitivity of at least 0.96, 
the T2-FLAIR-only and T1-only models reached only 0.91 and 0.84, respectively. T1-CE-only 
and T1-CE + T1 detected BMs with a mean precision of 0.97 and 0.92, respectively. In 
contrast, all models including T2-FLAIR segmented a high number of false positives and 
therefore achieved a mean precision of only 0.60-0.76. The T1-only model also reached a 
similar precision of 0.72. As the model with the highest mean number of false positives (1.4), 
the T2-FLAIR-only model segmented a mean of 2.6 BMs per patient. On the other hand, the 
T1-CE-only model only labeled 0.08 false positives per patient on average. See Figure 3 for 
an example patient with five false positives in total segmented by the T2-FLAIR-only model. 
The F1 showed similar behavior: T1-CE-only and T1-CE + T1 achieved a mean F1 of 0.97 
and 0.93 while the remaining models achieved a mean score between 0.66 and 0.81.  
 
Automatic segmentation from preprocessed files took less than 20 seconds on consumer-
grade hardware (NVIDIA RTX 3090), regardless of the model selected.  
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Discussion 
We compared neural networks with different clinically plausible combinations of input 
sequences to determine the influence of individual sequences on metastasis and edema 
segmentation performance and BM detection performance. For segmenting the metastasis, 
the sole presence of T1-CE is important, and a T1-CE-only protocol appears to be sufficient 
with a median DSC of 0.96. In contrast, for the segmentation of the edema, the combination 
of T1-CE and T2-FLAIR is crucial, while employing only T2-FLAIR as input leads to worse 
results. T1-only performed worst in all segmentation tasks. Thus, we consider the 
administration of contrast agents necessary for BM segmentation.  
 
As with metastasis segmentation, the presence of T1-CE was most important for the 
sensitivity in detecting BMs, and additional sequences did not improve sensitivity. T1-CE-
only and T1-CE + T1 detected BMs with the best precision (0.97 and 0.92, respectively). 
Contrary to expectation, the addition of T2-FLAIR did not improve BM detection performance 
but instead resulted in more false positives. Together with this article, we are publishing a 
flexible segmentation tool that chooses the appropriate neural network depending on the 
availability of sequences.  
 
The weak to moderate correlation between metastasis-wise DSC and BM volume in our T1-
CE-only model is due to a slightly worse performance in small BMs. This may be due to the 
higher proportion of edge voxels in small BMs, which increases the difficulty of segmentation. 
Nevertheless, the T1-CE-only model achieved a median metastasis-wise DSC of 0.92 in the 
small BM group (median volume of 1.16 milliliters). 
 
The mean DSC for both the metastasis and the edema label is on average 0.06 points lower 
than the median DSC. This shows that while most labels are of very good quality, some 
outliers reduce the mean. The consistently high performance across the five centers of our 
test set shows that our models generalize well. 
 
The poor edema segmentation performance of our T2-FLAIR-only model might be explained 
by the way the model generates labels: As in our previous study [1], the model generates an 
output for the metastasis and the whole lesion. The edema label is then calculated by 
subtracting the metastasis label from the whole lesion label to ensure gapless segmentation. 
Therefore, poor metastasis segmentation will also result in a low DSC in the edema 
segmentation. 
 
This new segmentation method has some advantages over our previous workflow: 
Previously, only one sequence was allowed to be missing or corrupted, which was then 
synthesized using a generative adversarial network (GAN) [15]. While this allows our 
previous network to be used on patients with only three available MRI sequences, it adds 
complexity to the preprocessing workflow. In addition, examinations with multiple missing 
sequences cannot be segmented with the previous workflow. Furthermore, having to acquire 
fewer sequences for objective metastasis and edema segmentation benefits both patients 
and physicians. 
 
To our knowledge, no other publication has performed a comparable in-depth analysis of 
the contribution of individual MRI sequences to the segmentation performance of metastasis 
and edema labels. However, for example, Pflüger et al. also created a “slim” version of their 
neural network using only the T1-CE and T2-FLAIR sequences as input in addition to their 
standard model [23]. They observed a slight but significant decrease in performance for the 
contrast-enhancing metastasis when using fewer input sequences (median DSC: 0.90 down 
to 0.89).  
Charron et al. compared several databases of single MRI sequences (T1-CE, T1, T2-FLAIR) 
and combinations of them for the detection and segmentation of BMs [24]. They found that 
when using a single sequence, T1-CE performed best. When two sequences were used, T1-
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CE + T2-FLAIR resulted in better sensitivity and fewer false positives. The simultaneous use 
of all three sequences resulted in the best DSC (0.79) and the lowest number of false 
positives per patient (7.8). These results are only partially comparable to our results because 
they focused only on metastasis detection and segmentation. In addition, all data were 
collected from the same center and there was no external or multicentric test cohort. The 
difference in mean DSC of their best model (T1-CE + T1+ T2-FLAIR) compared to our similar 
model (0.79 vs. our 0.90) can be partially explained by the higher number and smaller size of 
BMs in their dataset. The high proportion of edge voxels in small metastases may make 
segmentation more difficult. 
 
This work has several limitations: The preprocessing workflow we have been using [14] is 
designed to work with the established four sequences. For our new models to be viable for 
use in research, preprocessing pipelines must be created that can work with a reduced or 
variable number of input sequences. The reference annotations were all created by the same 
person. Thus, the trained neural network adapted the personal segmentation style of our 
original rater. Even though the segmentations of the test set were checked by an additional 
rater, a dataset created by multiple raters may hold even greater validity. Because we 
focused on the imaging of patients who later underwent surgery, many BMs were often larger 
than metastases that are primarily treated with RT. Especially when trying to detect smaller 
BMs, T2-FLAIR may be more important than our experiments suggest. 
 
Despite these limitations, we were able to show that neural networks can segment contrast-
enhancing BMs as well as their surrounding edemas with a reduced number of input 
sequences. For the segmentation of BMs, T1-CE-only appears to provide sufficient 
segmentation quality. For situations, where the edema segmentation is of relevance, such as 
glioma RT planning, the combination of T1-CE and T2-FLAIR seems to be particularly 
suitable, as it offers high segmentation performance for both tumor and edema combined 
with reduced image acquisition time. These findings can help to adapt RT planning MRI 
protocols and shorten them, thus speeding up procedures in daily clinical practice. Our tool 
has been uploaded to GitHub and can be accessed via the following link: 
https://github.com/HelmholtzAI-Consultants-Munich/AURORA.  
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Figure 1: Example of automatic segmentation by our T1-CE-only model 

 

A segmentation of the metastasis (in blue) and the edema (in red) is shown. Even 
though the network only received the T1-CE sequence as input (shown in axial, 
sagittal, and coronal orientation in the top left, top right, and bottom left, respectively), 
the edema has also been correctly segmented as illustrated by the axial view of the 
T2-FLAIR (bottom right). 
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Figure 2: Performance across the five centers of our test set 

 

The segmentation performance of our T1-CE + T2-FLAIR model was stable across 
all centers as shown by the consistently high Dice similarity coefficient (DSC). There 
were no significant differences in metastasis and edema segmentation performance 
(p = 0.094 and 0.6, Kruskal-Wallis rank sum test). While most segmentations were of 
good quality with a DSC of around 0.9, there were some outliers. This explains the 
difference between mean and median DSC. 
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Figure 3: False positives in segmentation of the T2-FLAIR-only model 

 

The segmentation by our T2-FLAIR-only model is shown for a patient with an 
especially high number of false positives (five in total). On the left, the T1-CE 
sequence is displayed in the axial and coronal planes. On the right, the same slices 
of the T2-FLAIR sequence are shown. While the metastasis (in blue) and edema (in 
red) have been correctly identified and labeled, the model also labeled several false 
positives.   
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Core MRI sequences for automatic brain metastasis segmentation 

Table 1: Mean number of brain metastases, patient demographics, and 
number of synthesized T2 sequences 

We split our dataset in a training cohort (TUM: Klinikum rechts der Isar of the 
Technical University of Munich, USZ: University Hospital Zurich) and a 
multicenter external test cohort (FD = General Hospital Fulda, FFM: Saphir 
Radiochirurgie/University Hospital Frankfurt, FR: University Hospital Freiburg, 
HD: Heidelberg University Hospital, KSA: Kantonsspital Aarau). There were no 
significant differences in sex and age at the start of the radiotherapy (p = 0.8 
and 0.8, Pearson's Chi-squared test and Kruskal-Wallis rank sum test) 
between the seven centers of our dataset. All seven histologies (non-small cell 
lung carcinoma (NSCLC), small-cell lung carcinoma (SCLC), melanoma, renal 
cell carcinoma (RCC), breast cancer, gastrointestinal cancer (GI), and others) 
were present in both the training and the test cohort.  

 Training-Cohort Test-Cohort 

Characteristic 
Overall, 
N = 2391 

TUM, N = 
1621 

USZ, N 
= 771 

Overall, N 
= 1001 

FD, N = 
61 

FFM, N 
= 121 

FR, N = 
161 

HD, N = 
421 

KSA, N 
= 241 

BMs 1.4 ± 0.7 1.3 ± 0.7 1.6 ± 0.8 1.4 ± 0.8 1.0 ± 
0.0 

2.1 ± 1.7 1.1 ± 
0.3 

1.3 ± 
0.6 

1.4 ± 0.7 

Sex          

f 117 
(49%) 

79 (49%) 38 (49%) 56 (56%) 2 (33%) 8 (67%) 9 (56%) 24 
(57%) 

13 (54%) 

m 122 
(51%) 

83 (51%) 39 (51%) 44 (44%) 4 (67%) 4 (33%) 7 (44%) 18 
(43%) 

11 (46%) 

Age at RT 
start 

62 (53, 
71) 

62 (53, 
71) 

62 (54, 
69) 

61 (54, 67) 62 (57, 
64) 

58 (52, 
66) 

58 (49, 
66) 

61 (57, 
65) 

62 (54, 
70) 

Primary 
Diagnosis 

         

NSCLC 84 (35%) 35 (22%) 49 (64%) 40 (40%) 4 (67%) 6 (50%) 1 
(6.2%) 

18 
(43%) 

11 (46%) 

SCLC 1 (0.4%) 0 (0%) 1 (1.3%) 1 (1.0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (4.2%) 

Melanoma 41 (17%) 23 (14%) 18 (23%) 10 (10%) 1 (17%) 1 (8.3%) 1 
(6.2%) 

2 
(4.8%) 

5 (21%) 

RCC 11 (4.6%) 9 (5.6%) 2 (2.6%) 8 (8.0%) 0 (0%) 1 (8.3%) 2 (12%) 3 
(7.1%) 

2 (8.3%) 

Breast 34 (14%) 33 (20%) 1 (1.3%) 19 (19%) 0 (0%) 4 (33%) 5 (31%) 8 (19%) 2 (8.3%) 

GI 24 (10%) 24 (15%) 0 (0%) 11 (11%) 0 (0%) 0 (0%) 4 (25%) 5 (12%) 2 (8.3%) 

other 44 (18%) 38 (23%) 6 (7.8%) 11 (11%) 1 (17%) 0 (0%) 3 (19%) 6 (14%) 1 (4.2%) 

Synthesized 
T2 

106 
(44%) 

103 
(64%) 

3 (3.9%) 17 (17%) 6 
(100%) 

3 (25%) 8 (50%) 0 (0%) 0 (0%) 

1Mean ± SD; n (%); Median (IQR) 
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Core MRI sequences for automatic brain metastasis segmentation 

Table 2: Volumetric segmentation performance of our selected models 
Model Metastasis1

 Edema1
 

Baseline 0.90 | 0.94 (0.89, 0.95) 0.88 | 0.93 (0.86, 0.96) 

T2-FLAIR 0.66 | 0.73 (0.54, 0.84) 0.78 | 0.87 (0.71, 0.94) 

T1-CE + T2-FLAIR 0.88 | 0.94 (0.91, 0.96) 0.85 | 0.93 (0.84, 0.96) 

T1-CE 0.91 | 0.96 (0.93, 0.97) 0.82 | 0.87 (0.79, 0.91) 

T1-CE + T1 0.92 | 0.95 (0.93, 0.96) 0.83 | 0.89 (0.79, 0.92) 

T1-CE + T1 + T2-FLAIR 0.89 | 0.93 (0.88, 0.95) 0.88 | 0.93 (0.87, 0.96) 

T1 0.61 | 0.70 (0.46, 0.81) 0.73 | 0.81 (0.66, 0.87) 

1Mean | Median (IQR) 

We report the mean and median Dice similarity coefficient (DSC) of each 
model for the metastasis and edema labels. All models including T1-CE 
perform similarly for metastasis segmentation with a median DSC of 0.93-0.96 
with the T1-CE-only model performing best. Adding more sequences does not 
improve the segmentation quality. The simultaneous presence of T1-CE and 
T2-FLAIR is important for edema segmentation. 
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Core MRI sequences for automatic brain metastasis segmentation 

Table 3: Metastasis detection performance 
Model F11

 Sensitivity1
 Precision1

 

Baseline 0.78 ± 0.23 0.97 ± 0.10 0.72 ± 0.31 

T2-FLAIR 0.66 ± 0.26 0.91 ± 0.21 0.60 ± 0.32 

T1-CE + T2-FLAIR 0.77 ± 0.24 0.97 ± 0.11 0.70 ± 0.31 

T1-CE 0.97 ± 0.11 0.98 ± 0.08 0.97 ± 0.13 

T1-CE + T1 0.93 ± 0.14 0.98 ± 0.09 0.92 ± 0.19 

T1-CE + T1 + T2-FLAIR 0.81 ± 0.22 0.96 ± 0.12 0.76 ± 0.29 

T1 0.72 ± 0.30 0.84 ± 0.32 0.72 ± 0.32 

1Mean ± SD 

The presence of T1-CE was most important for the detection of BMs, as 
shown by the high sensitivity of 0.96-0.98. Adding the T2-FLAIR sequence 
resulted in more false positives and therefore lower precision. The T2-FLAIR-
only model segmented the most false positives (1.4 on average) and 
consequently only achieved a precision of 0.60. Since the F1 score considers 
true positives as well as false positives and false negatives, it showed similar 
behavior: The T1-CE-only model scored the highest (F1 = 0.97), the addition 
of T2-FLAIR led to a lower F1 of 0.77, and the T2-FLAIR-only model reached 
the lowest score of 0.66. 
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