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Abstract

Clinical trials of many chronic diseases such as Parkinson’s disease often collect multiple

health outcomes to monitor the disease severity and progression. It is of scientific interest to

test whether the experimental treatment has an overall efficacy on the multiple outcomes across

time, as compared to placebo or an active control. To compare the multivariate longitudinal

outcomes between two groups, the rank-sum test1 and the variance-adjusted rank-sum test2

can be used to test the treatment efficacy. But these two rank-based tests, by utilizing only

the change from baseline to the last time point, do not fully take advantage of the multivariate

longitudinal outcome data, and thus may not objectively evaluate the global treatment effect

over the entire therapeutic period. In this paper, we develop rank-based test procedures to detect

global treatment efficacy in clinical trials with multiple longitudinal outcomes. We first conduct

an interaction test to determine whether treatment effect varies over time, and then propose

a longitudinal rank-sum test to assess the main treatment effect either with or without the

interaction. Asymptotic properties of the proposed test procedures are derived and thoroughly

examined. Simulation studies under various scenarios are performed. The test statistic is

motivated by and applied to a recently-completed randomized controlled trial of Parkinson’s

disease.
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1 Introduction

Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder that affects about

1% of people older than 60 years in the United States alone.3 PD causes impairment in multiple

domains (e.g., motor, cognitive, and behavioral). The disease progresses heterogeneously in time

and across domains and individuals: decline may be observed in some, but not all health outcomes

at any given time interval and the trajectory of progression may vary between different domains,

both within and across PD patients. Therefore, no single health outcome reliably reflects the

full spectrum of the disease severity and progression. Randomized clinical trials (RCTs) of PD

repeatedly collect multiple health outcomes to obtain an overview of disease progression of PD

patients.4–6 For example, Azilect study is a multi-center, placebo-controlled, Phase 3 study to

evaluate the efficacy of rasagiline in Japanese patients with early PD.6 The patients with a diagnosis

of PD within 5 years were randomized 1:1 to receive rasagiline (1 mg/day) or placebo for up to

26 weeks. The primary endpoint is the Movement Disorder Society-Unified Parkinson’s Disease

Rating Scale (MDS-UPDRS) with four parts (Part I to IV) and it was measured at baseline, weeks

6, 10, 14, 20, and 26. The multiple outcomes being considered were changes from baseline to each

visit in MDS-UPDRS Part I sum score, Part II sum score, and Part III sum score.

To analyze the multivariate longitudinal outcome data from RCTs comparing an experimental

treatment with placebo or an active control, an appropriate statistical method needs to fully utilize

the multivariate longitudinal outcome data and accounts for three sources of correlation: (1) intra-

source (same outcome at different visits), (2) inter-source (different outcomes at the same visit),

and (3) cross correlation (different outcomes at different visits).7 Additionally, the scientific interest

of many RCTs is directional, i.e., whether the experimental treatment is better than the placebo or

active control based on all outcomes considered. Hence, the research goal is to evaluate the global

treatment efficacy across multiple longitudinal outcomes.

Current major analysis methods for multivariate longitudinal data is to reduce the longitudinal

data to cross-sectional data by computing the change from baseline to the last observation and
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then adopt some global procedures to test the treatment efficacy. Broadly speaking, the global pro-

cedures can be classified into two categories: parametric procedure and nonparametric procedure.

The parametric procedure, under the assumption of multivariate normality, includes likelihood

ratio tests8–12 and t-statistics type tests.1,13–15 The distribution assumptions associated with the

parametric procedure, however, often restrict its use in practice.

The nonparametric rank-based procedure, on the other hand, is distribution-free and widely

used in clinical research. To list a few, there are the statistical tests given by Akritas and Brunner,16

Brunner et al.,17 Brunner et al.,18 Roy et al.,19 Gunawardana and Konietschke,20 Dobler et al.21

and so on. Specifically, Brunner et al.17 developed Wald-type and ANOVA-type tests to assess

whether two treatment groups differ, in which the multiple outcomes are considered simultaneously.

Roy et al.19 considered nonparametric methods for two-sample problems in which each subjects

may have an individual number of correlated replicates. O’Brien1 proposed a rank-sum-type test to

assess whether outcome measures from the treatment group are better than those from the control

group. Although this test is robust and efficient in testing treatment effect across the multiple

outcomes, it has an inflated type I error rate when the two groups being compared have different

variances. Huang et al.2 examined the theoretical properties of this test and proposed a variance-

adjusted rank-sum test that controls the type I error rate. Moreover, Liu et al.,22 by taking the

maximum of the absolute value of individual rank-sum statistics, proposed a rank-max-type test

statistic. When the group differences in all outcomes lie in the opposite direction (i.e., treatment

may have efficacy in some outcomes but negative effect in the other outcomes, as compared to

placebo), the test of Liu et al.,22 compared with rank-sum tests of O’Brien1 and Huang et al.,2

maintains satisfactory power in detecting the group-differences across all outcomes. Further, Zhang

et al.23 developed a cluster-adjusted rank-based test, in which the outcomes are divided into several

clusters such that treatment effects are expected to be more similar within clusters than between

clusters. The cluster-adjusted rank test has the strength of both the rank-sum-type tests and the

rank-max-type test by accumulating the evidence within each cluster with a rank-sum-type test

and combining the cluster-level evidence using the max test.

However, all these rank-based tests are only applicable to the cross-sectional change data, do not
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fully take advantage of the multivariate longitudinal outcome data. They are not able to track how

the relative treatment efficacy changes over time (which might be of scientific interest) and thus may

not objectively evaluate the treatment effect throughout the whole treatment period. Furthermore,

while the rank-sum tests of O’Brien1 and Huang et al.2 can evaluate whether treatment is effective

regarding all the outcomes considered, and provide a directional conclusion, other tests such as the

Wald-type and ANOVA-type tests of Brunner et al.,17 Brunner et al.,18 Roy et al.,19 Dobler et

al.,21 are not directional and are unable to evaluate the treatment efficacy even after rejecting the

null hypothesis of no difference between two groups.

In addition, rank-based nonparametric procedures were developed in repeated measures designs.

The closely related works include Konietschke et al.,24 Zhuang et al.25, Umlauft et al.,26 Rubarth

et al.,27 Rubarth et al.,28 and so on. In these works, only one longitudinal outcome was considered

and thus only the intra-source correlation of this outcome was accounted for. Thus, the comparison

between two groups based on a single outcome variable cannot fully reflect the overall treatment

effects when all outcomes reflecting different disease aspects need to be considered simultaneously.

Further, most of these proposed tests are not directional, because they are Wald-type and ANOVA-

type tests to assess whether two treatment groups differ.

In this paper, we develop a nonparametric global test procedure to detect treatment efficacy

in clinical trials with multiple longitudinal outcomes. We first conduct an interaction test to see

if treatment effect varies over time, and then propose a longitudinal rank-sum test to assess the

main treatment effect either with or without the interaction. Compared with the aforementioned

rank-based tests, the proposed test procedure not only fully utilizes the longitudinal data in mul-

tiple outcomes, but also provides a directional conclusion of main treatment efficacy in the whole

therapeutic period. Because the longitudinal rank-sum test extends the rank-sum test in Huang et

al.2 (referred to as Huang’s test) by incorporating the rank-sum test statistic from each time point,

we compare it with Huang’s test in terms of main treatment effect in the simulation study and real

data analysis.

The rest of the paper is organized as follows. Section 2 gives some preliminary results, develops

the interaction test and longitudinal rank-sum test, and examines their theoretical properties. In
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Section 3, extensive simulations are conducted to investigate their performance in type I error and

power. In Section 4, we apply the proposed test to the Azilect study of Parkinson’s disease. Some

discussions and future work are given in section 5. All technical details and additional results are

provided in the Supplemental materials.

2 Methods

2.1 Notations and Preliminary Results

We consider two groups of subjects, treatment vs. control, who are followed in a longitudinal study

with T assessment times. At each time point, a total of K outcomes are measured on each subject.

Let X = (X⊤
1 , · · · ,X⊤

T )⊤ and Y = (Y ⊤
1 , · · · ,Y ⊤

T )⊤ represent the multiple outcome variables over

time for the control group and treatment group, respectively, where Xt = (Xt1, · · · , XtK)⊤ and

Yt = (Yt1, · · · , YtK)⊤, t = 1, · · · , T . Without the loss of generality, we let larger values represent

better clinical results for all outcomes. Let Xtk and Ytk have marginal distributions Ftk and Gtk,

respectively. Further, for outcome k and at time t, we define θtk = P (Xtk < Ytk)− P (Xtk > Ytk).

According to Brunner et al.29, the parameter θtk is called the relative effect of the Y -group with

respect to the X-group for the kth outcome at the time point t. Denote θt =
1
K

∑K
k=1 θtk, which is

a measure of the relative effect of treatment group with respect to control group across all outcomes

at time t.

Before formally setting up the null hypotheses and the associated test statistics, we introduce

some notation and preliminary results that are essential to the inferential procedures. Let xitk

(i = 1, · · · ,m) be the response of outcome k from subject i in the control group at time t. Similarly,

we denote yjtk (j = 1, · · · , n) to be the response in the treatment group. Let N = m + n be the

total number of subjects in two groups. For outcome k at time t, we combine all observations in

two groups x1tk, · · · , xmtk and y1tk, · · · , yntk and rank them, with larger values obtaining higher

ranks. Denote the mid-ranks of xitk and yjtk by Rxitk and Ryjtk, respectively, which is either the

regular rank when there is no tie on the observations or the average rank of those tied observations.
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Further, we define:

R̄x·tk =
1

m

m∑
i=1

Rxitk, R̄x·t· =
1

mK

m∑
i=1

K∑
k=1

Rxitk,

and

R̄y·tk =
1

n

n∑
j=1

Ryjtk, R̄y·t· =
1

nK

n∑
j=1

K∑
k=1

Ryjtk,

forX-sample and Y -sample, respectively. Notice that θ̂tk = 1
mn

∑m
i=1

∑n
j=1[I(xitk < yjtk)−I(xitk >

yjtk)] =
2
N (R̄y·tk−R̄x·tk) is a consistent estimator of θtk (see the detailed derivations in Supplemental

materials A). It follows that θ̂t =
2
N (R̄y·t·− R̄x·t·) is also a consistent estimator of θt =

1
K

∑K
k=1 θtk.

Hence, larger values of (R̄y·tk − R̄x·tk) and/or (R̄y·t· − R̄x·t·) gives evidence that the treatment has

better effect as compared with the control.

Next, letR = (R̄y·1·−R̄x·1·, · · · , R̄y·T ·−R̄x·T ·)
⊤. It is worth noting that the rank difference vector

R is a two sample U-statistic and thus it follows a multivariate normal distribution asymptotically.

We establish the asymptotic joint distribution of the rank difference vector R as follows.

Theorem 1. The rank difference vector 1√
N
R asymptotically follows a multivariate normal distri-

bution with mean
√
N
2 (θ1, · · · , θT )⊤ and covariance matrix ΣT×T as min(m,n) → ∞ and m

n → λ <

∞, where {Σ}t1t2 can be approximated by:

{Σ}t1t2 =
1

K2

K∑
k1=1

K∑
k2=1

[(
1 +

1

λ

)
ct1k1,t2k2 + (1 + λ) dt1k1,t2k2

]
, (2.1)

where ct1k1,t2k2 = cov(Gt1k1(Xt1k1), Gt2k2(Xt2k2)) and dt1k1,t2k2 = cov(Ft1k1(Yt1k1), Ft2k2(Yt2k2)).

Please refer to Supplemental materials A for the detailed proof. From the expression of {Σ}t1t2

in Equation (2.1), the three sources of correlation for the rank differences (R̄y·tk − R̄x·tk) can be

explained by the covariance matrix Σ. Specifically, from Equation (2.1),

(
1 +

1

λ

)
ct1k,t2k + (1 + λ) dt1k,t2k, k = 1, · · · ,K, t1 ̸= t2,

(
1 +

1

λ

)
ctk1,tk2 + (1 + λ) dtk1,tk2 , t = 1, · · · , T, k1 ̸= k2,

6
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and (
1 +

1

λ

)
ct1k1,t2k2 + (1 + λ) dt1k1,t2k2 , t1 ̸= t2, k1 ̸= k2

account for the intra-source correlation, inter-source correlation, and cross correlation, respectively.

The following result gives the moment estimates of ct1k1,t2k2 and dt1k1,t2k2 , and the proof is given

in Supplemental materials B.

Theorem 2. Under the conditions in Theorem 1, the consistent estimators of ct1k1,t2k2 and dt1k1,t2k2

are given by

ĉt1k1,t2k2 =
1

m

m∑
i=1


 1

n

n∑
j=1

I(yjt1k1 < xit1k1)−
1− θ̂t1k1

2

 1

n

n∑
j=1

I(yjt2k2 < xit2k2)−
1− θ̂t2k2

2

 ,

(2.2)

and

d̂t1k1,t2k2 =
1

n

n∑
j=1

{[
1

m

m∑
i=1

I(xit1k1 < yjt1k1)−
1 + θ̂t1k1

2

][
1

m

m∑
i=1

I(xit2k2 < yjt2k2)−
1 + θ̂t2k2

2

]}
,

(2.3)

respectively, where θ̂tk = 1
mn

∑m
i=1

∑n
j=1[I(xitk < yjtk) − I(xitk > yjtk)], for t = 1, 2, · · · , T , k =

1, 2, · · · ,K.

By plugging the estimates ĉt1k1,t2k2 and d̂t1k1,t2k2 , k1, k2 ∈ {1, · · · ,K}, t1, t2 ∈ {1, · · · , T}, we

obtain the covariance estimate Σ̂. For ease of computation, a computationally efficient way for

estimation of {Σ}t1t2 are presented in Supplemental materials C.

2.2 Interaction test

When analyzing longitudinal data in RCTs, the primary objective is to test the significance of the

treatment and time interaction term, i.e., the slope differences. In the absence of treatment and

time interaction, the treatment effect is constant over time and the outcome profiles of two groups

are parallel graphically. Hence, testing whether the interaction is significant is equivalent to testing

whether the group profiles are of the same shape. In this field, a closely related work proposed

in Zhuang et al.25 provides a rank-based non-parametric interaction test for longitudinal ordinal

7

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.24.23291858doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.24.23291858


data.

Within this non-parametric framework, we propose the null and alternative hypotheses of in-

terest for testing interaction as follows:

H0 : θ1 = θ2 = · · · = θT vs H1 : notH0 (2.4)

where θt =
1
K

∑K
k=1 θtk = 1

K

∑K
k=1[P (Xtk < Ytk) − P (Xtk > Ytk)]. When the multiple outcomes

from the two groups are parallel, we expect that θts would be roughly the same across different time

points. Rejection of the null suggests that the interaction is significant, indicating that the averaged

relative effect θt of the treatment group with respect to the control group changes over time. Let

θ = (θ1, θ2, · · · , θT )⊤ and define C such that {C}s,s = 1, {C}s,s+1 = −1 (s = {1, · · · , T − 1}) and

0 otherwise. Then, testing (2.4) is equivalent to testing Cθ = 0.

To test the interaction effect, we propose the following wald type test statistic:

Tint =
1

N
(CR)⊤(CΣ̂C⊤)−1(CR). (2.5)

Larger values of Tint gives evidence that the interaction effect is significant. By Theorem 1, it is easy

to see that 1√
N
CR converges to multivariate normal distribution with mean

√
N
2 Cθ and covariance

matrixCΣC⊤ asymptotically. Hence, under the null, (CΣC⊤)−
1
2

1√
N
CR ∼ MVN(0, IT−1), and it

follows that the quantity T ∗
int =

1
N (CR)⊤(CΣC⊤)−1(CR) have χ2

T−1 distribution asymptotically.

By plugging the consistent covariance estimate Σ̂, we have that Tint ∼ χ2
T−1 by Slutsky’s theorem

under the null. The established χ2 density of Tint allows one to compute the power function of the

proposed test under the null and alternative hypothesis, the critical value for a given significance

level, and the p-value of the test as well.

Compared with the interaction test in Zhuang et al.25, the proposed interaction test has several

advantages: (1) it applies to different type of data (continuous, ordinal and binary), while in

Zhuang et al.25 only longitudinal ordinal data were considered; (2) it does not require the variance

adjustment, which is necessary in the test in Zhuang et al.25 for tied observations; (3) Zhuang et

al.25 assumes that baseline information is different between the two groups, which may not be the
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case in randomized clinical trials due to randomization.

2.3 Global main effect test

2.3.1 Main effect test when an interaction exists

Significant interaction test suggests that the treatment effect relative to control changes over time.

Suppose an interaction effect exists, the main treatment effect should be tested by averaging the

relative treatment effect across all time points. To test the global treatment efficacy in this scenario,

the null and alternative of the main effect is given as follows:

H0 : θ̄ = 0 vs H1 : θ̄ > 0 (2.6)

where θ̄ = 1
T

∑T
t=1 θt. For testing (2.6), the test statistics proposed in Huang et al.2 (referred

to as Huang’s test), which focused on the treatment effect at a single time point (the last time

point), are no longer suitable. In the presence of treatment and time interaction, an appropriate

test statistic should account for the treatment efficacy across all the time points. To test the global

main treatment effect, we propose the longitudinal rank-sum test (LRST) statistic

TLRST =
R̄y··· − R̄x···√

v̂ar(R̄y··· − R̄x···)
, (2.7)

where R̄x··· = 1
mTK

∑m
i=1

∑K
k=1

∑T
t=1Rxitk, R̄y··· = 1

nTK

∑n
j=1

∑K
k=1

∑T
t=1Ryitk and v̂ar(R̄y··· −

R̄x···) is a consistent estimator of the variance of R̄y··· − R̄x···. While the rank-sum test statistics

of O’Brien1 and Huang et al.2 are linear combinations of the rank differences across outcomes, the

proposed longitudinal rank-sum test statistic TLRST can be viewed as a linear combination of the

rank differences (R̄y·tk − R̄x·tk) across both outcomes and time points so that the longitudinal data

can be fully utilized and treatment effect are evaluated over the whole treatment period.

Let J be a vector of length T with all 1’s. From Theorem 1, T ∗
LRST =

R̄y···−R̄x···√
var(R̄y···−R̄x···)

=

J⊤R√
J⊤var(R)J

= J⊤R√
J⊤NΣJ

follows a standard normal distribution asymptotically under the null. By

plugging the consistent covariance estimator Σ̂, we have that the proposed longitudinal rank-sum
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test statistic TLRST =
R̄y···−R̄x···√

v̂ar(R̄y···−R̄x···)
= J⊤R√

J⊤NΣ̂J
converges in distribution to a standard normal

distribution under the null under the conditions of Theorem 1. From the asymptotic normality of

TLRST , one can evaluate the statistical significance of the proposed test statistic TLRST , based on

the standard normal distribution. When the true θ̄ falls in the parameter space of the alternative

hypothesis, we expect the proposed test statistic TLRST , as the linear combination (with equal

weights) of the rank differences across both outcomes and time points, would be large and the null

hypothesis will be rejected.

Notice that the test of Huang et al.2 is a special case of the longitudinal rank-sum test by only

using the element (R̄y·T · − R̄x·T ·) within R. Let JT = (0, · · · , 0, 1). Then, substituting J with JT

in TLRST = J⊤R√
J⊤NΣ̂J

, the test statistic TLRST reduces exactly to the test statistic of Huang et al.2.

2.3.2 Main effect test when no interaction exists

When the interaction effect does not exist, namely, the relative treatment effect does not change

across time, the analysis of multiple longitudinal outcome data is consequently simplified to analysis

of two independent factors: main treatment effect and time effect. Since global treatment efficacy

is of interest and no interaction exists, it is sufficient to test main treatment effect at any visit. The

null and alternative of the main effect test in (2.6) reduces to:

H0 : θt = 0 for arbitrary t, vs H1 : θt > 0 (2.8)

Note that this hypothesis test is one-sided and it is recommended to set the type I error rate at

0.025, instead of 0.05, in a typical Phase III clinical trial, per FDA guideline.30 Hypothesis (2.8) is

the nonparametric Behrems-Fisher hypothesis problem under cross-sectional studies (at time t).

To test hypothesis (2.8), the test statistic would naturally be
R̄y·t·−R̄x·t·√

v̂ar(R̄y·t·−R̄x·t·)
for any t ∈

{1, · · · , T}, where v̂ar(R̄y·t· − R̄x·t·) is basically N{Σ̂}tt. In the absence of treatment and time

interaction,
R̄y·t·−R̄x·t·√

v̂ar(R̄y·t·−R̄x·t·)
would give the same conclusion for arbitrary t when testing (2.8).

Without loss of generality, we can use Tlast =
R̄y·T ·−R̄x·T ·√

v̂ar(R̄y·T ·−R̄x·T ·)
, which use the data from the last

time point T , to test for the main treatment effect. Tlast is exactly the test statistic proposed in

Huang et al.2, which only utilized the outcome data from the last observation. From the asymptotic
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properties developed in Section 2.1 and the variance consistency of Σ̂, we have that Tlast follows

standard normal distribution asymptotically under the null hypothesis in (2.8). When the true θt

falls in the parameter space of the alternative hypothesis, we expect the test statistic Tlast, as the

linear combination (with equal weights) of the rank differences across outcomes at time T , would

be large and the null hypothesis will be rejected.

However, when no interaction exists, we suggest the proposed longitudinal rank-sum test statis-

tic TLRST =
R̄y···−R̄x···√

v̂ar(R̄y···−R̄x···)
as in Section 2.3.1 to test hypothesis in (2.8), it actually provides

higher power than the Huang’s test under alternative hypothesis. Please refer to Supplemental

materials D for the detailed proof. Intuitively, the longitudinal rank-sum test has larger power

because we employ the outcome information from a “larger” dataset (a dataset includes outcomes

not only from the last visit, but also from other visits).

Therefore, to test the global treatment efficacy across the whole treatment period, the proposed

longitudinal rank-sum test is an appropriate, yet powerful option regardless interaction exists or

not, as compared to the existing cross-sectional global testing procedures.

3 Simulations

In this section, we conduct simulation studies to investigate the performance of the proposed rank-

based test procedures for multivariate longitudinal outcomes in clinical trials. We first perform

interaction test under various scenarios, and then perform both the Huang’s test and the proposed

longitudinal rank-sum test. Since the main treatment efficacy is of primary interest, we compare

the proposed longitudinal rank-sum test to Huang’s test in terms of type I error rate (under H0)

and power (under alternative) under various settings.

We assume there are three outcomes (K = 3) and four follow-up visits (T = 4, in addition

to the baseline visit). We then generate the outcome values from a 15(K × (T + 1))-dimensional

multivariate distribution. For both the control and treatment groups, we set the same population

mean values for all the outcomes at baseline because of randomization. The population mean values
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for the 3 outcomes across 5 time points (including the baseline) are considered as follows.

µcontrol =


.1 .2 .3 .4 .5

.3 .4 .5 .6 .7

.5 .6 .7 .8 .9

 ,µ1 =


.1 .4 .5 .6 .7

.3 .6 .7 .8 .9

.5 .8 .9 1 1.1

 ,µ2 =


.1 .1 .4 .3 .6

.3 .3 .6 .5 .8

.5 .5 .8 .6 1.1

 ,

µ3 =


.1 .3 .5 .7 .8

.3 .5 .8 .8 1

.5 .7 .9 1 1.2

 ,µ4 =


.1 .1 .3 .6 .7

.3 .3 .5 .8 .9

.5 .5 .7 1 1

 ,µ5 =


.1 .4 .5 .5 .5

.3 .6 .7 .7 .7

.5 .8 .9 .9 .9

 ,

where µcontrol is the population mean matrix of the control group, while µ1 to µ5 are the population

mean matrices of the treatment group in five different scenarios. For each matrix, each row denotes

one outcome’s mean values across 5 time points and each column denotes multiple outcome values

at a particular time point. For all scenarios, the mean values in µ1 to µ5 are arranged so that

larger values over time imply the treatment efficacy in improving outcomes as compared to µcontrol.

• Scenario 1 with population mean matrix µ1 (interaction does not exist, main treatment effect

exists): all outcomes improve over time.

• Scenario 2 with population mean matrix µ2 (interaction exists, main treatment effect does

not exist): all outcomes changes irregularly with the treatment having positive effect at the

last time point.

• Scenario 3 with population mean matrix µ3 (interaction exists, main treatment effect exists):

all outcomes improve over time.

• Scenario 4 with population mean matrix µ4 (interaction exists, main treatment effect exists):

all outcomes deteriorate in the early stage, but the treatment has positive effect at the last

time point.

• Scenario 5 with population mean matrix µ5 (interaction exists, main treatment effect exist):

all outcomes improve in the early stage, but there is no positive treatment effect at the last

time point.
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3.1 Multivariate Normal Data

We first generate data in the control group xi = (xi01, · · · , xiT1, · · · , xi0K , · · · , xiTK), i = 1, 2, · · · ,m,

i.i.d, from a 15-variate normal distribution with mean vec(µcontrol) and covariance matrix Σ =

ΣK ⊗ ΣT , where vec(µ) denotes vectorization of the matrix µ, ⊗ is the Kronecker product, an

operation on two matrices of arbitrary sizes resulting in a block matrix, ΣK is the covariance matrix

of the outcome vector for each time point, with {ΣK}kk = 1 for k ∈ {1, 2, 3} and {ΣK}ks = 0.3 for

k ̸= s ∈ {1, 2, 3}, ΣT is the covariance matrix for a particular outcome across time, with {ΣT }tt = 1

for t ∈ {1, 2, 3, 4, 5} and {ΣT }tr = 0.6 for t ̸= r ∈ {1, 2, 3, 4, 5}. Similarly, under the null hypothesis,

we generate data in the treatment group yj = (yj01, · · · , yjT1, · · · , yj0K , · · · , yjTK), j = 1, · · · , n,

from the same distribution as for xis. We expect that the probability of rejecting the null hypoth-

esis for both interaction test (2.4) and main effect test (2.8) should be close to 0.05, suggesting

that type I error is being controlled at the desired level. Under the alternative hypothesis, yj ,

j = 1, · · · , n is generated from the multivariate normal distribution with mean matrix being µ1,

µ2, µ3, µ4, and µ5, respectively, in Scenarios 1-5, and with the covariance matrix being Σ.

We generate 10,000 replicates for each pair of m and n selected from {50, 100, 200}, rendering

a total of nine combinations of sample sizes. For each replicate, we apply the proposed interaction

test and longitudinal rank-sum test to each outcome’s change from baseline to each time point,

i.e., {xd
i }K×T and {yd

i }K×T , where {xd
i }kt = xitk − xi0k and {yd

j }kt = yjtk − yj0k, t = 1, · · · , T ,

k = 1, · · · ,K. In comparison, Huang’s test is applied to the changes from baseline to the last visit,

which are the last column of {xd
i }K×T and {yd

i }K×T .

The simulated type I error rate (under the null hypothesis) and the power (under the alternative

hypothesis) are computed as the proportion of the null hypothesis H0 being rejected at a nominal

significance level of 0.05. The results are presented in Table 1. Under the null hypothesis of no

interaction and no main treatment effect, the interaction test, Huang’s test and the longitudinal

rank-sum test have good control over the type I error (top portion of Table 1). Under the alternative

hypothesis with mean matrices µ1, the interaction test controls the type I error rate, and as

expected, the longitudinal rank-sum test has larger power than Huang’s test for the main treatment

efficacy test. Under µ2, the interaction test is significant, suggesting the treatment effect varies

13

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.24.23291858doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.24.23291858


over time and the test procedure based on a single time point is inappropriate. In this case,

the longitudinal rank-sum test adequately controls the type I error, indicating no main treatment

efficacy across the whole treatment period, while the Huang’s test rejects the null hypothesis and

erroneously declares treatment efficacy by only using the change from baseline to the last time

point. Under µ3 to µ5, the interaction tests are all significant, suggesting the appropriateness of

the proposed longitudinal rank-sum test. Under µ3, both the Huang’s test and longitudinal rank-

sum test detect the treatment efficacy, with the longitudinal rank-sum test having slightly smaller

power than Huang’s test. This is reasonable because the longitudinal rank-sum test averages the

treatment effect across all time points, while Huang’s test only utilizes the changes from baseline to

the last time point, which has artificially larger efficacy. Under the alternative hypothesis with µ4,

the Huang’s test has much larger power than the longitudinal rank-sum test, because it “incorrectly”

overlooks the deterioration of the outcomes in the early stage. Under the alternative hypothesis

with µ5, the longitudinal rank-sum test has markedly higher power than Huang’s test, because it

accounts for the outcome improvement before the end of study.

3.2 Log-normal Data

In this section, we examine the performance of the longitudinal rank-sum test under log-normal

data. We first generate the multivariate normal data as in Section 3.1, transform the data into

log-normal data by taking exponentiation, then compute each outcome’s change from baseline to

each time point. We run 10,000 simulations for each pair of m and n, where m and n are selected

from {50, 100, 200}. The simulated type I error rate and the power calculations are displayed in

Table 2. From Table 2, we have similar conclusions as for the multivariate normal data. Specifically,

all three tests adequately control the type I error when there is no interaction and no main effect.

The longitudinal rank-sum test has larger power than Huang’s test under µ1 when the interaction

test is not significant. Under µ2 to µ5, all interaction tests are significant, suggesting the relative

treatment effect is not parallel over time. In terms of main treatment effect, the longitudinal rank-

sum test has good control of type I error under µ2, while Huang’s test has “inflated” power. Under

µ3, the longitudinal rank-sum test has slightly smaller power than Huang’s test because it averages
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Table 1: Type I error rate under the null hypothesis and power comparison results under the
alternative hypothesis (under µ1, µ2, µ3, µ4, and µ5) with a significance level of 0.05 (10,000
replicates) for the multivariate normal data.

(m,n) (50,50) (100,100) (200,200) (50,100) (50,200) (100,50) (100,200) (200,50) (200,100)

Under the null (no interaction, no main treatment effect)
All outcomes are the same for the two comparison groups

Interaction test 0.059 0.053 0.049 0.057 0.066 0.059 0.051 0.059 0.054
Huang’s test 0.055 0.051 0.050 0.050 0.052 0.050 0.053 0.057 0.050

Longitudinal rank-sum test 0.056 0.055 0.051 0.049 0.052 0.050 0.051 0.053 0.053

Under µ1 (no interaction, main treatment effect exists)
All outcomes improve over time for the treatment group

Interaction test 0.061 0.054 0.050 0.057 0.066 0.060 0.052 0.060 0.053
Huang’s test 0.465 0.688 0.915 0.525 0.613 0.530 0.796 0.611 0.797

Longitudinal rank-sum test 0.617 0.856 0.984 0.715 0.790 0.713 0.933 0.785 0.929

Under µ2 (interaction exists, main treatment effect does not exist)
All outcomes changes irregularly, but improve in the end

Interaction test 0.554 0.855 0.993 0.677 0.761 0.675 0.944 0.776 0.941
Huang’s test 0.273 0.419 0.639 0.307 0.363 0.313 0.499 0.367 0.501

Longitudinal rank-sum test 0.056 0.054 0.051 0.049 0.053 0.050 0.050 0.054 0.053

Under µ3 (interaction exists, main treatment effect exists)
All outcomes improve over time for the treatment group

Interaction test 0.231 0.413 0.731 0.305 0.365 0.305 0.538 0.372 0.543
Huang’s test 0.740 0.942 0.998 0.828 0.889 0.830 0.977 0.888 0.981

Longitudinal rank-sum test 0.672 0.904 0.993 0.774 0.845 0.773 0.957 0.837 0.959

Under µ4 (interaction exists, main treatment effect exists)
All outcomes worsen at the early stage of the treatment, but improve in the end

Interaction test 0.570 0.879 0.995 0.708 0.798 0.718 0.959 0.801 0.957
Huang’s test 0.364 0.556 0.805 0.410 0.492 0.413 0.658 0.488 0.661

Longitudinal rank-sum test 0.170 0.230 0.353 0.182 0.211 0.180 0.281 0.205 0.283

Under µ5 (interaction exists, main treatment effect exists)
All outcomes improve at the early stage of the treatment, but no effect in the end

Interaction test 0.301 0.544 0.848 0.394 0.458 0.381 0.666 0.444 0.677
Huang’s test 0.055 0.051 0.050 0.049 0.055 0.050 0.053 0.057 0.049

Longitudinal rank-sum test 0.349 0.526 0.773 0.392 0.463 0.396 0.626 0.452 0.629
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Table 2: Type I error rate under the null hypothesis and power comparison results under the
alternative hypothesis (under µ1, µ2, µ3, µ4, and µ5) with a significance level of 0.05 (10,000
replicates) for the log-normal data.

(m,n) (50,50) (100,100) (200,200) (50,100) (50,200) (100,50) (100,200) (200,50) (200,100)

Under the null (no interaction, no main treatment effect)
All outcomes are the same for the two comparison groups

Interaction test 0.058 0.057 0.054 0.063 0.066 0.063 0.052 0.060 0.054
Huang’s test 0.057 0.049 0.050 0.055 0.052 0.052 0.054 0.055 0.051

Longitudinal rank-sum test 0.058 0.051 0.052 0.052 0.051 0.051 0.051 0.053 0.055

Under µ1 (no interaction, main treatment effect exists)
All outcomes improve over time for the treatment group

Interaction test 0.059 0.058 0.054 0.062 0.066 0.062 0.056 0.061 0.056
Huang’s test 0.486 0.722 0.935 0.574 0.645 0.568 0.835 0.640 0.830

Longitudinal rank-sum test 0.673 0.905 0.994 0.792 0.857 0.772 0.965 0.832 0.957

Under µ2 (interaction exists, main treatment effect does not exist)
All outcomes improve in the early stage, but deteriorate in the late stage

Interaction test 0.481 0.788 0.981 0.610 0.690 0.607 0.895 0.706 0.901
Huang’s test 0.295 0.445 0.677 0.337 0.393 0.339 0.532 0.380 0.526

Longitudinal rank-sum test 0.059 0.056 0.058 0.055 0.054 0.055 0.055 0.056 0.061

Under µ3 (interaction exists, main treatment effect exists)
All outcomes improve over time for the treatment group

Interaction test 0.233 0.410 0.722 0.309 0.374 0.295 0.540 0.355 0.530
Huang’s test 0.772 0.956 0.999 0.863 0.915 0.854 0.985 0.910 0.984

Longitudinal rank-sum test 0.738 0.947 0.998 0.849 0.905 0.831 0.983 0.888 0.978

Under µ4 (interaction exists, main treatment effect exists)
All outcomes worsen at the early stage of the treatment, but improve in the end

Interaction test 0.507 0.811 0.984 0.639 0.729 0.640 0.919 0.731 0.921
Huang’s test 0.387 0.584 0.836 0.445 0.521 0.441 0.700 0.512 0.688

Longitudinal rank-sum test 0.197 0.269 0.426 0.211 0.240 0.218 0.330 0.246 0.338

Under µ5 (interaction exists, main treatment effect exists)
All outcomes improve at the early stage of the treatment, but no effect in the end

Interaction test 0.264 0.460 0.769 0.343 0.394 0.337 0.587 0.392 0.584
Huang’s test 0.057 0.047 0.052 0.049 0.053 0.051 0.050 0.059 0.048

Longitudinal rank-sum test 0.375 0.564 0.816 0.437 0.507 0.431 0.687 0.497 0.677

the treatment effect across all time points, but it “correctly” has smaller power under µ4 and much

larger power under µ5.

3.3 Ordinal Data

In this section, we evaluate the longitudinal rank-sum test on ordinal outcomes. We consider T = 4

and K = 3 ordinal outcomes with five different levels (0, 1, 2, 3, 4) with higher level indicating

clinically better values. To generate the ordinal data, we first generate the multivariate normal

data as in Section 3.1, and then transform them into ordinal values based on the following rule:

xikt = I(ck1 ≤ x′ikt < ck2) + 2I(ck2 ≤ x′ikt < ck3) + 3I(ck3 ≤ x′ikt < ck4) + 4I(x′ikt > ck4), (3.1)
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where xikt is the ordinal observation for outcome k at time t for subject i in the control group,

k = 1, · · · , 3, t = 0, 1, · · · , 4, and ck = (ck1, c
k
2, c

k
3, c

k
4)

⊤ (with ck1 < ck2 < ck3 < ck4) is the parameter

vector that determines the distribution of ordinal outcome k. We set c1 = (0.1, 0.4, 0.6, 0.9)⊤,

c2 = (0.3, 0.6, 0.8, 1.1)⊤, and c3 = (0.5, 0.8, 1, 1.3)⊤ so that each ordinal outcome has non-negligible

portion in all levels. We then compute each outcome’s change from baseline to each time point.

We run 10,000 simulations for each pair ofm and n, wherem and n are selected from {50, 100, 200}.

The simulated type I error rate and the power comparisons are displayed in Table 3. We have sim-

ilar conclusions as for the multivariate normal data. Specifically, all methods adequately control

the type I error when the two comparison groups are exactly the same. The longitudinal rank-sum

test obviously has larger power than Huang’s test under µ1 when there is no interaction. When the

interaction exists under µ2 to µ5, Huang’s test overestimates the treatment effect under µ2 to µ4

and underestimates the treatment effect under µ5, while the longitudinal rank-sum test provides a

reasonable estimate of the treatment effect.

In summary, when the outcomes are multivariate normal, log-normal, and ordinal, the inter-

action test and the longitudinal rank-sum test adequately controls the type I error. When no

interaction exists, the longitudinal rank-sum test demonstrates better performance than Huang’s

test in detecting the treatment efficacy. When the interaction test is significant, the longitudinal

rank-sum test, under various scenarios, provides reasonable assessment for the treatment efficacy

while Huang’s test gives misleading results because it does not account for the longitudinal trajec-

tories.

4 A Real Data Example: The Azilect Study

We apply the proposed test procedures to the motivating Azilect (Rasagiline) study for evaluating

the efficacy of rasagiline in multiple longitudinal outcomes. The Azilect study is a Phase 3, random-

ized, double-blind study to evaluate the efficacy and safety of rasagiline in Japanese patients with

early PD.6 Patients with a diagnosis of PD within 5 years were randomized 1:1 to receive rasagiline

(1 mg/day) or placebo for up to 26 weeks. Please refer to Hattori et al.6 for study details.

The Azilet study adopted as the primary endpoint the Movement Disorder Society Unified
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Table 3: Type I error rate under the null hypothesis and power comparison results under the
alternative hypothesis (under µ1, µ2, µ3, µ4, and µ5) with a significance level of 0.05 (10,000
replicates) for the ordinal data.

(m,n) (50,50) (100,100) (200,200) (50,100) (50,200) (100,50) (100,200) (200,50) (200,100)

Under the null (no interaction, no main treatment effect)
All outcomes are the same for the two comparison groups

Interaction test 0.059 0.057 0.053 0.062 0.066 0.061 0.054 0.065 0.055
Huang’s test 0.054 0.055 0.053 0.054 0.053 0.051 0.052 0.057 0.052

Longitudinal rank-sum test 0.056 0.049 0.052 0.051 0.053 0.050 0.051 0.054 0.053

Under µ1 (no interaction, main treatment effect exists)
All outcomes improve over time for the treatment group

Interaction test 0.059 0.056 0.051 0.059 0.067 0.058 0.054 0.065 0.055
Huang’s test 0.376 0.579 0.830 0.442 0.511 0.445 0.687 0.509 0.684

Longitudinal rank-sum test 0.529 0.771 0.958 0.631 0.699 0.618 0.872 0.691 0.863

Under µ2 (interaction exists, main treatment effect does not exist)
All outcomes improve in the early stage, but deteriorate in the late stage

Interaction test 0.415 0.710 0.954 0.526 0.617 0.529 0.831 0.617 0.829
Huang’s test 0.232 0.338 0.539 0.264 0.301 0.261 0.419 0.303 0.409

Longitudinal rank-sum test 0.055 0.051 0.052 0.051 0.055 0.051 0.053 0.055 0.054

Under µ3 (interaction exists, main treatment effect exists)
All outcomes improve over time for the treatment group

Interaction test 0.179 0.315 0.579 0.231 0.287 0.230 0.414 0.271 0.408
Huang’s test 0.625 0.867 0.985 0.717 0.796 0.722 0.939 0.790 0.935

Longitudinal rank-sum test 0.583 0.825 0.974 0.682 0.756 0.673 0.912 0.751 0.907

Under µ4 (interaction exists, main treatment effect exists)
All outcomes worsen at the early stage of the treatment, but improve in the end

Interaction test 0.431 0.735 0.963 0.548 0.656 0.553 0.858 0.639 0.862
Huang’s test 0.301 0.458 0.696 0.346 0.410 0.346 0.559 0.405 0.548

Longitudinal rank-sum test 0.154 0.202 0.315 0.170 0.189 0.167 0.245 0.187 0.245

Under µ5 (interaction exists, main treatment effect exists)
All outcomes improve at the early stage of the treatment, but no effect in the end

Interaction test 0.228 0.401 0.700 0.293 0.340 0.292 0.512 0.348 0.521
Huang’s test 0.053 0.054 0.054 0.049 0.055 0.049 0.051 0.056 0.055

Longitudinal rank-sum test 0.293 0.439 0.682 0.336 0.395 0.345 0.546 0.390 0.545
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Parkinson’s Disease Rating Scale (MDS-UPDRS), which is the most widely used scale for measuring

parkinsonian symptoms in clinical and research practice.31 MDS-UPDRS consists of 65 items,

measured by a 5-point Likert scale (0-4, with higher values denoting an increased severity), in four

parts: Part 1, Non-Motor Aspects of Experiences of Daily Living (13 items); Part 2, Motor Aspects

of Experiences of Daily Living (13 items); Part 3, Motor Examination (33 items), and Part 4, Motor

Complications (6 items). Please refer to Goetz et al.32 for the details of the MDS-UPDRS scale.

We apply the proposed tests to the multiple outcomes from the MDS-UPDRS scale in the following

four settings: (1) MDS-UPDRS Part I sum score, Part II sum score, and Part III sum score (three

outcomes, K = 3); (2) Part II sum score and Part III sum score (two outcomes, K = 2); (3) all 59

ordinal items from Parts I, II, and III (K = 59, with 13 Part I items, 13 Part II items, and 33 Part

III items); and (4) all 46 ordinal items from Parts II and III (K = 46, with 13 Part II items and

33 Part III items).

A total 244 PD patients were randomized to receive placebo (n=126) or rasagiline (n=118).

Patient characteristics at baseline were well balanced between two groups (Table 1 in Supplemental

materials E). Moreover, there is no significant difference between the rasagiline and placebo groups

at baseline in MDS-UPDRS Part I, Part II, and Part III sum scores.

In the placebo and rasagiline groups, there are a total of 100 and 109 patients who completed

the baseline visit and all follow-up visits, respectively. We use the data from these 209 patients

with complete MDS-UPDRS measurements as our analysis dataset. The MDS-UPDRS scale was

measured at baseline, weeks 6, 10, 14, 20, 26. The mean changes of MDS-UPDRS sum score of

each Part from baseline to each visit are displayed in Figure 1. The mean change of MDS-UPDRS

Part I sum score from baseline to each visit is very close for both groups. Placebo group has steady

increase (deterioration) in MDS-UPDRS Part II sum score, while the rasagiline group has some

improvement during the study but the improvement seems to diminish at the end. Nevertheless,

the treatment effect of rasagiline in MDS-UPDRS Part II sum score increases during the study,

as compared to placebo. In MDS-UPDRS Part III sum score, both groups show steady decline

(improvement) during the study while the rasagiline group has more improvement and increasing

efficacy as compared to placebo.
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Figure 1: The changes of MDS-UPDRS Part I, Part II, and Part III sum scores from baseline
to each follow-up visit. Abbreviations: SD, standard deviation; MDS-UPDRS, The Movement
Disorder Society Unified Parkinson’s Disease Rating Scale.
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Based on the analysis dataset of 209 patients, we apply the interaction test, longitudinal rank-

sum test to the whole longitudinal data and apply Huang’s test to the change from baseline to

Week 26. The results of all four settings are displayed in Table 4. To ensure that higher scores

reflect clinically better outcomes, as defined in Section 2, we multiply all ordinal item scores by

−1 and obtain sum scores for Settings 1 and 2. In Setting 1 with three longitudinal outcomes

(MDS-UPDRS Parts I, II, and III sum scores), we obtain p = 0.021 in interaction test, suggesting

treatment effect changes over time, and the longitudinal rank-sum test should be used for detecting

the main treatment efficacy. We get p = 4.364 × 10−6 in Huang’s test and p = 1.879 × 10−4 in

the longitudinal rank-sum test, suggesting statistical significance of rasagiline’s global efficacy in

these three outcomes. The p value from our proposed test is slightly larger than Huang’s test.

We believe that this is reasonable because our test evaluates the treatment efficacy by averaging

the rank differences across all visits while Huang’s test only utilizes the rank difference at the last

visit. As suggested in Figure 1, while there may not be any treatment effect for Part I sum score,

the treatment effect is comparatively smaller at the early stage but increasingly larger at the later

stage for Parts II and III sum scores. In Setting 2 with two longitudinal outcomes (MDS-UPDRS

Parts II and III sum scores), we obtain p = 0.023 in interaction test, which suggests the relative

effect of rasagiline changes over time, p = 1.485× 10−7 in Huang’s test and p = 1.211× 10−5 in the

longitudinal rank-sum test, suggesting statistical significance of rasagiline’s global efficacy in Parts

II and III sum scores. As compared to Setting 1, the p values of both tests for main treatment effect

in Setting 2 are smaller because of the significant treatment effect in Parts II and III, in comparison

to no treatment effect in Part I (see below). Setting 2 is similar to the simulation scenario 3 with

the population mean matrix µ3, i.e., treatment improves all outcomes.

Alternatively, we apply all three tests to the longitudinal ordinal scores of MDS-UPDRS items.

In Setting 3 with 59 ordinal items from Parts I, II, and III, we obtain p = 0.002 in interaction

test, p = 7.174 × 10−7 in Huang’s test and p = 5.781 × 10−5 in the longitudinal rank-sum test.

In Setting 4 with 46 ordinal items from Parts II and III, we obtain p = 0.003 in interaction test,

p = 3.522× 10−7 in Huang’s test and p = 2.154× 10−5 in the longitudinal rank-sum test. Results

from both settings suggest statistical significance of rasagiline’s global efficacy in the longitudinal
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Table 4: Results of the interaction test, longitudinal rank-sum test and Huang’s test from vari-
ous settings in the Azilect study. Abbreviations: MDS-UPDRS, The Movement Disorder Society
Unified Parkinson’s Disease Rating Scale.

Settings Test Test statistic p value

MDS-UPDRS Part I, Part II and Part
III sum scores (K = 3)

Interaction test 11.605 0.021
Huang’s test −4.446 4.364× 10−6

Longitudinal rank-sum test −3.556 1.879× 10−4

MDS-UPDRS Part II and Part III sum
scores (K = 2)

Interaction test 11.338 0.023
Huang’s test −5.125 1.485× 10−7

Longitudinal rank-sum test −4.221 1.211× 10−5

59 ordinal outcomes from MDS-UPDRS
Parts I, II, and III (K = 59)

Interaction test 17.370 0.002
Huang’s test −4.820 7.174× 10−7

Longitudinal rank-sum test −3.855 5.781× 10−5

46 ordinal outcomes from MDS-UPDRS
Parts II and III (K = 46)

Interaction test 16.111 0.003
Huang’s test −4.960 3.522× 10−7

Longitudinal rank-sum test −4.090 2.154× 10−5

ordinal outcomes from the MDS-UPDRS items.

Finally, we apply all three tests to the longitudinal ordinal scores from each individual Part of

MDS-UPDRS. The results are presented in Table 2 in Supplemental materials E. We use 13 ordinal

scores in MDS-UPDRS Part I as the multivariate longitudinal outcomes, and obtain p = 0.137

in interaction test, p = 0.078 in Huang’s test and p = 0.276 in the longitudinal rank-sum test,

suggesting no significant interaction and main treatment effect in Part I. This conclusion is also

supported by Figure 1 (upper panel), with the mean changes being very close in two groups.

Analyzing the data from the 13 items in Part II and 33 items in Part III separately, we obtain

p = 0.041 in interaction test, p = 2.727×10−6 in Huang’s test and p = 3.717×10−5 in longitudinal

rank-sum test in Part II, as compared to p = 0.041 in interaction test, p = 2.459 × 10−4 in

Huang’s test and p = 2.673× 10−3 in longitudinal rank-sum test in Part III. The interaction tests

in Part II and Part III suggests rasagiline efficacy varies over the treatment period. In terms of

main treatments effect, these results indicate significant rasagiline efficacy in improving (reducing)

patient perceived motor impact on function and clinician assessed severity of motor symptoms,

captured by Part II and Part III MDS-UPDRS item scores, respectively. This conclusion is also

substantiated by the visible group differences in Part II and Part III score changes displayed in

Figure 1 (middle and lower panels).
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5 Discussions

This paper develops a rank-based interaction test to detect the interaction between treatment

effect and time effect, and then proposes a longitudinal rank-sum test to detect main treatment

efficacy with multiple longitudinal outcomes. The test procedure objectively evaluates the effect of

a new therapy longitudinally by fully utilizing the whole trajectories of multivariate longitudinal

outcomes. In contrast, the traditional rank-based test procedures, such as the tests of O’Brien1 and

Huang et al.,2 only utilize the information from the change from baseline to the last visit. Thus, it

may render misleading conclusions as indicated in simulation scenarios under the population mean

matrix µ2 to µ5. In the simulation studies, the interaction test and longitudinal rank-sum test

have adequate control over the type I error and provide reasonable assessment for the treatment

efficacy over time under various scenarios. The proposed test procedure is applied to the Azilect

Study under various settings with different outcomes, and it demonstrates satisfactory performance

by objectively detecting global treatment efficacy.

One major challenge in the longitudinal studies is the issue of missing data. Under missing at

random (MAR) and missing not at random (MNAR) cases, ignoring the missing data may lead to

biased estimates and invalid inference. To this end, multiple imputation and inverse probability

weighting techniques can be used to handle missing data. By using appropriate multiple imputation

techniques and models, multiple complete datasets are generated so that the interaction test and

longitudinal rank sum test can be applied. Under weighting paradigm, the kernel function h(xi,yj)

(defined in Supplemental materials A) of the U-statistic needs to be weighted by the estimated

inverse probabilities to account for the missing outcome data. How to obtain consistent estimators

of the response probabilities and incorporate them into the proposed longitudinal rank-sum test

procedure is the subject of further research.

Also, based on the study design, we may adjust the weight of the multiple endpoints across

time so that different weights can be assigned to different visits. This is clinically relevant as

telemedicine has become standard practice in clinical care and research during the coronavirus

disease pandemic. Research study participants may receive measurements of some health outcomes

in both telemedicine and in-clinic visits. It may be necessary to assign larger weights to the in-clinic
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visits than the telemedicine visits. To accommodate this, the test statistic TLRST can be built based

on Rw = (w1(R̄y·1· − R̄x·1·), · · · , wT (R̄y·T · − R̄x·T ·))
⊤, where wt ≥ 0 and

∑T
t=1wt = 1, are chosen

such that larger weight corresponds to more important clinical visits. When all weights are equal,

this new test statistics reduces to the proposed longitudinal rank sum test.
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