Appendix

The Pearson-Aitken Family Genetic Risk Score (PA-FGRS) is a novel estimator for the expected genetic liability to disease carried by a proband given the pattern of diseases in an arbitrarily structured pedigree of relatives that may be only partially observed. This estimator is derived under a modified version of the liability threshold model for disease ¹. The method first estimates an initial liability for each relative and then uses the Pearson-Aitken selection formula to sequentially update the expected liability in the proband conditional on each relative.^{1,2}

First, as outlined in the main text, we assume that a disease D_i is defined as:

$$D_i = \begin{cases} 1 & \text{if } L_i > t \\ 0 & \text{if } L_i < t \end{cases} \qquad L_i = \sum_j \beta_j X_{ij} + e_i$$

Where $L \sim N(0,1)$ such that the prevalence in the population K_{pop} is given by the cumulative distribution function of the standard normal distribution $K_{pop} = 1 - \Phi(T)$.

However, if the disease has age of onset later than at birth, the observed disease status Y_i can be different from D_i (i.e. $Y \leq D$), when an individual i has only been observed for a fraction of the risk window. We can express this as:

$$Y_i = \begin{cases} \operatorname{Bernoulli}(\frac{K_i}{K_{\operatorname{pop}}}) & \text{if } D_i = 1 \\ 0 & \text{if } D_i = 0 \end{cases}$$
 (Eq. S1)

Where K_i is the prevalence of the disease at age of individual i and K_{pop} is the population lifetime prevalence of the disease. Our aim is to estimate the expected liability of an individual given the observed disease status of a number of relatives and their age at the end of follow-up.

Covariance matrix of liabilities

If we know the heritability of the phenotype (h^2) and the relatedness matrix, the covariance matrix (Σ) of the random vector of liabilities $L = \begin{bmatrix} L, & \dots, & L_n, & L_i, & G_i \end{bmatrix}^T$ is given by:

$$\Sigma = \begin{bmatrix} 1 & \dots & r_{1,n}h^2 & r_{1,i}h^2 & r_{1,i}h^2 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ r_{n,1}h^2 & \dots & 1 & r_{n,i}h^2 & r_{n,i}h^2 \\ r_{i,1}h^2 & \dots & r_{i,n}h^2 & 1 & h^2 \\ r_{i,1}h^2 & \dots & r_{i,n}h^2 & h^2 & h^2 \end{bmatrix}$$

Conditional liability distribution:

Let μ and Ω denote the expected mean vector and variance covariance matrix of L conditional on status of relatives 1, ..., n-1. Such that:

$$\begin{split} & \mu_x = E(L_x|Y_1, \text{ ..., } Y_{n-1}, K_1, \text{ ..., } K_{n-1}, K_{pop}, \Sigma) \\ & \Omega = \text{Var}(L|Y_1, \text{ ..., } Y_{n-1}, K_1, \text{ ..., } K_{n-1}, K_{pop}, \Sigma) \end{split}$$

Note that, in the case of $n=1, \mu=\begin{bmatrix}0, ..., 0\end{bmatrix}^T$ and $\Omega=\Sigma$.

Now we want to condition on the observed disease status of the n^{th} individual.

We assume that the posterior liability of the n^{th} individual is a mixture of two truncated normal distributions:

$$L_{n}|Y_{1},...,Y_{n},K_{1}, ... K_{n},K_{pop},\Sigma \sim \pi_{n}\psi(\mu_{n},\Omega_{n,n},a=T,b=\infty) + (1-\pi_{n})\psi(\mu_{n},\Omega_{n,n},a=-\infty,b=T)$$
 (Eq. S2)

where $\psi(\mu$, σ , a, b) denotes a truncated normal normal distribution with left-truncation at a and right-truncation at b.

Note that while this (Eq. S2) is strictly true for n=1 , it is only an approximation for $\,n>1.$

However, unless the off-diagonal elements of Σ are high (which will only occur for high h^2 in MZ-twins) the deviation from normality is minor. We refer to this assumption as *conditional normality*.

Deriving the mixture parameter

The mixture parameter π_n is given by the conditional probability of being a case ($D_n=1$). In the case of $Y_n=1$ we have $\pi_n=1$, whereas in the case $Y_n=0$, π_n is given by:

$$1 - \pi_n = P(D_n = 0 | Y_1, ..., Y_{n-1}, Y_n = 0, K_1, ..., K_n, K_{pop}, \Sigma)$$

by Bayes' theorem we have:

$$1 - \pi_n = \frac{P(D_n = 0 | Y_1, \dots, Y_{n-1}, K_1, \dots, K_n, K_{pop}, \Sigma) P(Y_n = 0 | D_n = 0, Y_1, \dots, Y_{n-1}, K_1, \dots, K_n, K_{pop}, \Sigma)}{P(Y_n = 0 | Y_1, \dots, Y_{n-1}, K_1, \dots, K_n, K_{pop}, \Sigma)}$$

and since
$$P(Y_n = 0 | D_n = 0, Y_1, ..., Y_{n-1}, Y_n = 0, K_1, ..., K_n, K_{pop}, \Sigma) = 1$$

$$1 - \pi_n = \frac{P(D_n = 0 | Y_1, \dots, Y_{n-1}, K_1, \dots, K_n, K_{pop}, \Sigma)}{P(Y_n = 0 | Y_1, \dots, Y_{n-1}, K_1, \dots, K_n, K_{pop}, \Sigma)}$$

From our assumption that the age of onset is independent of liability (Eq.S1), it follows that

$$P(Y_n = 1 | D_n = 1, Y_1, ..., Y_{n-1}, K_1, ..., K_n, K_{pop}, \Sigma) = P(Y_n = 1 | D_n = 1, K_n, K_{pop}) = \frac{K_n}{K_{n-1}}$$

We can use this and the law of total probability to split up the denominator:

$$\begin{split} 1 - \pi_n &= \frac{P(D_n = 0 | Y_1, \dots, Y_{n-1}, K_1, \dots, K_n, K_{pop'}, \Sigma)}{P(D_n = 0 | Y_1, \dots, Y_{n-1}, K_1, \dots, K_n, K_{pop'}, \Sigma) + \left(1 - \frac{K_n}{K_{pop}}\right) P(D_n = 1 | Y_1, \dots, Y_{n-1}, K_1, \dots, K_n, K_{pop'}, \Sigma)} \\ &= \frac{P(L_n < T | \mu_n, \Omega_{n,n'}, T)}{P(L_n < T | \mu_n, \Omega_{n,n'}, T) + \frac{K_{pop} - K_n}{K_{non}} P(L_n > T | \mu_n, \Omega_{n,n'}, T)} \end{split}$$

assuming *conditional normality* we can replace the probabilities with the cumulative distribution function of the normal distribution:

$$1 - \pi_n \approx \frac{\Phi(\frac{T - \mu_n}{\sqrt{\Omega_{n,n}}})}{\Phi(\frac{T - \mu_n}{\sqrt{\Omega_{n,n}}}) + \frac{K_{pop} - K_n}{K_{pop}}} (1 - \Phi(\frac{T - \mu_n}{\sqrt{\Omega_{n,n}}}))}$$
(Eq.S3)

Expected liability conditional on disease status

Having derived the mixture parameter (π_n) , we can obtain the expected value L_n conditional on Y_1, \dots, Y_n and K_1, \dots, K_n as the expected value of the mixture distribution:

$$E(L_n|Y_1,...,Y_n,K_1,...K_n,K_{pop},\Sigma) = \pi_n E(L_n|L_n > T,\mu_n,\Omega_{n,n},T) + (1-\pi_n) E(L_n|L_n < T,\mu_n,\Omega_{n,n},T)$$

assuming *conditional normality*, and inserting the expected value of a truncated normal, this can be approximated by:

$$E(L_{n}|Y_{1},...,Y_{n},K_{1},...K_{n},K_{pop},\Sigma) \approx \pi_{n}(\mu_{n} + \sqrt{\Omega_{n,n}} \frac{\phi(\lambda)}{1-\phi(\lambda)}) + (1-\pi_{n})(\mu_{n} - \sqrt{\Omega_{n,n}} \frac{\phi(\lambda)}{\phi(\lambda)}) \text{ (Eq.S4)}$$

where $\lambda = \frac{T - \mu_n}{\sqrt{\Omega_{n,n}}}$ and with ϕ and Φ denoting the probability density function and the cumulative distribution function of the standard normal distribution.

Expected variance conditional on disease status

The expected variance of L_n conditional on $Y_1, ..., Y_n$ and $K_1, ..., K_n$ is obtained as the expected variance of the mixture distribution which is given by:

$$\begin{split} \operatorname{Var}(L_{n}|Y_{1}, ..., Y_{n}, K_{1}, \ ... \ K_{n}, K_{pop}, \Sigma) &= \\ &\pi_{n}(E(L_{n}|L_{n} > T, \mu_{n}, \Omega_{n,n}, T)^{2} + \operatorname{Var}(L_{n}|L_{n} > T, \mu_{n}, \Omega_{n,n}, T) \) + \\ &(1 - \pi_{n})(E(L_{n}|L_{n} < T, \mu_{n}, \Omega_{n,n}, T)^{2} + \operatorname{Var}(L_{n}|L_{n} < T, \mu_{n}, \Omega_{n,n}, T) \) - \\ &\left(\pi_{n}E(L_{n}|L_{n} > T, \mu_{n}, \Omega_{n,n}, T) + (1 - \pi_{n})E(L_{n}|L_{n} < T, \mu_{n}, \Omega_{n,n}, T)\right)^{2} \end{split}$$

assuming *conditional normality*, and inserting the expected variance of a the right and left truncated normal distribution, this can be approximated by:

$$\approx \pi_n \left(\left(\mu_n + \sqrt{\Omega_{n,n}} \frac{\phi(\lambda)}{1 - \Phi(\lambda)} \right)^2 + \Omega_{n,n} \left(1 + \lambda \frac{\phi(\lambda)}{1 - \Phi(\lambda)} - \left(\frac{\phi(\lambda)}{1 - \Phi(\lambda)} \right)^2 \right) \right) +$$

$$(1 - \pi_n) \left(\left(\mu_n - \sqrt{\Omega_{n,n}} \frac{\phi(\lambda)}{\Phi(\lambda)} \right)^2 + \Omega_{n,n} \left(1 - \lambda \frac{\phi(\lambda)}{\Phi(\lambda)} - \left(\frac{\phi(\lambda)}{\Phi(\lambda)} \right)^2 \right) \right) -$$

$$\left(\pi_n (\mu_n + \sqrt{\Omega_{n,n}} \frac{\phi(\lambda)}{1 - \Phi(\lambda)}) + (1 - \pi_n) (\mu_n - \sqrt{\Omega_{n,n}} \frac{\phi(\lambda)}{\Phi(\lambda)}) \right)^2$$
(Eq.S5)

Expected liability conditional on disease status of relatives

To obtain the conditional expectation and variance of the other liabilities, we use the Pearson-Aitken selection formula, which says that if, conditioning on Y_n and K_n changes the expected mean liabilities from $\mu_n = E(L_n|Y_1,...,Y_{n-1},K_1,...,K_{n-1},K_{pop},\Sigma)$ to $\mu_n^* = E(L_n|Y_1,...,Y_n,K_1,...,K_n,K_{pop},\Sigma)$, it will change the vector of liabilities μ to μ^* , such that:

$$\mu^* = \mu + \Omega_n \Omega_{nn}^{-1} (\mu_n^* - \mu_n)$$
 (Eq.S6)

Further if conditioning on \boldsymbol{Y}_n and \boldsymbol{K}_n changes the variance of liabilities from

 $\Omega_{n,n} = \operatorname{Var}(L_n|Y_1, \dots, Y_{n-1}, K_1, \dots, K_{n-1}, K_{pop}, \Sigma) \text{ to } \Omega_{n,n}^* = \operatorname{Var}(L_n|Y_1, \dots, Y_n, K_1, \dots, K_n, K_{pop}, \Sigma), \text{ it will change the covariance matrix, } \Omega, \text{ to } \Omega_{n,n}^* = \operatorname{Var}(L_n|Y_1, \dots, Y_n, K_1, \dots, K_n, K_{pop}, \Sigma), \text{ it will change the covariance matrix, } \Omega, \text{ to } \Omega_{n,n}^* = \operatorname{Var}(L_n|Y_1, \dots, Y_n, K_1, \dots, K_n, K_{pop}, \Sigma), \text{ it will change the covariance matrix, } \Omega$

$$\Omega^* = \Omega - \Omega_{,n} \left(\Omega_{n,n}^{-1} - \Omega_{n,n}^{-1} \Omega_{n,n}^* \Omega_{n,n}^{-1} \right) \Omega_{n,n}$$
 (Eq.S7)

Example

For an individual i with two family members of which one is affected the expected liability of individual i, $E(L_i|Y_1=1,Y_2=0,K_1,K_2,K_{pop},\Sigma)$, is estimated by the following procedure: We start by setting the vector of liabilities,

$$\mu = [E(L_1), E(L_2), E(L_i)]^T = [0, 0, 0]^T$$

with covariance matrix

$$\Omega \! = \! \Sigma \! = \! \left[\! \begin{array}{ccc} \! Var\! \left(L_1 \right) & \! Cov\! \left(L_1, \! L_2 \right) & \! Cov\! \left(L_1, \! L_i \right) \\ \! Cov\! \left(L_2, \! L_1 \right) & \! Var\! \left(L_2 \right) & \! Cov\! \left(L_2, \! L_i \right) \\ \! Cov\! \left(L_i, \! L_1 \right) & \! Cov\! \left(L_2, \! L_i \right) & \! Var\! \left(L_i \right) \end{array} \right] \! = \! \left[\! \begin{array}{ccc} 1 & \! r_{1,2}h^2 & \! r_{1,3}h^2 \\ \! r_{2,1}h^2 & \! 1 & \! r_{2,i}h^2 \\ \! r_{3,i}h^2 & \! r_{3,2}h^2 & \! 1 \end{array} \right]$$

Next, we obtain the expected liability of relative 1, conditional on that individual being a case, (Eq.S4):

$$E(L_1|Y_1 = 1, K_1, K_{pop}, \Sigma) = \pi_1(\mu_1 + \sqrt{\Omega_{1,1}} \frac{\phi(\lambda)}{1 - \Phi(\lambda)}) + (1 - \pi_1)(\mu_1 - \sqrt{\Omega_{1,1}} \frac{\phi(\lambda)}{\Phi(\lambda)})$$

where since $\lambda = \frac{T - \mu_1}{\sqrt{\Omega_{1,1}}} = T$ and $\pi_1 = P(D_1 = 1 | Y_1 = 1, K_1, K_{pop}, \Sigma) = 1$, this simplifies to: $= \frac{\phi(\lambda)}{1 - \Phi(\lambda)} = \frac{\phi(T)}{1 - \Phi(T)}$

And the expected variance:

$$\begin{split} \operatorname{Var}(L_1|Y_1,K_1,K_{pop},\Sigma) &\approx & \pi_1 \Biggl(\Bigl(\mu_1 + \sqrt{\Omega_{1,1}} \frac{\phi(\lambda)}{1-\Phi(\lambda)} \Bigr)^2 + \Omega_{1,1} \Biggl(1 + \lambda \frac{\phi(\lambda)}{1-\Phi(\lambda)} - \Bigl(\frac{\phi(\lambda)}{1-\Phi(\lambda)} \Bigr)^2 \Bigr) \Biggr) + \\ & (1 - \pi_1) \Biggl(\Bigl(\mu_1 - \sqrt{\Omega_{1,1}} \frac{\phi(\lambda)}{\Phi(\lambda)} \Bigr)^2 + \Omega_{1,1} \Biggl(1 - \lambda \frac{\phi(\lambda)}{\Phi(\lambda)} - \Bigl(\frac{\phi(\lambda)}{\Phi(\lambda)} \Bigr)^2 \Bigr) \Biggr) - \\ & \left(\pi_1 (\mu_1 + \sqrt{\Omega_{1,1}} \frac{\phi(\lambda)}{1-\Phi(\lambda)}) + (1 - \pi_1) (\mu_1 - \sqrt{\Omega_{1,1}} \frac{\phi(\lambda)}{\Phi(\lambda)}) \right)^2 = \\ & \left(\Bigl(\frac{\phi(T)}{1-\Phi(T)} \Bigr)^2 + \Bigl(1 + T \Bigl(\frac{\phi(T)}{1-\Phi(T)} \Bigr) - \Bigl(\frac{\phi(T)}{1-\Phi(T)} \Bigr)^2 \right) - \Bigl(\frac{\phi(T)}{1-\Phi(T)} \Bigr)^2 = \\ & 1 + T \Bigl(\frac{\phi(T)}{1-\Phi(T)} \Bigr) - \Bigl(\frac{\phi(T)}{1-\Phi(T)} \Bigr)^2 \end{split}$$

Now we update the vector of liabilities (Eq.S6):

$$E(L \mid Y_1, K_1, K_{non}, \Sigma) = \mu + \sum_{1} \sum_{1,1}^{-1} (\mu_1^* - \mu_1) = [0, 0]^T + \sum_{1} \sum_{1,1}^{-1} \frac{\phi(T)}{1 - \Phi(T)} = [0, 0]^T$$

$$\sum_{1} \frac{\phi(T)}{1-\Phi(T)}$$

And the covariance matrix (Eq.S7):

$$\Omega^* = \Omega - \Omega_{,1} \left(\Omega_{1,1}^{-1} - \Omega_{1,1}^{-1} \Omega_{1,1}^* \Omega_{1,1}^{-1} \right) \Omega_{1,} = \Sigma - \Sigma_{,1} \left(\left(\frac{\phi(T)}{1 - \Phi(T)} \right)^2 - \frac{T\phi(T)}{1 - \Phi(T)} \right) \Sigma_{1,1} \Omega_{1,1} \Omega$$

Having obtained the estimated liability conditional on the status of the first relative, we now we condition on the status of the second relative, setting $\mu = E(L \mid Y_1, K_1, K_{pop}, \Sigma)$ and $\Omega = \Omega^*$.

First, the expected liability of relative 2 is:

$$E(L_{2}|Y_{1}=1,Y_{2}=0,K_{1},K_{2},K_{pop},\Sigma) = \pi_{2}(\mu_{2} + \sqrt{\Omega_{2,2} \frac{\phi(\lambda)}{1-\phi(\lambda)}}) + (1-\pi_{2})(\mu_{2} - \sqrt{\Omega_{2,2} \frac{\phi(\lambda)}{\phi(\lambda)}})$$

where $\lambda=\frac{T-\mu_2}{\sqrt{\Omega_{2,2}}}$ and $\pi_2=P(D_2=1|Y_1=1,Y_2=0,K_1,K_2,K_{pop},\Sigma)$ which is obtained by (Eq.S3):

$$\pi_{2} = 1 - \frac{\Phi(\frac{T-\mu_{2}}{\sqrt{\Omega_{2,2}}})}{\Phi(\frac{T-\mu_{2}}{\sqrt{\Omega_{2,2}}}) + \frac{K_{pop}-K_{2}}{K_{pop}}(1-\Phi(\frac{T-\mu_{2}}{\sqrt{\Omega_{2,2}}}))}$$

the conditional variance of the liability of relative 2 is:

$$\begin{split} \operatorname{Var}(L_1 Y_1 = 1, Y_2 = 0, K_1, K_2, K_{pop}, \Sigma) &\approx & \pi_2 \Biggl(\Bigl(\mu_2 + \sqrt{\Omega_{2,2}} \frac{\phi(\lambda)}{1 - \Phi(\lambda)} \Bigr)^2 + \Omega_{2,2} \Biggl(1 + \lambda \frac{\phi(\lambda)}{1 - \Phi(\lambda)} - \Bigl(\frac{\phi(\lambda)}{1 - \Phi(\lambda)} \Bigr)^2 \Bigr) \Biggr) + \\ & (1 - \pi_2) \Biggl(\Bigl(\mu_2 - \sqrt{\Omega_{2,2}} \frac{\phi(\lambda)}{\Phi(\lambda)} \Bigr)^2 + \Omega_{2,2} \Biggl(1 - \lambda \frac{\phi(\lambda)}{\Phi(\lambda)} - \Bigl(\frac{\phi(\lambda)}{\Phi(\lambda)} \Bigr)^2 \Bigr) \Biggr) - \\ & \Bigl(\pi_2 (\mu_2 + \sqrt{\Omega_{2,2}} \frac{\phi(\lambda)}{1 - \Phi(\lambda)} \Bigr) + (1 - \pi_2) (\mu_2 - \sqrt{\Omega_{2,2}} \frac{\phi(\lambda)}{\Phi(\lambda)} \Bigr)^2 \Biggr) \end{split}$$

Again we update the vector of liabilities (Eq.S6):

$$E(L|Y_1 = 1, Y_2 = 0, K_1, K_2, K_{pop}, \Sigma) = \mu + \Omega_2 \Omega_{2,2}^{-1} (E(L_2|Y_1 = 1, Y_2 = 0, K_1, K_2, K_{pop}, \Sigma) - \mu_2)$$

And the covariance matrix (Eq.S7):

$$\Omega^* = \Omega - \Omega_{,2} \Big(\Omega_{2,2}^{-1} - \Omega_{2,2}^{-1} \mathrm{Var}(L_1 Y_1 = 1, Y_2 = 0, K_1, K_2, K_{pop}, \Sigma) \Omega_{2,2}^{-1} \Big) \Omega_{2,2}$$

The third element of $E(L|Y_1=1,Y_2=0,K_1,K_2,K_{pop},\Sigma)$ is our estimated liability of individual i, $E(L_i|Y_1=1,Y_2=0,K_1,K_2,K_{pop},\Sigma) \ , \ \text{and the third diagonal element of } \Omega^* \ \text{is its variance}$ $\mathrm{Var}(L_i|Y_1=1,Y_2=0,K_1,K_2,K_{pop},\Sigma) \ .$

Supplementary References

- 1. Falconer, D. S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. *Ann. Hum. Genet.* **29**, 51–76 (1965).
- 2. Fisher, R. A. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. *Trans. R. Soc. Edinb.* **52**, 399–433 (1918).