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S1. Projections evaluated 

 

 
Figure S1: Projection horizon versus effective horizon. Effective projection horizon is defined as the number of 

weeks projected before the emergence of an unanticipated SARS-CoV-2 variant. (A) Effective projection horizon for 

each round (black line) compared to horizon projected (gray dashed line). (B) Histogram of effective projection 

horizon across 14 public rounds, including median and mean (dotted vertical lines).  

 

Table S1: Summary of individual models that submitted projections in the first sixteen rounds of the U.S. COVID-19 

Scenario Modeling Hub (SMH).  

CU-AGE-ST 

Columbia University 

The CU-AGE-ST uses a combination of two models for producing age-stratified, state level projections of SARS-
COV-2 in the United States: a metapopulation, non-age-stratified model for a single strain and a state level 
compartmental model, population and age-stratified. Specifically, the inference step is performed with a 
metapopulation model that reproduces transmission within and between the 3,142 counties in the United States 
and assimilates daily county cases to estimate the county-level distribution of parameters and variables. Inter-
county mobility is modeled using commuting patterns from U.S. Census Bureau, adjusted with Safegraph mobility 
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observations from 2020. The inferred parameters and initial conditions are aggregated at the state level and 
combined with state-level data on population structure, age and state-specific seroprevalence estimates and 
published estimates of age-specific reporting rates, hospitalization rates, and death rates. The Centers for Disease 
Control and Prevention’s (CDC’s) Nationwide Commercial Laboratory Seroprevalence Survey estimates are used 
to assess the relative difference in age-specific susceptibility and age-specific incidence. Projections are produced 
with a separate compartmental model run in isolation for each of the 50 U.S. states and the District of Columbia 
(DC). This second model is stratified in 12 age and population-specific groups to reproduce different patterns of 
disease severity, different impact of non-pharmaceutical interventions (NPIs), and vaccine prioritization. The model 
imposes a seasonal forcing on the real time reproductive number. 

JHUAPL-Bucky 

Johns Hopkins Applied Physics Laboratory 

The JHUAPL-Bucky model is an age-stratified, county-level susceptible-exposed-infected-recovered (SEIR) model. 
The Bucky model estimates cases, hospitalizations, and deaths due to COVID-19 across all counties and 
territories in the United States.  
 
Geographic spatial considerations are incorporated via public mobility data which accounts for inter-county 
mobility. Contact matrices derived from Prem et al. (1) are used to account for interactions between age groups 
within a given county/territory. In addition to static data sources related to the demographic distribution of 
individuals, dynamic input to the model consists primarily of incident case, hospitalization and death data from the 
two weeks preceding a simulation. These input data are smoothed/approximated with a generalized additive 
model.   
 
Both static and dynamic input data sources are used to direct model parameter estimation methods. Parameters 
are selected via a joint optimization of all the priors via a Bayesian optimization procedure to maximize the 
coverage of our confidence intervals on the historical input data. Parameters (case reporting rates, doubling times, 
initial conditions, etc.) are estimated locally at the county or state level in order to account for differences in disease 
and transmission properties due to variation in population demographics and variant prevalence. 
 
To characterize uncertainty associated with the output of a given simulation, two-thousand Monte Carlo runs are 
performed over multiplicative distributions of the individual parameter estimates. Predictive quantiles are computed 
from the outputs of these simulations.  

JHU_IDD-CovidSP 

Johns Hopkins University 

The Flexible Epidemic Modeling Pipeline (flepiMoP, formerly covidSP) models transmission of SARS-CoV-2 in the 
United States at the state level using a compartmental metapopulation structure, where U.S. states are connected 
through human mobility informed by commuting census data. The model compartments have varied over the 
course of the COVID-19 pandemic and between Scenario Modeling Hub rounds, depending on round 
specifications. In round 12, our model represented the population though 300 compartments per state, built from all 
the possible combinations of five disease stages (Susceptible, Exposed, Infectious, Recovered, and recovered with 
Waned immunity; SEIRW), five vaccination statuses (unvaccinated, vaccinated with 1 dose, vaccinated with 2 
doses or boosted, vaccinated with waned vaccine-derived immunity, and unvaccinated with prior infection), four 
variants (Wild, Alpha, Delta, Omicron), and three age-strata (below 18, 18 to 64, above 65). 
Transmission is simulated from January 1st, 2020, and the early infections of each variant are seeded into the 
different states according to their first observations. The transitions between the compartments are simulated by 
integrating the governing coupled ordinary differential equations. Transition rates are modified by state- and time-
specific non-pharmaceutical interventions, state-specific seasonality of SARS-CoV-2 transmission, and local 
variation in overall transmissibility by state. The incidence of infection from the dynamical model is passed to an 
observation model that computes observed cases, hospitalizations, and deaths, where the case detection 
probability varies in time and space, and the infection fatality ratio (IFR) varies by state, age group, vaccination 
status, and variant. 
While many parameters are derived from the literature (e.g., vaccine-induced protection against infection or death), 
other parameters are fitted (infection to case ratio, impact of non-pharmaceutical interventions, seasonality, and 
local transmissibility). We calibrate the model to CSSE data for death and cases in each state along with the 
variant proportions from CoVariants.org (GISAID) through our custom inference algorithm. This algorithm enables 
Bayesian inference on large-scale dynamic models through multi-chain Markov Chain Monte Carlo (MCMC), 
leveraging parallel computing resources with many short chains to handle large-scale epidemic dynamics and 
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high-dimensional parameter space. 

Karlen-pypm 

University of Victoria 

Models built with the python population modeling framework (www.pypm.ca) use finite time difference equations to 
model a homogeneous population that reproduces the cases, hospitalizations, and deaths time-series data for the 
jurisdictions under study. The infection rate is proportional to the product of transmission rate, susceptible fraction, 
and number of circulating contagious individuals. The transmission rate is piecewise constant, adjusted to match 
case rates, typically constant over a period of 2 months. Adjustable time delays for partial propagations from 
infected to symptomatic to reported cases to hospitalization and to death are fit to match data. Reporting fraction is 
adjusted to match seroprevalence data. Multiple infection cycles are included to model variants, using a common 
susceptible population. An additional susceptible population is available to variants that partially escape from 
immunity in the population. Selection coefficients estimated from genomic data are used to set transmission rates 
for new variants as they emerge. Vaccination implemented with a fraction of those vaccinated reducing the 
susceptible population. Waning of vaccine and natural immunity are included with adjustable time delays to 
repopulate the susceptible population. The models can produce time series of expectation values and time series 
of simulated stochastic data. The former is used to produce point estimates for future rates and the latter to 
produce intervals. 

MOBS_NEU-GLEAM_COVID 

Northeastern University 

The model is a U.S. specific metapopulation compartmental model that refines our Global and Epidemic modeling 
approach. The GLEAM model is a stochastic, spatial, age-structured metapopulation model. Previously this model 
was used to characterize the early stage of the COVID-19 epidemic (2). Each subpopulation is defined as the 
catchment area around major transportation hubs. The airline transportation data encompass daily travel data in 
the origin–destination format from the Official Aviation Guide database50 reflecting actual traffic changes that 
occurred during the pandemic. Ground mobility and commuting flows are derived from the analysis and modeling 
of data collected from the statistics offices of 30 countries on 5 continents. The model accounts for travel 
restrictions and government-issued policies. Furthermore, the model accounts for the reduction of internal, country-
wide mobility and changes in contact patterns in each country and state. The U.S. local epidemic and mobility 
model (LEAM) is enhanced to consider as a single subpopulation each one of the 3,142 counties (or its statistical 
equivalent) for each one of the 50 U.S. states. Population size and county-specific age distributions reflect Census' 
annual resident population estimates for year 2019. Commuting flows between counties are obtained from the 
2011-2015 5-Year ACS Commuting Flows survey and properly adjusted to account for differences in population 
totals since the creation of the dataset. Contact matrices, age-specific traveling probabilities, and air traffic flows 
are in common with GLEAM and they are properly mapped at LEAM-US county-level resolution. Google's COVID-
19 Community Mobility Reports data collected at the county-level resolution are used to model mobility and the 
effects of NPIs on individual behavior. The transmission dynamics take place within each subpopulation and 
assume a classic compartmentalization scheme for disease progression similar to those used in several large-
scale models of SARS-CoV-2 transmission. Each individual, at any given point in time, is assigned to a 
compartment corresponding to their particular disease-related state. This state also controls the individual’s ability 
to travel. Individuals transition between compartments through stochastic chain binomial processes. The 
compartmental structure includes vaccination status and has been extended during the different projections rounds 
to accommodate new variants through an explicit multi-strain compartmental structure The model calibration is 
performed for each state through an Approximate Bayesian computation rejection algorithm using as evidence the 
weekly ground truth data for deaths, hospitalizations and cases.  

NCSU-COVSIM 

North Carolina State University 

The COVSIM team uses a stochastic agent-based simulation to model disease spread in North Carolina. Agents 
are assigned age, race/ethnicity, and high risk health condition attributes to represent the underlying population. 
Agents have time-varying interactions in households, peer groups (school or workplace), and the community which 
serve as the driver for disease spread. We use a force of infection model to generate the time until the next 
infection occurs and select agents to be infected. Once an agent is selected they progress through an extended set 
of SEIR disease states, which is dependent on the agent’s attributes, behaviors, and variants. We model masks, 
vaccines and booster uptake. We include waning immunity from recovered agents back to the susceptible state. 
Our model is manually calibrated using disease parameters from literature tailored to North Carolina.  
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NotreDame-FRED 

Notre Dame University 

The Notre Dame team uses an agent-based model based on a modified COVID-19 version of the Framework for 
Reproducing Epidemic Dynamics (FRED). The model simulates daily interactions among agents in specific 
locations, such as households, schools, workplaces, or neighborhood areas. The synthetic population is 
representative of the demographic and geographic characteristics of the simulated States. An agent’s health is 
represented as one of the following states, Susceptible - Exposed - Infectious - Recovered. The model includes 
circulating variants of SARS-CoV-2 with different characteristics of transmissibility and immunity scape. Recovered 
individuals are only protected against reinfections with the same variant, and partially protected against reinfection 
with a different variant for 8 months on average. NPIs are included in the model. Vaccination is included in the 
model with a prioritization strategy based on age. Three components of the vaccine are modeled, protection 
against infection, disease given infection, and protection against severe disease given symptoms. The model is 
calibrated using data on deaths and dominance of circulating variants.  

UF-ABM 

University of Florida 

Stochastic, discrete-time agent-based model (ABM) of SARS-CoV-2 transmission in the state of Florida derived 
from our existing ABM for dengue transmission (3, 4). The model synthetic population includes 20.6 million people 
and 11.2 million locations (i.e., households, workplaces, schools, long-term care facilities, and hospitals). 
Transmission occurs via a daily cycle of location-based interactions, (e.g., within household, employee-customer 
interactions, or between households via social interactions). Individual infections may progress through SEIRD 
states (with multiple levels of severity, and hospitalization), using existing literature to parameterize infectious 
outcome probabilities and disease state durations. Probability of infection is modified by location-type-specific 
infection hazards, infecting viral strain, seasonality, and time-varying personal-protective behaviors. Disease 
severity depends on the age and health status (i.e. has comorbidity or not) of the agent. A time-varying reporting 
model serves to replicate empirical dynamic detection and reporting processes. The model represents vaccination 
through the first 3 doses using a generalized mRNA vaccine and delivers doses in an age-structured way that 
reflects empirical vaccine delivery in Florida. 

UNCC-hierbin 

University of North Carolina at Charlotte 

The UNCC team builds a relatively simple statistical model to retrospectively fit COVID-19 spread. The underlying 
mechanism is an SEIR-type compartment model and we focus on projecting the cumulative case numbers. In the 
first few rounds (up to round 9), we fit an exponential model for the cumulative case for each state as well as at 
nation-level. Then we project the model to the scenario-specific time periods (e.g., 12, 26, or 52 weeks horizon). 
Hospitalization and death are modeled as a binomial outcome of cases with lags identified from literature. Starting 
from round 10, we have applied a multivariate long short term memory (LSMT) model to address both long-term 
and short-term dynamics of the COVID-19 dynamics. Multivariate LSMT also overcomes potential issues of 
arbitrarily assigned lags between case and hospitalization and death. 

USC-SIkJalpha 

University of Southern California 

We proposed the SIkJalpha model as a discrete-time compartmental model. The central idea is that new infections 
are created through interactions between the currently susceptible population and previously infected population 
with a rate depending on the time since infection. This is discretized into k bins of size J, i.e., past k periods, each 
of J units of time, determine k types of infected populations with k different infection rates. The learning of the 
parameters is done through a weighted linear regression where the weight of old observation decays as a power of 
alpha. The approach has evolved with time, depending on dataset availability, variables and decisions under 
consideration that define the scenarios, and new factors that we believed to have a significant impact. True 
infections were estimated using seroprevalence data until Round 13, after which wastewater data were 
incorporated. We used a sigmoid curve to fit and extrapolate vaccine adoption until Round 3, and a contagion 
model after Round 3. The model supported as many vaccine rounds as given in the United States. In Round 14, 
the model was updated to support an arbitrary number of vaccines. We assumed the vaccine and natural immunity 
model to be "all-or-nothing" until Round 7, after which a waning immunity model was used. Two variants were 
supported starting in Round 3 until Round 5, after which an arbitrary number of variants were allowed. We 
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disaggregated the new infection time-series into multiple time-series variants using prevalence estimates. Each of 
the time-series is fitted competing for a common susceptible population to estimate variant-specific transmission 
rates. Since Round 10, the model supported immune escape variants as well. Additionally, we expanded the model 
to track all possible vaccines and natural immunity states to estimate the level of susceptibility in the population. 
The model supports arbitrary age structure. 

UTA-ImmunoSEIRS 

University of Texas at Austin 

UTA-ImmunoSEIRS team uses an age-structured COVID-19 SEIRS compartment model that tracks changes in 
the level of protection acquired from past infection and vaccination. They describe the changes in population-wide 
immunity resulting from three sources: Delta infections, Omicron infections, and vaccination. The level of each 
source of protection is explicitly modeled through a state variable. Natural infections increase the infection-acquired 
protection variables and primary and booster vaccines increase the vaccine-acquired protection variable. The 
levels of immunity wane at different speeds that are based on published estimates. The variables are used to 
reduce disease susceptibility and severity by inhibiting infections, symptomatic disease, hospitalizations, and 
deaths. The efficacy of each form of immunity depends on the relative prevalence of the circulating variants. 

UVA-adaptive 

University of Virginia 

UVA-adaptive (as of round 12) is a discrete time SEIR based model with explicit tracking of multiple tiers of vaccine 
induced immunity, and the latest variant of infection. The overall infection curve produced by the model was 
converted to reported cases using dynamic case ascertainment and calibrated to match observed ground truth at 
the state level. Case ascertainment over time was informed by CDC seroprevalence surveys (until Feb 2022), and 
then coarsely adjusted based on wastewater surveillance and rates of at-home testing. Growth of variants were 
obtained either from scenario specification (via seeding), or enforced through a prevalence curve based on the 
growth advantage. Past and ongoing vaccinations are obtained at the state level and appropriately assigned to 
eligible individuals according to immune stratification. Vaccine efficacy against infection/disease are assumed to be 
the same, and overall coverage (when relevant) are obtained from scenario specifications. Hospitalizations and 
death outcomes are obtained by using an age-stratified adjustment over three age groups (0-18, 19-64 and 65+) 
with scaling factors to match the respective ground truths. Uncertainty bounds are obtained by using an experiment 
design over other model parameters such as infectious/incubation periods, reporting delay and bounds on 
ascertainment rates. 

UVA-EpiHiper 

University of Virginia 

The UVA-EpiHiper model is an agent-based, individual level networked model. It computes stochastic 
transmissions of a disease in a synthetic contact network between individuals and stochastic state transitions 
within each individual following a disease model. Our disease model is an SEIR model expanded with 
asymptomatic, vaccinated, hospitalized, ventilated, and deceased states, and stratified by age group. Over the 
rounds, we have extended our disease model to represent multiple variants, waning immunity, and immune 
escape. The immune waning is modeled as transition from states with natural/vaccinal immunity to a partially 
susceptible state, and the time to transition is sampled independently for each individual. 
 
Our model is initialized with (i) county level data of prior infections (part of which have waned immunity) and recent 
confirmed case counts and (ii) state level data of prior vaccinations (part of which have waned immunity). Prior 
infections are derived from confirmed cases using age stratified ascertainment rates. We have modeled the 
following NPIs: (i) generic social distancing, the compliance to which changes over rounds; (ii) school closure 
during winter and summer breaks, and mask mandate in schools; (iii) voluntary home isolation of symptomatic 
people. Vaccines are applied to eligible individuals according to state level vaccine administration data and 
projection of future coverage as specified by scenarios. Our model is calibrated at state level targeting the 
estimated effective reproduction number at the beginning of the projection period. 
 
We run simulations for each state and combine the output to get results of the whole United States. The 
simulations produce daily infections, hospitalizations, and deaths; and each simulation runs for multiple replicates. 
We aggregate daily data to get weekly data and compute quantiles for each target from the multiple replicates. 
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Table S2: Projections included and excluded from performance analysis. For projections that are excluded, the 

percent of all projections from SMH rounds 1-16 is shown in parenthesis. Weeks are defined on Saturdays (and 

defined here as a range to summarize). Twenty-four percent (24%) of all projections were excluded, primarily in 

internal training rounds 8 and 10. Some projections could have been excluded for multiple reasons; in these cases, 

duplicates are included in each percentage calculation. FIPS = Federal Information Processing System codes for 

U.S. states, CDF = cumulative distribution function. 

Field Inclusion/Exclusion Values 

Round Included 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16 

Excluded: internal 
training rounds 

8 (7.4% of all projections), 10 (13.3%) 

Location 
name 
(FIPS) 

Included United States (US), Alabama (01), Alaska (02), Arizona (04), Arkansas (05), 
California (06), Colorado (08), Connecticut (09), Delaware (10), District of 
Columbia (11), Florida (12), Georgia (13), Hawaii (15), Idaho (16), Illinois (17), 
Indiana (18), Iowa (19), Kansas (20), Kentucky (21), Louisiana (22), Maine 
(23),Maryland (24), Massachusetts (25), Michigan (26), Minnesota (27), 
Mississippi (28), Missouri (29), Montana (30), Nebraska (31), Nevada (32), 
New Hampshire (33), New Jersey (34), New Mexico (35), New York (36), North 
Carolina (37), North Dakota (38), Ohio (39), Oklahoma (40), Oregon (41), 
Pennsylvania (42), Rhode Island (44), South Carolina (45), South Dakota (46), 
Tennessee (47), Texas (48), Utah (49), Vermont (50), Virginia (51), 
Washington (53), West Virginia (54), Wisconsin (55), Wyoming (56) 

Excluded: territories American Samoa (60, 0.3%), Guam (66, 0.4%), Northern Mariana Islands (69, 
0.4%), Puerto Rico (72, 0.7%), Virgin Islands (78, 0.5%) 

Weeks Included Round 1: 2021-01-09 – 03-27-2021  
Round 2: 2021-01-30 – 06-19-2021 
Round 3: 2021-03-13 – 2021-06-19 
Round 4: 2021-04-03 – 2021-06-19 
Round 5: 2021-05-08 – 2021-06-19 
Round 6: 2021-06-05 – 2021-11-27 
Round 7: 2021-07-10 – 2021-12-18 
Round 9: 2021-09-18 – 2021-12-18 
Round 11: 2021-12-25 – 2022-03-12 
Round 12: 2022-01-15 – 2022-04-02 
Round 13: 2022-03-19 – 2023-03-11 
Round 14: 2022-06-11 – 2023-05-20 
Round 15: 2022-08-06 – 2023-05-06 
Round 16: 2022-11-05 – 2023-04-29 

Excluded: ground 
truth data no longer 
available 

Round 13: 2021-03-04 – 2023-03-11 (0.2%) 
Round 14: 2021-03-04 – 2023-05-20 (2.4%) 
Round 15: 2021-03-04 – 2023-05-06 (1.5%) 
Round 16: 2021-03-04 – 2023-04-29 (1.3%) 

Models Included CU-AGE-ST, Ensemble_LOP_untrimmed, Ensemble_LOP, Ensemble, 
JHU_IDD-CovidSP, JHUAPL-Bucky, Karlen-pypm, MOBS_NEU-
GLEAM_COVID, UNCC-hierbin, USC-SIkJalpha, UTA-ImmunoSEIRS, UVA-
adaptive, UVA-EpiHiper 

Excluded: projections 
for < 10 locations 

NCSU-COVSIM, Rounds 13-15 (<0.1%) 
NotreDame-FRED, Rounds 11-12 (0.3%) 
UTA-ImmunoSEIRS, Rounds 12-13 (0.2%) 
UF-ABM, Round 11 (<0.1%) 
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Excluded: point 
estimates only 

OliverWyman-Navigator (<0.1%) 

Excluded: projections 
for < 4 scenarios 

IHME-IHME_COVID_model_deaths_unscaled (0.3%) 
 

Excluded: non-
increasing CDF 

USC-SIkJalpha (Round 1, 0.6%) 
UNCC-hierbin (Round 5, <0.1%) 

Excluded: outside of 
projection period 

JHU_IDD-CovidSP (Rounds 1, 2, 11, 0.1%) 
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S2. Evaluating scenario plausibility 

 

 
Figure S2: Comparison of vaccination scenario specifications to observed vaccine uptake, Rounds 1-4. For 

rounds with scenarios specifying vaccine distribution or administration, we compared the optimistic (green) and 

pessimistic (purple) scenarios with the observed (black) U.S. national vaccine coverage. Round 1 also included an 

intermediate vaccination scenario (orange). Rounds specified vaccination according to different metrics: total 

distributed doses (Rounds 1 and 2), administered first doses (Round 3), and administered first doses of Moderna & 

Pfizer and J&J separately (Round 4; J&J is the lower set of 3 lines). Week of truncation is indicated by a dotted 

vertical line (Round 1 truncated after emergence of the alpha variant, Rounds 2-4 truncated after emergence of the 

delta variant).  

 

 
Figure S3: Comparison of vaccination scenario assumptions to observed vaccine uptake, Rounds 5-7. For 

rounds with scenarios specifying vaccine coverage at the end of the projection period, we compared the optimistic 

(green) and pessimistic (purple) scenarios with the observed (black) US national vaccine coverage. Coverage was 

specified at the end of the projection period (location of point on x-axis; Round 5: October 31, 2021, Round 6: 

November 30, 2021, Round 7: December 31, 2021). Round 5 was truncated on June 26, 2021 (vertical dotted line), 

so we also extended the cumulative coverage gains during the projection period, 0.2% per day, for the rest of the 

projection period (dashed line). Both methods indicate the optimistic coverage scenario is most realistic for Round 5. 
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Figure S4: Comparison of vaccination scenario specifications to observed vaccine uptake, Round 9. 

Optimistic (green) scenario assumed vaccination coverage in 5-11 year olds would be equal to uptake in 12-17 year 

olds, and pessimistic (purple) scenario assumed vaccination would not be approved in 5-11 year olds. Vaccinations 

were approved on 2 Nov 2021 for 5-11 year olds, and actual uptake in 5-11 year olds is shown (black). Approximately 

2.5M vaccines were administered in individuals 12-17 years of age before 13 May 2021 (Pfizer BioNTech was 

approved for 16+ at the outset). The green lines show coverage including this 2.5M (1.3M completed 2-dose series) 

and the dashed green lines show coverage since 13 May 2021. Vertical dotted line indicates the timing of the 

emergence of the omicron variant. 

 

Figure S5: Comparison of vaccination scenario assumptions to observed vaccine uptake, Rounds 14-16. For 

rounds scenarios specifying weekly vaccine bivalent booster coverage (Round 14,15) and those specifying bivalent 

booster coverage at the end of the projection period (Round 16), we compared the optimistic (green) and pessimistic 

(purple) scenarios with the observed (black) US national bivalent booster coverage.  
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Figure S6: Comparison of waning scenario assumptions to meta-analysis estimates, Round 13. Scenario 

assumptions (green and purple dots) stipulated a median time in weeks to loss of immunity (x-axis) and a level at 

which protection against symptomatic disease stabilized after immunity loss (y-axis). Scenario assumptions did not 

distinguish between hybrid immunity (immunity from natural infection and vaccination) and natural immunity, but 

based on these graphs, the optimistic assumption was most realistic in both situations. 

 
Table S3: Scenarios by round. For each round, the major assumptions of each scenario (A-D) and the observed 

values corresponding to each major assumption are specified. Scenarios retrospectively determined to be “most 

realistic” are denoted with an asterisk (*). If a single most likely scenario could not be determined (here, due to 

insufficient data on non-pharmaceutical interventions (NPIs) for scenarios in Rounds 3-5), multiple most likely 

scenarios were considered. Projection period is represented weekly, where weeks are defined on Saturdays. For a 

full list of scenario specifications by round, see https://github.com/midas-network/covid19-scenario-modeling-

hub/tree/master/previous-rounds.  

Round 1 
Jan 9 to Jul 3, 2021 (alpha variant truncation on Apr 3, 2021) 

Scenario A: optimistic* 
● Social distancing: NPIs continue for six weeks from their start date, interventions step down from baseline to 

lowest levels seen since September 2020 over two one-month steps 
● Vaccination: 50 million total doses distributed per month (~292 million total first doses distributed, ~140 million 

total doses distributed before truncation); 95% vaccine efficacy after two doses, 50% after one dose 

Scenario B: moderate  
● Social distancing: NPIs continue for three weeks from their start date, interventions step down from baseline to 

lowest levels seen since May 2020 over two one-month steps 
● Vaccination: 25 million total doses distributed in January 2021, 50 million for all other months (~273 million first 

doses distributed, ~122 million total doses distributed before truncation); 70% vaccine efficacy after two doses, 
20% after one dose 

Scenario C: fatigue 
● Social distancing: NPIs continue for three weeks from their start date, interventions step down from baseline to 

5% below lowest levels seen since May 2020 over two one-month steps 
● Vaccination: 25 million total doses distributed in January 2021, 50 million for all other months, no more than 50% 

of any priority group accepts the vaccine (~273 million first doses distributed, ~122 million total doses distributed 
before truncation); 95% vaccine efficacy after two doses, 50% after one dose 
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Scenario D: counterfactual 
● Social distancing: NPIs continue for three weeks from their start date, interventions step down from baseline to 

lowest levels seen since May. 2020 over two one-month steps 
● Vaccination: no vaccines distributed (0 total doses distributed) 

Observed 
● Social distancing: despite the availability on mobility and policy data, the specificity of these data does not match 

that of our NPI scenarios; therefore we retain both moderate and low NPI scenarios as likely 
● Vaccination: ~361 million total doses distributed; ~186 million first doses distributed before truncation; 50% 

coverage achieved in 65+ by May 5, 2021; 80-90% vaccine efficacy against disease after two doses (5), 30% 
after one dose(6) 

Round 2 
Jan 30 to Jul 25, 2021 (delta variant truncation on Jun 26, 2021) 

Scenario A: optimistic, no variant 
● Social distancing: NPIs continue for six weeks from their start date, interventions step down from baseline to 

lowest levels seen since Sept. 2020 over two one-month steps 
● Vaccination: 25 million doses administered per month after January 2021 (~291 million first doses administered, 

~244 million first doses administered before truncation); 95% vaccine efficacy after two doses, 50% after one 
dose 

● Variant: no new variant  

Scenario B: optimistic, variant* 
● Social distancing: NPIs continue for six weeks from their start date, interventions step down from baseline to 

lowest levels seen since Sept. 2020 over two one-month steps 
● Vaccination: 25 million doses administered per month after January 2021 (~291 million first doses administered, 

~244 million first doses administered before truncation); 95% vaccine efficacy after two doses, 50% after one 
dose 

● Variant: new variant is 1.5 times more transmissible than current strains; 50% dominant by Mar 15, 2020 and 
100% dominant by May 1, 2020 

Scenario C: fatigue, no variant 
● Social distancing: NPIs continue for three weeks from their start date, interventions step down from baseline to 

5% below lowest levels seen since May 2020 over two one-month steps 
● Vaccination: monthly administration follows rates seen in January 2021; no more than 50% of any priority group 

accepts the vaccine (~124 million first doses administered, ~104 million first doses administered before 
truncation); 95% vaccine efficacy after two doses, 50% after one dose 

● Variant: no new variant 

Scenario D: fatigue, variant 
● Social distancing: NPIs continue for three weeks from their start date, interventions step down from baseline to 

5% below lowest levels seen since May 2020 over two one-month steps 
● Vaccination: monthly administration follows rates seen in January 2021; no more than 50% of any priority group 

accepts the vaccine (~114 million first doses administered, ~96 million first doses administered before truncation); 
95% vaccine efficacy after two doses, 50% after one dose 

● Variant: new variant is 1.5 times more transmissible than current strains; 50% dominant by Mar 15 2020 and 
100% dominant by May 1 2020 

Observed 
● Social distancing: despite the availability on mobility and policy data, the specificity of these data does not match 

that of our NPI scenarios; therefore we retain both moderate and low NPI scenarios as likely 
● Vaccine availability: ~170 million first doses administered; ~161 million first doses administered before truncation; 

50% coverage achieved in 65+ by May 5, 2021; 
● Variant: transmissibility increases estimated to be 24% (7), 40-50% (8), and 43-90% (9); alpha variant reaches 

50% in US on Mar 30, 2021 (10); vaccine efficacy against disease after two doses (5), 30% after one dose (6) 

Round 3 
Mar 13 to Sep 4, 2021 (delta variant truncation on Jun 26, 2021) 
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Scenario A: high vaccination, moderate NPI* 
● Non-pharmaceutical interventions (NPIs): NPIs decline gradually over a period of 5 months ending in August 2021 

at 50% of the effectiveness observed in February 2021  
● Vaccination: 35 million first doses administered per month, no more than 90% of any population group receives 

the vaccine (~212 million first doses administered, ~130 million first doses administered before truncation); 95% 
vaccine efficacy against disease after two doses, 90% after one dose 

Scenario B: high vaccination, low NPI* 
● NPIs: NPIs decline gradually over a period of 5 months ending in August 2021 at 20% of the effectiveness 

observed in February 2021 
● Vaccination: 35 million first doses administered per month, no more than 90% of any population group receives 

the vaccine (~212 million first doses administered, ~130 million first doses administered before truncation); 95% 
vaccine efficacy against disease after two doses, 90% after one dose 

Scenario C: low vaccination, moderate NPI 
● NPIs: NPIs decline gradually over a period of 5 months ending in August 2021 at 50% of the effectiveness 

observed in February 2021  
● Vaccination: 20 million first doses administered per month, no more than 50% of any population group receives 

the vaccine (~108 million total doses administered, ~75 million total doses administered before truncation); 75% 
vaccine efficacy against disease after two doses, 50% after one dose 

Scenario D: low vaccination, low NPI 
● NPIs: NPIs decline gradually over a period of 5 months ending in August 2021 at 20% of the effectiveness 

observed in February 2021  
● Vaccination: 20 million first doses administered per month, no more than 50% of any population group receives 

the vaccine (~108 million total doses administered, ~75 million total doses administered before truncation); 75% 
vaccine efficacy against disease after two doses, 50% after one dose 

Observed 
● NPIs: despite the availability on mobility and policy data, the specificity of these data does not match that of our 

NPI scenarios; therefore we retain both moderate and low NPI scenarios as likely 
● Vaccination: ~150 million first doses administered, ~122 million total first doses administered before truncation 

(excluding J&J, which was not considered in scenarios); 50% coverage is reached nationally on May 13, 2021, 
90% coverage is never reached; 80-90% vaccine efficacy against disease after two doses (5), 30% after one 
dose (6) 

Round 4 
Apr 3 to Sep 25, 2021 (delta variant truncation on Jun 26, 2021) 

Scenario A: high vaccination, moderate NPI 
● Non-pharmaceutical interventions (NPIs): NPIs decline gradually over a period of 6 months ending in September 

2021 at 50% of the effectiveness observed in March 2021  
● Vaccination: 50 million mRNA (Moderna/Pfizer) first doses administered monthly; 10 million Johnson& Johnson 

first doses administered in April, 15 million in May, and 20 million month from June-September; no more than 90% 
of any population group receives the vaccine (~210 million first doses administered of Moderna/Pfizer, and ~105 
million doses administered of Johnson & Johnson, 152 million first doses administered of Moderna/Pfizer, and 
~44 million doses administered of Johnson & Johnson before truncation) 
95% mRNA vaccine efficacy against disease after 2 doses, 75% after one dose; 70% J&J vaccine efficacy 
against symptoms after one dose 

Scenario B: high vaccination, low NPI 
● NPIs: NPIs decline gradually over a period of 6 months ending in September 2021 at 20% of the effectiveness 

observed in March 2021  
● Vaccination: 50 million mRNA first doses administered monthly; 10 million Johnson & Johnson first doses 

administered in April, 15 million in May, and 20 million month from June-September; no more than 90% of any 
population group receives the vaccine (~210 million first doses administered of Moderna/Pfizer, and ~105 million 
doses administered of Johnson & Johnson, 152 million first doses administered of Moderna/Pfizer, and ~44 
million doses administered of Johnson & Johnson before truncation) 
95% mRNA vaccine efficacy against disease after 2 doses, 75% after one dose; 70% J&J vaccine efficacy 
against symptoms after one dose 
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Scenario C: low vaccination, moderate NPI* 
● NPIs: NPIs decline gradually over a period of 6 months ending in September 2021 at 50% of the effectiveness 

observed in March 2021  
● Vaccination: Vaccination: 45 million mRNA first doses administered monthly; 5 million Johnson & Johnson first 

doses administered monthly; no more than 75% of any population group receives the vaccine (~160 million first 
doses administered of Moderna/Pfizer, and ~30 million doses administered of Johnson & Johnson, 136 million 
first doses administered of Moderna/Pfizer, and ~15 million doses administered of Johnson & Johnson before 
truncation) 
85% mRNA vaccine efficacy against disease after 2 doses, 50% after one dose; 60% J&J vaccine efficacy 
against symptoms after one dose 

Scenario D: low vaccination, low NPI* 
● NPIs: NPIs decline gradually over a period of 6 months ending in September 2021 at 20% of the effectiveness 

observed in March 2021  
● Vaccination: Vaccination: 45 million mRNA first doses administered monthly; 5 million Johnson & Johnson first 

doses administered monthly; no more than 75% of any population group receives the vaccine (~160 million first 
doses administered of Moderna/Pfizer, and ~30 million doses administered of Johnson & Johnson, 136 million 
first doses administered of Moderna/Pfizer, and ~15 million doses administered of Johnson & Johnson before 
truncation) 
85% mRNA vaccine efficacy against disease after 2 doses, 50% after one dose; 60% J&J vaccine efficacy 
against symptoms after one dose 

Observed 
● NPIs: despite the availability on mobility and policy data, the specificity of these data does not match that of our 

NPI scenarios; therefore we retain both moderate and low NPI scenarios as likely 
● Vaccination: ~110 million mRNA first doses administered, and ~12 million first doses administered of J&J, ~78 

million mRNA first doses administered and 9 million J&J first doses administered before truncation; 75% coverage 
is reached nationally on September 25, 2021, 90% coverage is never reached; 80-90% vaccine efficacy against 
disease after two doses (5), 30% after one dose (6) 

Round 5 
May 08 to Oct 30, 2021 (delta variant truncation on Jun 26, 2021) 

Scenario A: high vaccination, moderate NPI* 
● Non-pharmaceutical interventions (NPIs): NPIs decline gradually over a period of 6 months ending in October 

2021 at 50% of the effectiveness observed in April 2021  
● Vaccination: national saturation at 83% of vaccine-eligible population by October 31, 2021 

Scenario B: high vaccination, low NPI* 
● NPIs: NPIs decline gradually over a period of 6 months ending in October 2021 at 80% of the effectiveness 

observed in April 2021 
● Vaccination: national saturation at 83% of vaccine-eligible population by October 31, 2021 

Scenario C: low vaccination, moderate NPI 
● NPIs: NPIs decline gradually over a period of 6 months ending in October 2021 at 50% of the effectiveness 

observed in April 2021 
● Vaccination: national saturation at 68% of vaccine-eligible population by October 31, 2021 

Scenario D: low vaccination, low NPI 
● NPIs: NPIs decline gradually over a period of 6 months ending in October 2021 at 80% of the effectiveness 

observed in April 2021 
● Vaccination: national saturation at 68% of vaccine-eligible population by October 31, 2021 

Observed 
● NPIs: despite the availability on mobility and policy data, the specificity of these data does not match that of our 

NPI scenarios; therefore we retain both moderate and low NPI scenarios as likely  
● Vaccination: national saturation at 78% of vaccine-eligible population by October 31, 2021 (note: because this 

round is truncated early in the projection period, we also consider the cumulative coverage gains during the 
projection period, 0.2% per day; if we extend this for the duration of the projection period, we have an expected 
coverage of 88%) 
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Round 6 
Jun 5 to Nov 27, 2021 (not truncated) 

Scenario A: high vaccination, low variant impact 
● Variant: B.1.617 is 1.2 times more transmissible than B.1.1.7 
● Vaccination: national saturation at 86% of vaccine-eligible population by November 30, 2021; 90% vaccine 

efficacy against disease after two doses, 50% after one dose 

Scenario B: high vaccination, high variant impact* 
● Variant: B.1.617 is 1.6 times more transmissible than B.1.1.7 
● Vaccination: national saturation at 86% of vaccine-eligible population by November 30, 2021; 90% vaccine 

efficacy against disease after two doses, 50% after one dose 

Scenario C: low vaccination, low variant impact 
● Variant: B.1.617 is 1.2 times more transmissible than B.1.1.7 
● Vaccination: national saturation at 75% of vaccine-eligible population by November 30, 2021; 90% vaccine 

efficacy against disease after two doses, 50% after one dose 

Scenario D: low vaccination, high variant impact 
● Variant: B.1.617 is 1.6 times more transmissible than B.1.1.7 
● Vaccination: national saturation at 75% of vaccine-eligible population by November 30, 2021; 90% vaccine 

efficacy against disease after two doses, 50% after one dose 

Observed 
● Variant: B.1.617 is estimated in a meta-analysis to be approximately 1.5 times more transmissible than 

B.1.1.7(11), though estimates from Earnest et al. (12) are higher (1.63-2.67) 
● Vaccination: national saturation at 81% of vaccine-eligible population on November 30, 2021; 80-90% vaccine 

efficacy against disease after two doses (5), 30% after one dose (6) 

Round 7 
Jul 10, 2021 to Jan 1, 2022 (omicron variant truncation on Dec 25, 2021) 

Scenario A: high vaccination, low variant impact 
● Variant: B.1.617 is 1.4 times more transmissible than B.1.1.7  
● Vaccination: national saturation at 80% of vaccine-eligible population by December 31, 2021 

Scenario B: high vaccination, high variant impact* 
● Variant: B.1.617 is 1.6 times more transmissible than B.1.1.7 
● Vaccination: national saturation at 80% of vaccine-eligible population by December 31, 2021 

Scenario C: low vaccination, low variant impact 
● Variant: B.1.617 is 1.4 times more transmissible than B.1.1.7 
● Vaccination: national saturation at 70% of vaccine-eligible population by December 31, 2021 

Scenario D: low vaccination, high variant impact 
● Variant B.1.617 is 1.6 times more transmissible than B.1.1.7 
● Vaccination: national saturation at 70% of vaccine-eligible population by December 31, 2021 

Observed 
● Variant: B.1.617 is estimated in a meta-analysis to be approximately 1.5 times more transmissible than 

B.1.1.7(11), though estimates from Earnest et al. (12) are higher (1.63-2.67) 
● Vaccination: national saturation at 84% of vaccine-eligible population by December 31, 2021 (83% on December 

25, 2021 when projections are truncated) 

Round 9 
Sep 18, 2021 to Mar 12, 2022 (omicron variant truncation on Dec 25, 2021) 

Scenario A: Childhood vaccination, no variant* 
● Variant: the same mix of variants continues to circulate 
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● Childhood vaccination: vaccination among 5-11 year old children is approved and begins on Nov. 1, 2021. State-
level uptake reflects that observed in the 12-17 year old age group since distribution to this group began on May 
13, 2021. This is equivalent to 46% national coverage of full series at end of projection period; 27% national 
coverage of full series before truncation. Excluding 2.5M individuals from 12-17 that were vaccinated before 
approval on 13 May 2021 (Pfizer BioNTech was approved for 16+ at the outset), 41% national coverage at the 
end of the projection period, and 22% national coverage before truncation.  

Scenario B: Childhood vaccination, variant 
● Variant: a variant 1.5 times more transmissible emerges, comprising 1% of circulating viruses on Nov. 15, 2021 
● Childhood vaccination: vaccination among 5-11 year old children is approved and begins on Nov. 1, 2021. State-

level uptake reflects that observed in the 12-17 year old age group since distribution to this group began on May 
13, 2021. This is equivalent to 46% national coverage of full series at end of projection period; 27% national 
coverage of full series before truncation. Excluding 2.5M individuals from 12-17 that were vaccinated before 
approval on 13 May 2021 (Pfizer BioNTech was approved for 16+ at the outset), 41% national coverage at the 
end of the projection period, and 22% national coverage before truncation. 

Scenario C: No childhood vaccination, no variant 
● Variant: the same mix of variants continues to circulate 
● Childhood vaccination: vaccination among 5-11 year old children is not approved 

Scenario D: No childhood vaccination, variant 
● Variant: a variant 1.5 times more transmissible emerges, comprising 1% of circulating viruses on Nov. 15, 2021 
● Childhood vaccination: vaccination among 5-11 year old children is not approved 

Observed 
● Variant: no variant emergence before omicron  
● Childhood vaccination: Vaccination was approved in 5-11 year old children on Nov 2, 2021(13). 27% national of 

full series for 5-11 year olds at the end of the projection period, and 13% national coverage before truncation.  

Round 11 
Dec 25, 2021 to Mar 12, 2022 (not truncated) 

Scenario A: optimistic severity, high immune escape 
● Variant transmissibility/immune escape: Omicron has the same seasonally-adjusted R0 as Delta (R0=6); 80% of 

previously immune are susceptible to infection 
● Variant severity: Among naive, Omicron has a 50% less severe infection than Delta; among previously infected or 

vaccinated, residual protection from hospitalization is 85% and from death is 95% 

Scenario B: optimistic severity, low immune escape* 
● Variant transmissibility/immune escape: Omicron has 1.6 times the seasonally-adjusted R0 as Delta (R0=10); 

50% of previously immune are susceptible to infection 
● Variant severity: Among naive, Omicron has a 50% less severe infection than Delta; among previously infected or 

vaccinated, residual protection from hospitalization is 85% and from death is 95% 

Scenario C: pessimistic severity, high immune escape 
● Variant transmissibility/immune escape: Omicron has the same seasonally-adjusted R0 as Delta (R0=6); 80% of 

previously immune are susceptible to infection 
● Variant severity: Among naive, there is no change in severity of infection compared to Delta; among previously 

infected or vaccinated, residual protection from hospitalization is 70% and from death is 85% 

Scenario D: pessimistic severity, low immune escape 
● Variant transmissibility/immune escape: Omicron has 1.6 times the seasonally-adjusted R0 as Delta (R0=10); 

50% of previously immune are susceptible to infection 
● Variant severity: Among naive, there is no change in severity of infection compared to Delta; among previously 

infected or vaccinated, residual protection from hospitalization is 70% and from death is 85% 

Observed 
● Variant transmissibility/immune escape: Omicron R0 is more than twice that of Delta; immune escape is less than 

50% (14)  
● Variant severity: Severity is 66% lower for Omicron compared to Delta based on UK deaths and 50-80% lower for 
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a range of severe outcomes in the US(15, 16). Vaccine effectiveness against Omicron hospitalization is 60-91% 
for 2 doses and 85-95% for 3 doses. Vaccine effectiveness against Omicron death is 80% for 2 doses (mRNA 
vaccines) and 88-94% for 3 doses(17)  

Round 12 
Jan 15 to Apr 2, 2022 (not truncated) 

Scenario A: optimistic severity, high immune escape 
● Variant immune escape: 80% of previously immune are susceptible to infection 
● Variant severity: Omicron has a 70% less severe infection than Delta among all immune classes 

Scenario B: optimistic severity, low immune escape* 
● Variant immune escape: 50% of previously immune are susceptible to infection 
● Variant severity: Omicron has a 70% less severe infection than Delta among all immune classes 

C: pessimistic severity, high immune escape 
● Variant immune escape: 80% of previously immune are susceptible to infection 
● Variant severity: Omicron has a 30% less severe infection than Delta among all immune classes 

D: pessimistic severity, low immune escape 
● Variant immune escape: 50% of previously immune are susceptible to infection 
● Variant severity: Omicron has a 30% less severe infection than Delta among all immune classes 

Observed 
● Variant immune escape: Omicron immune escape is less than 50%(14) 
● Variant severity: Severity is 66% lower for Omicron compared to Delta based on UK deaths and 50-80% lower for 

a range of severe outcomes in the US(15, 16). Vaccine effectiveness against Omicron hospitalization is 60-91% 
for 2 doses and 85-95% for 3 doses. Vaccine effectiveness against Omicron death is 80% for 2 doses (mRNA 
vaccines) and 88-94% for 3 doses(17) 

Round 13 
Mar 13, 2022 to Mar 11, 2023 (not truncated) 

Scenario A: optimistic immunity waning, no new immune escape variant* 
● Immunity waning: median transition time to partially immune state is 10 months. In the partially immune state, 

there is a 40% reduction in protection from levels reported immediately after exposure (vaccination or infection).  
● Variant: current mix of strains continue to circulate for the duration of the projection period. 

Scenario B: optimistic immunity waning, new immune escape variant* 
● Immunity waning: median transition time to partially immune state is 10 months. In the partially immune state, 

there is a 40% reduction in protection from levels reported immediately after exposure (vaccination or infection). 
● Variant: new variant emerges on May 1, 2022 that has 30% immune escape and the same intrinsic 

transmissibility and severity as Omicron. There is a continuous influx of 50 weekly infections of this variant for the 
following 16 weeks.  

Scenario C: pessimistic immunity waning, no new immune escape variant 
● Immunity waning: median transition time to partially immune state is 4 months. In the partially immune state, there 

is a 60% reduction in protection from levels reported immediately after exposure (vaccination or infection). 
● Variant: current mix of strains continue to circulate for the duration of the projection period 

Scenario D: pessimistic immunity waning, new immune escape variant 
● Immunity waning: median transition time to partially immune state is 4 months. In the partially immune state, there 

is a 60% reduction in protection from levels reported immediately after exposure (vaccination or infection). 
● Variant: new variant emerges on May 1, 2022 that has 30% immune escape and the same intrinsic 

transmissibility and severity as Omicron. There is a continuous influx of 50 weekly infections of this variant for the 
following 16 weeks. 

Observed 
● Immunity waning: Meta-analysis estimates(18) indicate reduction from levels reported immediately after exposure 

is 22% after 4 months and 58% after 10 months for immunity from previous infection. Estimates are 14% after 4 
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months and 37% after 10 months for hybrid immunity (infection and vaccination). Protection levels at 10 months 
were linearly interpolated between estimates provided at 9 and 12 months. 

● Variant: due to lack of data on introduction and immune escape of different Omicron sublineages, we retain both 
immune escape variant scenarios as likely 

Round 14 
Jun 5, 2022 to Jun 3, 2023 (not truncated) 

Scenario A: age-restricted booster recommendations, no new immune escape variant* 
● Booster: a third, reformulated booster is recommended on October 1, 2022 for adults 50+ and those with chronic 

conditions. Booster uptake among previously vaccinated is 15% lower than uptake of the first booster (~58 million 
doses by June 3, 2023, ~50 million by March 15, 2023). Recommended time between booster doses is 
maintained. 

● Variant: current mix of strains continue to circulate for the duration of the projection period. 

Scenario B: age-restricted booster recommendations, new immune escape variant* 
● Booster: a third, reformulated booster is recommended on October 1, 2022 for adults 50+ and those with chronic 

conditions. Booster uptake among previously vaccinated is 15% lower than uptake of the first booster (~58 million 
doses by June 3, 2023, ~50 million by March 15, 2023). Recommended time between booster doses is 
maintained. 

● Variant: new variant emerges on Sep 4, 2022 that has 40% immune escape against infection, a 20% increased 
risk of hospitalization and death relative to Omicron. There is a continuous influx of 50 weekly infections of this 
variant from Sep 4, 2022- Dec 24, 2022. 

Scenario C: broad booster recommendations, no new immune escape variant 
● Booster: a third, reformulated booster is recommended on October 1, 2022 for all adults 18+. Booster uptake 

among previously vaccinated is 10% lower than uptake of the 2021-2022 flu vaccine coverage (~94 million doses 
by June 3, 2023, ~94 million by March 15, 2023). Boosters are recommended regardless of time since previous 
receipt of a booster. 

● Variant: current mix of strains continue to circulate for the duration of the projection period.  

Scenario D: broad booster recommendations, new immune escape variant 
● Booster: a third, reformulated booster is recommended on October 1, 2022 for all adults 18+. Booster uptake 

among previously vaccinated is 10% lower than uptake of the 2021-2022 flu vaccine coverage (~101 million 
doses by June 3, 2023, ~94 million by March 15, 2023). Boosters are recommended regardless of time since 
previous receipt of a booster. 

● Variant: new variant emerges on Sep 4, 2022 that has 40% immune escape against infection, a 20% increased 
risk of hospitalization and death relative to Omicron. There is a continuous influx of 50 weekly infections of this 
variant from Sep 4, 2022- Dec 24, 2022. 

Observed 
● Booster: Third, reformulated booster was recommended by ACIP on September 1, 2022 for all individuals 12+ 

(Pfizer) or 18+ (Moderna)(19). As of March 20, 2023, ~51 million bivalent booster doses were administered. The 
most plausible scenario was selected based on vaccine uptake.  

● Variant: due to lack of data on introduction and immune escape of different Omicron sublineages, we retain both 
immune escape variant scenarios as likely. 

Round 15 
Jul 31, 2022 to May 6, 2022 (not truncated) 

Scenario A: early boosters, no new immune escape variant* 
● Booster: Reformulated boosters are available to all adults on Sep 11, 2022. Uptake of reformulated boosters 

among previously vaccinated is 10% lower than uptake of the 2021-2022 flu vaccine coverage (~101 million 
doses). Boosters are recommended regardless of time since previous receipt of a booster. 

● Variant: current mix of strains continue to circulate for the duration of the projection period. 

Scenario B: early boosters, new immune escape variant* 
● Booster: Reformulated boosters are available to all adults on Sep 11, 2022. Uptake of reformulated boosters 

among previously vaccinated is 10% lower than uptake of the 2021-2022 flu vaccine coverage (~101 million 
doses). Boosters are recommended regardless of time since previous receipt of a booster. 
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● Variant: new variant emerges on Sep 4, 2022 that has 40% immune escape against infection, a 20% increased 
risk of hospitalization and death relative to Omicron. There is a continuous influx of 50 weekly infections of this 
variant from Sep 4, 2022- Dec 24, 2022. 

Scenario C: late boosters, no new immune escape variant 
● Booster: Reformulated boosters are available to all adults on Nov 13, 2022. Uptake of reformulated boosters 

among previously vaccinated is 10% lower than uptake of the 2021-2022 flu vaccine coverage (~101 million 
doses). Boosters are recommended regardless of time since previous receipt of a booster. 

● Variant: current mix of strains continue to circulate for the duration of the projection period.  

Scenario D: late boosters, new immune escape variant 
● Booster: Reformulated boosters are available to all adults on Nov 13, 2022. Uptake of reformulated boosters 

among previously vaccinated is 10% lower than uptake of the 2021-2022 flu vaccine coverage (~101 million 
doses). Boosters are recommended regardless of time since previous receipt of a booster. 

● Variant: new variant emerges on Sep 4, 2022 that has 40% immune escape against infection, a 20% increased 
risk of hospitalization and death relative to Omicron. There is a continuous influx of 50 weekly infections of this 
variant from Sep 4, 2022- Dec 24, 2022. 

Observed 
● Booster: Third, reformulated booster was recommended by ACIP on September 1, 2022 for all individuals 12+ 

(Pfizer) or 18+ (Moderna)(19). As of March 20, 2023, ~51 million bivalent booster doses were administered. 
● Variant: due to lack of data on introduction and immune escape of different Omicron sublineages, we retain both 

immune escape variant scenarios as likely. 

Round 16 
Oct 30, 2022 to Apr 29, 2023 (not truncated) 

Scenario A: high booster uptake, moderate immune escape variant 
● Booster: Reformulated booster coverage plateaus at 90% of flu vaccination levels by Feb 1, 2022 (~93 million 

doses).  
● Variants: Level 5 variants have 25% immune escape from BA.5.2, with seeding based on combined observed 

prevalence of Level 5 variants at the start of the projection period. No change in severity given symptomatic 
infection. 

Scenario B: high booster uptake, high immune escape variant 
● Booster: Reformulated booster coverage plateaus at 90% of flu vaccination levels by Feb 1, 2022 (~93 million 

doses). 
● Variants: Level 6/7 variants have 50% immune escape from BA.5.2, with seeding based on combined observed 

prevalence of Level 6/7 variants at the start of the projection period. No change in severity given symptomatic 
infection. 

C: low booster uptake, moderate immune escape variant* 
● Booster: Reformulated booster uptake plateaus at levels mirroring first booster uptake by April 29, 2023 (112 

million doses). 
● Variants: Level 5 variants have 25% immune escape from BA.5.2, with seeding based on combined observed 

prevalence of Level 5 variants at the start of the projection period. No change in severity given symptomatic 
infection. 

D: low booster uptake, high immune escape variant* 
● Booster: Reformulated booster uptake plateaus at levels mirroring first booster uptake by April 29, 2023 (~112 

million doses). 
● Variants: Level 6/7 variants have 50% immune escape from BA.5.2, with seeding based on combined observed 

prevalence of Level 6/7 variants at the start of the projection period. No change in severity given symptomatic 
infection. 

Observed 
● Booster: ~49 million bivalent booster doses had been administered on February 1, 2023, and ~51 million doses 

by March 20, 2023.  
● Variants: due to lack of data on introduction and immune escape of different Omicron sublineages, we retain both 

immune escape variant scenarios as likely. 
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S3. Comparative models 
 

 
Figure S7: 4-week forecast comparative model projections for incident cases. Across locations, median (line) 

and 95% prediction interval (ribbon) for each round is shown with a different color. Black curve represents 

observations, and dotted black vertical lines represent the truncation dates for Alpha (2021-04-03), Delta (2021-06-

26), and Omicron (2021-12-25).  
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Figure S8: Highly-informed comparative model projections for incident hospitalizations. Across locations, 

median (line) and 95% projection interval (ribbon) for each round is shown with a different color. Black curve 

represents observations, and dotted black vertical lines represent the truncation dates for Alpha (2021-04-03), Delta 

(2021-06-26), and Omicron (2021-12-25).  
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Figure S9: 4-week forecast comparative model projections for incident deaths. Across locations, median (line) 

and 95% projection interval (ribbon) for each round is shown with a different color. Black curve represents 

observations, and dotted black vertical lines represent the truncation dates for Alpha (2021-04-03), Delta (2021-06-

26), and Omicron (2021-12-25).  
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Figure S10: Trend-continuation comparative model projections for incident cases. Across locations, median 

(line) and 95% projection interval (ribbon) for each round is shown with a different color. Black curve represents 

observations, and dotted black vertical lines represent the truncation dates for Alpha (2021-04-03), Delta (2021-06-

26), and Omicron (2021-12-25).  

 

 



 

24 

 
Figure S11: Trend-continuation comparative model projections for incident hospitalizations. Across locations, 

median (line) and 95% projection interval (ribbon) for each round is shown with a different color. Black curve 

represents observations, and dotted black vertical lines represent the truncation dates for Alpha (2021-04-03), Delta 

(2021-06-26), and Omicron (2021-12-25).  
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Figure S12: Trend-continuation comparative model projections for incident deaths. Across locations, median 

(line) and 95% projection interval (ribbon) for each round is shown with a different color. Black curve represents 

observations, and dotted black vertical lines represent the truncation dates for Alpha (2021-04-03), Delta (2021-06-

26), and Omicron (2021-12-25).  
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Figure S13: Naive comparative model projections for incident cases. Across locations, median (line) and 95% 

projection interval (ribbon) for each round is shown with a different color. Black curve represents observations, and 

dotted black vertical lines represent the truncation dates for Alpha (2021-04-03), Delta (2021-06-26), and Omicron 

(2021-12-25).  
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Figure S14: Naive comparative model projections for incident hospitalizations. Across locations, median (line) 

and 95% projection interval (ribbon) for each round is shown with a different color. Black curve represents 

observations, and dotted black vertical lines represent the truncation dates for Alpha (2021-04-03), Delta (2021-06-

26), and Omicron (2021-12-25).  
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Figure S15: Naive comparative model projections for incident deaths. Across locations, median (line) and 95% 

projection interval (ribbon) for each round is shown with a different color. Black curve represents observations, and 

dotted black vertical lines represent the truncation dates for Alpha (2021-04-03), Delta (2021-06-26), and Omicron 

(2021-12-25).  
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Figure S16: Ninety-five percent (95%) prediction interval coverage of SMH ensemble and comparative models 

for incident cases. Across all rounds, coverage is shown for SMH trimmed-LOP ensemble (color), with the most 

realistic scenario bolded. Coverage is compared to a highly-informed model (solid gray line), a trend-continuation 

model (dashed gray line), and a naive model (dot-dashed gray line). Ideal coverage of 95% is indicated by a black 

horizontal line. Each round is shown in a different panel, with only the projection period for that round included. 

Ground truth data was only produced through 4 March 2023, so our evaluation of Rounds 13-16 ends at this date. 

Note, jagged coverage in Rounds 13-16 is due to increased number of reporting anomalies in later weeks (e.g., 

Florida). 
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Figure S17: Ninety-five percent (95%) prediction interval coverage of SMH ensemble and comparative models 

for incident hospitalizations. Across all rounds, coverage is shown for SMH trimmed-LOP ensemble (color), with 

the most realistic scenario bolded. Coverage is compared to a 4-week forecast model (solid gray line), a trend-

continuation model (dashed gray line), and a naive model (dot-dashed gray line). Ideal coverage of 95% is indicated 

by a black horizontal line. Each round is shown in a different panel, with only the projection period for that round 

included. Ground truth data was only produced through 4 March 2023, so our evaluation of Rounds 13-16 ends at 

this date. 
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Figure S18: Ninety-five percent (95%) prediction interval coverage of SMH ensemble and comparative models 

for incident deaths. Across all rounds, coverage is shown for SMH trimmed-LOP ensemble (color), with the most 

realistic scenario bolded. Coverage is compared to a highly-informed model (solid gray line), a trend-continuation 

model (dashed gray line), and a naive model (dot-dashed gray line). Ideal coverage of 95% is indicated by a black 

horizontal line. Each round is shown in a different panel, with only the projection period for that round included. 

Ground truth data was only produced through 4 March 2023, so our evaluation of Rounds 13-16 ends at this date. 

Note, jagged coverage in Rounds 13-16 is due to increased number of reporting anomalies in later weeks (e.g., 

Florida). 
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Figure S19: Average normalized WIS of SMH ensemble and comparative models for incident cases. Across all 

rounds, average normalized WIS is shown for SMH trimmed-LOP ensemble (color), with the most realistic scenario 

bolded. Average normalized WIS is compared to a 4-week forecast model (solid gray line), a trend-continuation 

model (dashed gray line), and a naive model (dot-dashed gray line). Each round is shown in a different panel, with 

only the projection period for that round included. Normalized WIS is calculated by relativizing WIS by the standard 

deviation of WIS across all scenarios and models for a given week, target, and round. This yields a scale-free value, 

and we average normalized WIS across all locations for a given projection week (and scenario in the case of the 

SMH ensemble). Ground truth data was only produced through 4 March 2023, so our evaluation of Rounds 13-16 

ends at this date.  
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Figure S20: Average normalized WIS of SMH ensemble and comparative models for incident hospitalizations. 

Across all rounds, average normalized WIS is shown for SMH trimmed-LOP ensemble (color), with the most realistic 

scenario bolded. Average normalized WIS is compared to a highly-informed model (solid gray line), a trend-

continuation model (dashed gray line), and a naive model (dot-dashed gray line). Each round is shown in a different 

panel, with only the projection period for that round included. Normalized WIS is calculated by relativizing WIS by the 

standard deviation of WIS across all scenarios and models for a given week, target, and round. This yields a scale-

free value, and we average normalized WIS across all locations for a given projection week (and scenario in the case 

of the SMH ensemble). Ground truth data was only produced through 4 March 2023, so our evaluation of Rounds 13-

16 ends at this date.  
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Figure S21: Average normalized WIS of SMH ensemble and comparative models for incident deaths. Across 

all rounds, average normalized WIS is shown for SMH trimmed-LOP ensemble (color), with the most realistic 

scenario bolded. Average normalized WIS is compared to a 4-week forecast model (solid gray line), a trend-

continuation model (dashed gray line), and a naive model (dot-dashed gray line). Each round is shown in a different 

panel, with only the projection period for that round included. Normalized WIS is calculated by relativizing WIS by the 

standard deviation of WIS across all scenarios and models for a given week, target, and round. This yields a scale-

free value, and we average normalized WIS across all locations for a given projection week (and scenario in the case 

of the SMH ensemble). Ground truth data was only produced through 4 March 2023, so our evaluation of Rounds 13-

16 ends at this date.  
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Figure S22: WIS ratio of SMH ensemble compared to each comparative model for incident cases, 

hospitalizations, and deaths. WIS for SMH ensemble and each comparative model is averaged across all locations 

and weeks in a given round (considering only realistic scenarios), or across all locations, weeks and rounds, for 

“overall”. WIS ratio is the average WIS for the SMH ensemble divided by that for each comparative model. Values 

below 1 (dashed horizontal line) indicates that SMH ensemble performance is better than that of the comparative 

model.  
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S4. Trend classification 

 

Figure S23: Distribution of percent change values (logarithmic scale) for 2-week lag and 33% of observations 

flat. For a given location, we calculated the percentage change over a two-week interval, i.e., % change = log(ot) - 

log(ot-2). From the distribution of percent change values across all targets, locations, and weeks (26 December 2020 - 

4 March 2023), we identify the upper and lower threshold for classifying a time-point as decreasing (blue, below Q33) 

or increasing (orange, above Q66). The central values are classified as flat (yellow, between Q33 and Q66). The x-

axis has been truncated to -250%-250%, though > 0.1% of % change values are outside of this interval. 
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Figure S24: Classifications of observations and projections as decreasing (blue), flat (yellow), or increasing 

(orange) for Round 1. Observed (circles) and projected (squares, SMH ensemble median) incident hospitalizations 

are shown from 26 Dec 2020 through 27 Mar 2021. Observed incident hospitalizations in the two weeks prior to the 

start of the projection period (gray) are used to classify the first two weeks and shown for reference. For simplicity, we 

show the most plausible scenario over the plausible time window (i.e., after truncation). Note, the scale of the y-axis 

is not consistent across panels.  
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Figure S25: Classifications of observations and projections as decreasing (blue), flat (yellow), or increasing 

(orange) for Round 2. Observed (circles) and projected (squares, SMH ensemble median) incident hospitalizations 

are shown from 16 Jan 2021 through 19 Jun 2021. Observed incident hospitalizations in the two weeks prior to the 

start of the projection period (gray) are used to classify the first two weeks and shown for reference. For simplicity, we 

show the most plausible scenario over the plausible time window (i.e., after truncation). Note, the scale of the y-axis 

is not consistent across panels.  
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Figure S26: Classifications of observations and projections as decreasing (blue), flat (yellow), or increasing 

(orange) for Round 3. Observed (circles) and projected (squares, SMH ensemble median) incident hospitalizations 

are shown from 27 Feb 2021 through 19 Jun 2021. Observed incident hospitalizations in the two weeks prior to the 

start of the projection period (gray) are used to classify the first two weeks and shown for reference. For simplicity, we 

show the two most plausible scenarios for this round over the plausible time window (i.e., after truncation). Note, the 

scale of the y-axis is not consistent across panels. 
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Figure S27: Classifications of observations and projections as decreasing (blue), flat (yellow), or increasing 

(orange) for Round 4. Observed (circles) and projected (squares, SMH ensemble median) incident hospitalizations 

are shown from 20 Mar 2021 through 19 Jun 2021. Observed incident hospitalizations in the two weeks prior to the 

start of the projection period (gray) are used to classify the first two weeks and shown for reference. For simplicity, we 

show the two most plausible scenarios for this round over the plausible time window (i.e., after truncation). Note, the 

scale of the y-axis is not consistent across panels. 
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Figure S28: Classifications of observations and projections as decreasing (blue), flat (yellow), or increasing 

(orange) for Round 5. Observed (circles) and projected (squares, SMH ensemble median) incident hospitalizations 

are shown from 24 Arp 2021 through 19 Jun 2021. Observed incident hospitalizations in the two weeks prior to the 

start of the projection period (gray) are used to classify the first two weeks and shown for reference. For simplicity, we 

show the most plausible scenario over the plausible time window (i.e., after truncation). Note, the scale of the y-axis 

is not consistent across panels. 
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Figure S29: Classifications of observations and projections as decreasing (blue), flat (yellow), or increasing 

(orange) for Round 6. Observed (circles) and projected (squares, SMH ensemble median) incident hospitalizations 

are shown from 22 May 2021 through 27 Nov 2021. Observed incident hospitalizations in the two weeks prior to the 

start of the projection period (gray) are used to classify the first two weeks and shown for reference. For simplicity, we 

show the most plausible scenario over the plausible time window (i.e., after truncation). Note, the scale of the y-axis 

is not consistent across panels. 
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Figure S30: Classifications of observations and projections as decreasing (blue), flat (yellow), or increasing 

(orange) for Round 7. Observed (circles) and projected (squares, SMH ensemble median) incident hospitalizations 

are shown from 26 Jun 2021 through 18 Dec 2021. Observed incident hospitalizations in the two weeks prior to the 

start of the projection period (gray) are used to classify the first two weeks and shown for reference. For simplicity, we 

show the most plausible scenario over the plausible time window (i.e., after truncation). Note, the scale of the y-axis 

is not consistent across panels. 
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Figure S31: Classifications of observations and projections as decreasing (blue), flat (yellow), or increasing 

(orange) for Round 9. Observed (circles) and projected (squares, SMH ensemble median) incident hospitalizations 

are shown from 4 Sept 2021 through 18 Dec 2021. Observed incident hospitalizations in the two weeks prior to the 

start of the projection period (gray) are used to classify the first two weeks and shown for reference. For simplicity, we 

show the most plausible scenario over the plausible time window (i.e., after truncation). Note, the scale of the y-axis 

is not consistent across panels. 
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Figure S32: Classifications of observations and projections as decreasing (blue), flat (yellow), or increasing 

(orange) for Round 11. Observed (circles) and projected (squares, SMH ensemble median) incident hospitalizations 

are shown from 11 Dec 2021 through 12 Mar 2022. Observed incident hospitalizations in the two weeks prior to the 

start of the projection period (gray) are used to classify the first two weeks and shown for reference. For simplicity, we 

show the most plausible scenario over the plausible time window (i.e., after truncation). Note, the scale of the y-axis 

is not consistent across panels. 
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Figure S33: Classifications of observations and projections as decreasing (blue), flat (yellow), or increasing 

(orange) for Round 12. Observed (circles) and projected (squares, SMH ensemble median) incident hospitalizations 

are shown from 1 Jan 2022 through 2 Apr 2022. Observed incident hospitalizations in the two weeks prior to the start 

of the projection period (gray) are used to classify the first two weeks and shown for reference. For simplicity, we 

show the most plausible scenario over the plausible time window (i.e., after truncation). Note, the scale of the y-axis 

is not consistent across panels. 
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Figure S34: Classification of observations under varying assumptions. For all targets (panel columns) and 

different classification assumptions (panel rows), observations are classified as increasing (orange), flat (yellow), or 

decreasing (blue) or not available due to data anomalies (gray). Each set of assumptions varies the lag between 

change weeks, L (i.e., % change = log(ot) - log(ot-L)) and the percent of observations classified as flat, C (i.e., 

lower/upper thresholds at quantiles 0.5 ±
𝐶

2
. Within a single panel, each row represents a location (sorted by 

population size) and each column represents one week. In each panel, the horizontal dashed lines represent the 

emergence of Alpha, Delta, and Omicron variants respectively. 
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Figure S35: Percent of projections for which trend of the SMH ensemble median is correct across all rounds, 

weeks, scenarios, and locations. (A) For decreasing, flat and increasing observations, percent of observations 

(across all rounds, scenarios, weeks, locations) of incident cases, hospitalizations and deaths correctly identified by 

SMH ensemble projection median (gray), the 4-week forecast model (dashed line), a model that continues current 

trend (dotted), and the expectation if observations are classified randomly (solid). (B) The number (and percentage) 

of observations that are classified as decreasing, flat, or increasing by the SMH ensemble projection median, across 

case, hospitalization, and death projections. Totals are calculated across all rounds (meaning that some weeks are 

included multiple times, and therefore although 33% of observations are in each category, 33% of projections may 

not fall in each category). Percentages on the outside show the percent correct for a given projected (rows) or 

observed (columns) classification. 

 

 
Figure S36: Percent of projections for which trend of Q75 of the SMH ensemble is correct. (A) For decreasing, 

flat and increasing observations, percent of observations (across all rounds and locations for plausible scenarios and 

weeks) of incident cases, hospitalizations and deaths correctly identified by SMH ensemble projection Q75 (gray), the 

4-week forecast model (dashed line), a model that continues current trend (dotted), and the expectation if 

observations are classified randomly (solid). (B) For decreasing, flat and increasing observations in realistic scenarios 

and weeks, the number (and percentage) of observations that are classified as decreasing, flat, or increasing by the 

SMH ensemble projection Q75, across case, hospitalization, and death projections. Totals are calculated across all 

rounds (meaning that some weeks are included multiple times, and therefore although 33% of observations are in 

each category, 33% of projections may not fall in each category) and weighted by the plausibility of the scenario and 

week (for rounds with multiple plausible scenarios, this could introduce decimal totals; we rounded values down in 

these cases). Percentages on the outside show the percent correct for a given projected (rows) or observed 

(columns) classification. 
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Figure S37: Percent of projections for which trend of Q97.5 of the SMH ensemble is correct. (A) For 

decreasing, flat and increasing observations, percent of observations (across all rounds and locations for plausible 

scenarios and weeks) of incident cases, hospitalizations and deaths correctly identified by SMH ensemble projection 

Q97.5 (gray), the highly informed model (dashed line), a model that continues current trend (dotted), and the 

expectation if observations are classified randomly (solid). (B) For decreasing, flat and increasing observations in 

realistic scenarios and weeks, the number (and percentage) of observations that are classified as decreasing, flat, or 

increasing by the SMH ensemble projection Q97.5, across case, hospitalization, and death projections. Totals are 

calculated across all rounds (meaning that some weeks are included multiple times, and therefore although 33% of 

observations are in each category, 33% of projections may not fall in each category) and weighted by the plausibility 

of the scenario and week (for rounds with multiple plausible scenarios, this could introduce decimal totals; we 

rounded values down in these cases). Percentages on the outside show the percent correct for a given projected 

(rows) or observed (columns) classification. 

 

 

 
Figure S38: Summary of correct classifications of SMH ensemble by round. For observations that were 

decreasing (blue), flat (yellow), or increasing (orange), the percent of those observations that were correctly 

anticipated by the SMH ensemble median. Results are summarized across all locations and incident targets for a 

given round.  
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Figure S39: Number of projections for which trend of SMH ensemble median is correct by round. For 

decreasing, flat and increasing observations, number of observations (across all rounds, weeks, locations) of incident 

cases, hospitalizations and deaths observed (light gray) and correctly identified by SMH ensemble median (dark 

gray). 
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Figure S40: Number of projections for which trend of SMH ensemble median is correct by location. For 

decreasing, flat and increasing observations, number of observations (across all rounds, weeks, locations) of incident 

cases, hospitalizations and deaths observed (light gray) and correctly identified by SMH ensemble median (dark 

gray). In each panel, a single row represents one location (i.e., state), with locations with the largest population size 

at the top of the panel. 
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Figure S41: Number of projections for which trend of SMH ensemble median is correct by projection horizon 

and target. For decreasing, flat and increasing observations, number of observations (across all rounds, weeks, 

locations) of incident cases, hospitalizations and deaths observed (light gray) and correctly identified by SMH 

ensemble median (dark gray).  
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Figure S42: Number of projections for which trend of SMH ensemble median is correct by projection horizon. 

For decreasing, flat and increasing observations, number of observations (across all rounds, weeks, locations) of 

incident cases, hospitalizations and deaths observed (light gray) and correctly identified by SMH ensemble median 

(dark gray). Percent correctly identified is shown for each horizon. 
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Figure S43: Number of projections for which trend of SMH ensemble median is correct by variant period. For 

decreasing, flat and increasing observations, number of observations (across all rounds, weeks, locations) of incident 

cases, hospitalizations and deaths observed (light gray) and correctly identified by SMH ensemble median (dark 

gray). Variant periods are defined on the same dates used for truncation (i.e., when variant reaches 50% prevalence 

nationally: ancestral, before 30 March 2021; alpha, between 30 March 2021 and 22 June 2021; delta, between 22 

June 2021 and 20 December 2021, omicron after 20 December 2021.  

 

 
 

Figure S44: Projected vs. observed percent (%) change. The percent change in the SMH ensemble median is 

compared to the percent change in the observations (both calculated with a 2-week lag). Each point represents one 

projected round, week, location and incident target, and the color of the point represents the absolute difference 

between projected and observed percent change. Dashed lines indicate cutoff values for increasing and decreasing 

classifications that were used, and the gray line represents cases where the projected percent change is exactly what 

was observed.   
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S5. Additional performance results 

 

 
Figure S45: 95% prediction interval coverage, normalized weighted interval score, precision, and recall by 

round and target. Results are calculated for plausible scenario-weeks. Color scales show rank of each round by 

target and metric: ideal coverage ranked by absolute distance from 95% coverage, WIS ranked smallest to largest, 

precision and recall: red color scale shows, and blue color scale shows distance from 0. The number of plausible 

weeks evaluated is listed below each round (x-axis). For these results, precision and recall are averaged across all 

three classes (increasing, flat, and decreasing).  
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Figure S46: Coverage of COVID-19 Scenario Modeling Hub (SMH) ensemble 50% projection interval for 

weekly incident cases, hospitalizations, and deaths. Coverage is calculated across locations by round and 

scenario. Each round is represented by a different color and a number at the start of the round. Each scenario is 

represented by a different line, with realistic scenario-weeks bolded (see Methods). Performance of the 4-wk ahead 

COVID-19 Forecast Hub ensemble is shown in gray. Ideal coverage of 50% is shown with a horizontal black line, and 

the emergence dates for Alpha, Delta, and Omicron variants are shown with vertical dotted lines. 
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Figure S47: Coverage of COVID-19 Scenario Modeling Hub (SMH) ensemble 95% projection interval for 

weekly incident cases, hospitalizations, and deaths. Coverage is calculated across locations by round and 

scenario. Each round is represented by a different color and a number at the start of the round. Each scenario is 

represented by a different line, with realistic scenario-weeks bolded (see Methods). Performance of the 4-wk ahead 

COVID-19 Forecast Hub ensemble is shown in gray. Ideal coverage of 95% is shown with a horizontal black line, and 

the emergence dates for Alpha, Delta, and Omicron variants are shown with vertical dotted lines. 
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Figure S48: Coverage results across quantiles, Q-Q plot. For each SMH round (color), coverage for all available 

intervals (10%-90%, 95% and 98%) is compared to expected coverage for that interval. Results along the black 

indicate ideal coverage. Each panel shows results for a different model: the SMH ensemble and individual models in 

the rounds they contributed national projections.  
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Figure S49: Performance of 95% projection interval (PI) by projection horizon (in weeks) for incident cases, 

hospitalizations, and deaths. Each point represents the difference of PI coverage from ideal (95%). For plausible 

projections (top), all plausible scenario-weeks are weighted equally, and results for all projections are also shown 

(bottom) with each scenario represented by a different point (color). Point color represents the SMH round. A simple 

generalized additive model is fit through the points in each panel. Coverage is only shown up to 26 weeks ahead, 

because there were not enough rounds with longer horizons to meaningfully compare. 

 

 

 
Figure S50: Performance of 50% projection interval (PI) by projection horizon (in weeks) for incident cases, 

hospitalizations, and deaths. Each point represents the difference of PI coverage from ideal (50%). For plausible 

projections (top), all plausible scenario-weeks are weighted equally, and results for all projections are also shown 

(bottom) with each scenario represented by a different point (color). Point color represents the SMH round. A simple 

generalized additive model is fit through the points in each panel. Coverage is only shown up to 26 weeks ahead, 

because there were not enough rounds with longer horizons to meaningfully compare. 

 



 

60 

 
Figure S51: Coverage of individual models across scenarios for incident cases. Coverage is calculated across 

all weeks and locations in a single round for all scenarios (A-D), and most realistic scenarios are shown in orange. 

Each panel shows results for a single model, with “Ens” representing the SMH ensemble, and A-I representing 

individual models. 
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Figure S52: Coverage of individual models across all scenarios for incident hospitalizations. Coverage is 

calculated across all weeks and locations in a single round for all scenarios (A-D), and most realistic scenarios are 

shown in orange. Each panel shows results for a single model, with “Ens” representing the SMH ensemble, and A-I 

representing individual models. 
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Figure S53: Coverage of individual models across all scenarios for incident deaths. Coverage is calculated 

across all weeks and locations in a single round for all scenarios (A-D), and most realistic scenarios are shown in 

orange. Each panel shows results for a single model, with “Ens” representing the SMH ensemble, and A-I 

representing individual models. 
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Figure S54: Average normalized WIS of individual models across all scenarios for incident cases. Normalized 

WIS (see Methods) is averaged across all weeks and locations in a single round for all scenarios (A-D), and most 

realistic scenarios are shown in orange. Each panel shows results for a single model, with “Ens” representing the 

SMH ensemble, and A-I representing individual models. 
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Figure S55: Average normalized WIS of individual models across all scenarios for incident hospitalizations. 

Normalized WIS (see Methods) is averaged across all weeks and locations in a single round for all scenarios (A-D), 

and most realistic scenarios are shown in orange. Each panel shows results for a single model, with “Ens” 

representing the SMH ensemble, and A-I representing individual models. 
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Figure S56: Average normalized WIS of individual models across all scenarios for incident deaths. 

Normalized WIS (see Methods) is averaged across all weeks and locations in a single round for all scenarios (A-D), 

and most realistic scenarios are shown in orange. Each panel shows results for a single model, with “Ens” 

representing the SMH ensemble, and A-I representing individual models. 
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Figure S57: Average normalized WIS by state population size for incident cases, hospitalizations, and 

deaths. Normalized WIS is calculated by relativizing WIS by the standard deviation of WIS across all scenarios and 

models for a given week, location, target, and round. This yields a scale-free value, and we weighted average 

normalized WIS across all projection weeks for a given location (and scenario in the case of the SMH ensemble). 

Here we show results for plausible scenario-weeks.  
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Figure S58: Weighted interval score (WIS) ratio of alternate ensembles vs. trimmed-linear opinion pool (LOP) 

ensemble for U.S. COVID-19 Scenario Modeling Hub projections of incident cases, hospitalizations and 

deaths. WIS for trimmed-LOP ensemble and each alternative is averaged across all locations and weeks in a given 

round (considering only realistic scenarios), or across all locations, weeks and rounds, for “overall”. The WIS ratio is 

the average WIS for the alternative ensembles divided by the average WIS for the trimmed-LOP. Values below 1 

(dashed horizontal line) indicate performance better than the trimmed-LOP. See Methods for details on each 

ensembling technique. 
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Figure S59: SMH ensemble versus the 4-week forecast comparative model for incident cases, 

hospitalizations, and deaths. For each projection week (indicated by a point) within a given round (round), we 

calculate dispersion (SMH ensemble)/dispersion(4-week forecast model) for all locations. We plot the mean (line) and 

IQR (Q25-Q75, ribbon) across locations. As such, values above 1 (dashed line) indicate the SMH ensemble has 

larger dispersion (i.e., wider projection intervals) than the 4-week forecast comparative model. Dispersion is 

measured by the dispersion component of the weighted interval score (first term of WIS formula (𝑢 − 𝑙), see 

Methods).  

 



 

69 

 
Figure S60: Round 13 projections of US incident hospitalizations. Projections are from the same model with two 

different assumptions about the specifics of how immunity wanes (waning times are assumed to be exponentially 

distributed for projections in pink, and assumed to be gamma distributed for projections in blue), despite both having 

the same scenario specified average duration and final protection levels. Line shows median projection, and ribbon 

shows 95% prediction interval.  

 

 

Any use of trade, firm, or product names is for descriptive purposes only and does not imply 

endorsement by the U.S. Government. 
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