
Methods

iPSYCH 2015 case-cohort study

The Lundbeck Foundation initiative for Integrative Psychiatric Research (iPSYCH)1,2 is a

case-cohort study of all singleton births between 1981 and 2008 to mothers legally residing in Denmark

and who were alive and residing in Denmark on their first birthday (N=1,657,449). The iPSYCH 2015

case-cohort comprises two enrollments from this base population. The iPSYCH 2012 case-cohort enrolled

86,189 individuals (30,000 random population controls; 57,377 psychiatric cases)1. The iPSYCH 2015i

case-cohort expanded enrollment by an additional 56,233 individuals (19,982 random population

controls; 36,741 psychiatric cases)1,2. ​​DNA was extracted from dried blood spots stored in the Danish

Neonatal Screening Biobank3 and genotyping was performed on the Infinium PsychChip v1.0 array (2012)

or the Global Screening Array v2 (2015i). Psychiatric diagnoses were obtained from the Danish

Psychiatric Central Research Register (PCR)4 and the Danish National Patient Register (DNPR)5. Diagnoses

in these registers are made by licensed psychiatrists during in- or out- patient specialty care but

diagnoses or treatments assigned in primary care are not included. Linkage across population registers,

to parents where known, and to the neonatal biobank is possible via unique citizen identifiers of the

Danish Civil Registration System6. The use of this data follows standards of the Danish Scientific Ethics

Committee, the Danish Health Data Authority, the Danish Data Protection Agency, and the Danish

Neonatal Screening Biobank Steering Committee. Data access was via secure portals in accordance with

Danish data protection guidelines set by the Danish Data Protection Agency, the Danish Health Data

Authority, and Statistics Denmark.

Genotyping and quality control

Genotype phasing, imputation, and quality control were performed in parallel in the 2012 and

2015i cohorts according to custom, mirrored protocols. Briefly, phasing and imputation were conducted

using BEAGLEv5.17,8, both steps including reference haplotypes from the Haplotype Reference

Consortium v1.1 (HRC)9. Quality control was applied prior to and following imputation to correct for

missing data across SNPs and individuals, SNPs showing deviations from Hardy-Weinberg equilibrium in

cases or controls, abnormal heterozygosity of SNPs and samples, genotype-phenotype sex discordance,

minor allele frequency (MAF), batch artifacts, and imputation quality. Kinship was detected within and

across 2012 and 2015i cohorts using KING10, censoring to ensure no second degree or high relatives

remained. Ancestry was examined using the smartpca module of EIGENSOFT11, and multivariate PCA

outliers from the set of iPSYCH individuals with both grandparents and four grandparents born in
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Denmark were excluded. In total, 7,649,999 imputed allele dosages were retained for analysis (MAF >

0.01).

iPSYCH 2015 case-cohort genealogies

All recorded relatives of probands in this iPSYCH 2015 case-cohort were obtained from the

Danish Civil Registry6 using mother-father-offspring linkages. From the 141,26512 probands, we identified

2,066,657 unique relatives, assembling all relationships into a population graph using the kinship213 and

FamAgg12 packages where edges denoted membership in a recorded trio. The relatedness coefficient for

each pair was calculated as a weighted sum of unique ancestral paths through the population graph (i.e.

not including the same individual, except for the common ancestor). Each path in the sum was weighted

by (0.5)*(number of edges in the path)14. The Danish Civil Registry does not contain information on

zygosity for same-sex twins, but following analysis of the SNP-kinship of children of same-sex twins

(Supplementary Figure 3) we assigned same-sex twins a relatedness coefficient of 0.75. Similarly, guided

by analysis of siblings with missing paternal records (Supplementary Figure 2), we assigned maternal

siblings with missing paternal records a relatedness coefficient of 0.25. 24,773 pairs of relatives from the

population genealogy included two probands genotyped on the same genotype array. We used

Pearson’s correlation of the graph-inferred kinship and SNP-inferred kinship using KING10 as an estimate

of concordance and quality of inferred relationships.

Pearson-Aitken Family Genetic Risk Scores (PA-FGRS)

PA-FGRS estimates a liability for disease carried by a proband from the observed disease status in

a pedigree and under the assumption of a liability threshold model for the disease15.  The method first

estimates an initial liability for each relative and then uses the Pearson-Aitken selection formula to

sequentially update the expected liability in the proband conditional on each relative.15,16

We begin by assuming a disease, Di = 1, arises when an individual, i, carries a latent liability, Li,

that surpasses some threshold, t.  Liability, Li, can arise from additive effects (βj) of genetic factors (Xij), or

environmental deviations (ei) and genetic contributions follow classic polygenic theory.15,16  We can write

a generative model:
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Where the threshold, t, is the standard normal quantile that corresponds to a cumulative probability of

kpop, the lifetime prevalence of the disorder. Further we assume that the vector consisting of the genetic

liability of the proband and the total liability of n genetic relatives 𝐺
𝑝
, 𝐿

1
,  ..., 𝐿

𝑛_[ ]𝑇~𝑀𝑉𝑁( 0,  ..., 0[ ]𝑇, Σ)

with covariance matrix:

Under this model the expected value of Li, conditional on the true value for Di is according to truncated

normal distribution theory17:

A critical assumption of this model is that each individual is fully observed, meaning there is an

equivalence between their diagnostic and disorder status. This assumption rarely holds in practice, but

the variable follow-up of relatives by the Danish register system makes it extremely tenuous. We instead

propose a model where the disease status Yi in those who surpass the threshold is a stochastic process

with a probability corresponding to the ratio between the age-specific prevalence (Ki) and the life-time

prevalence (Kpop)
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To get the expected liabilities under this model we use a mixture of an upper and a lower truncated

Gaussian both with mean and variance corresponding to their conditional expectations, and with the

mixture proportion ( ), corresponding to the conditional probability of being a case. Letπ
𝑛

ψ(µ, σ2, 𝑎, 𝑏)

denote a truncated gaussian with mean , variance , lower truncation at and upper truncation at .µ σ2 𝑎 𝑏
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Following adaptations18,19 of the Pearson-Aitken selection formula20 the conditional mean and variance of

expected liability for a proband is estimated given their pedigree, initial liabilities, and population

parameters19. Let be the effect conditioning and has on then the vector ofµ*
𝑛
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Where is the covariance matrix of the liabilities. Similarly, if conditioning change to , theΩ  Ω
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Previous work has found this to be an efficient estimator of genetic liabilities of binary traits given family

history.18,19,21 In practice, we start by setting the liability vector to a zero vector, we then iteratively

condition on the observed disease status of each relative using the expected mean and a variance of a

mixture of truncated gaussians in combination with the Pearson-Aitken selection formula to obtain the

expected genetic liability of the index individual.

Our PA-FGRS is available as R code: https://github.com/MortenKrebs/PA-FGRS.

 

Simulations

We simulated pedigrees for 500 probands with different family histories including varying pedigree

structure and censoring. The heritability was set to 0.50 and prevalence to 0.4. We assessed the

correlation between the estimated liabilities obtained from five different liability estimation methods.

Next, we repeated the simulations 4000 times with varying prevalence and 5000 times with varying

heritability. 

To assess the impact of shared environment (c2), we simulated varying levels of shared environment

between parents, off-spring and siblings. We estimated the correlation of FGRS and the true genetic and

environmental liability. For FGRSKendler
22 we included both an c2-adjusted and an unadjusted version. If

shared environment effects are expected we propose a modification to   PA-FGRS, PA-FGRSnoFDR that omits

parents, siblings and children when estimating liability. We used simulations to compare this approach to

FGRS and the full pedigree PA-FGRS, computing the correlation between true and estimated liability.

Psychiatric phenotypes

Our primary outcome, MDD, was defined as having a registration with a depressive episode (F32) or

recurrent depression (F33) before Jan 1st 2017, according, the Danish Psychiatric Central Research

Register (PCR)4. Diagnostic codes used for the construction of PA-FGRS scores are found in
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Supplementary Table S1. For relatives diagnosed between 1968 and 1994 records are limited to

in-patient contacts and ICD-8 codes.

Population parameters used for computing PA-FGRS in iPSYCH

The sex-specific lifetime prevalence of each disorder (Supplementary Table S1) was obtained from

published estimates based on Danish registers23 . Heritability parameters were estimated chosen from

literature (Supplementary Table S1). Sex and birth-year-specific cumulative incidence curves were

computed based on a sample consisting of all members of the iPSYCH-2015 random sample and all their

available relatives (N=979,582; Supplementary Figure S14).

Polygenic Scores 

PGS for MDD, SCZ and BP were computed based on published, external summary statistics

(Supplementary Table S2) that had no overlap with iPSYCH, while PGS for ASD and ADHD were based on

GWAS run in other half of the unrelated subset of iPSYCH (iPSYCH2012 for iPSYCH2015i and vice versa,

Supplementary Figure S9) . We used SBayesR 24 to compute SNP-weights for SNPs in the intersection of

each GWAS and iPSYCH. Palindromic SNPs (A/T, C/G), those not mapping uniquely to hg19 positions, and

without a unique rsID in dbSNP v151 were excluded.

Classification analysis

In the European subset of the iPSYCH-2015-MDD case-cohort (Supplementary Figure S9), we used

logistic regressions with MDD as an outcome and first using either PA-FGRSMDD, PGSMDD or both of these

as predictors, and afterwards using either five PA-FGRSs, five PGSs, or all ten of these, the five scores

corresponding to the selected categories of mental disorders (Supplementary Table S1-S2). PA-FGRS for

these comparisons were estimated blind to the proband status. The classification accuracy was assessed

using the area under the receiver operating characteristic curve (AUC) estimated using the pROC

package25.

Comparing Polygenic profiles

Among the individuals diagnosed with MDD, putative subgroup-defining features were obtained from

the PCR4 and the Danish Civil Registry6: a diagnosis of BPD (ICD10: F30-F31), comorbid anxiety

(F40.0-40.2, F41.0-41.1, or F42), sex (as registered at birth), recurrence (ICD10: F32 or F33), severity

(ICD10: F32/33.0, F32/33.1, F32/33.2, or F32/33.3), age at first recorded diagnosis, and mode of
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treatment (inpatient, casualty-ward or outpatient). We computed a composite estimate of genetic

liability for each of the five mental disorders as a weighted sum of the PGS and PA-FGRS with weights

corresponding to the betas from a logistic regression of their natural outcome in a calibration sample

(Supplementary Figure S9). For each outcome, multiple multinomial logistic regression was fitted to

sequentially estimate the effects of each the composite genetic risk estimates with age, sex and 10

genetic PCs as covariates using the R package nnet26. We report a normalized partial effect size for each

PGS and FGRS, (βMLR/βLR) which is the ratio of the effect of the PA-FGRS on MDD outcomes (βMLR) over its

effect on the natural outcomes (βLR; e.g., ASD for FGRS for ASD) where the βLR were estimated in

outcome-specific case cohort samples (e.g. ASD case cohort, Supplementary Figure S9). This was done

to enable intuitive effect size comparisons of each predictor on the various outcomes. These analyses

were conducted separately for iPSYCH-2012 and iPSYCH-2015 samples and meta-analyzed.

Subgroup-level effect estimates were meta-analyzed using inverse variance weighting, while

heterogeneity test p–values were combined using Fisher’s method. In total we report 35 p-values

declaring 0.05/35 = 0.0014 strictly significant.

Genome-Wide Association Studies (GWAS)

GWAS were performed within two proband groups, the iPSYCH2012 MDD case-cohort and the

iPSYCH2015i MDD case-cohort, on imputed allelic dosage data using plink227. For binary MDD diagnosis,

logistic regression was applied, for continuous valued PA-FGRS, we used linear regression, both including

sex and age and 10 principal components of genetic ancestry as covariates. Inverse-variance weighted

meta-analysis of the two constituent samples was performed using METAL28. SNPs with association

p-values less than 5x10-8 were declared significant, while variants with a false discovery rate of 0.05 were

considered suggestive. Loci were considered independent if >1Mb apart. Observed-scale SNP-heritability

( ) and genetic correlations to nine published GWAS (Supplementary Table S3) were estimatedℎ
𝑆𝑁𝑃,𝑜𝑏𝑠
2

using LDscore regression29,30. Difference in was computed as , with std.err.ℎ
𝑆𝑁𝑃,𝑜𝑏𝑠
2 ℎ

𝑃𝐴−𝐹𝐺𝑅𝑆
2 − ℎ

𝑐𝑎𝑠𝑒/𝑐𝑡𝑟𝑙
2

. Genome-wide significant index SNPs were defined from a≈  𝑠. 𝑒. (ℎ
𝑃𝐴−𝐹𝐺𝑅𝑆
2 )

2
+ 𝑠. 𝑒. (ℎ

𝑐𝑎𝑠𝑒/𝑐𝑡𝑟𝑙
2 )

2

large external GWAS of MDD, modified to exclude 23andMe and iPSYCH, by clumping overlapping SNP

lists. A paired t-test of the squared test statistic was used to assess significance of improvement.

Polygenic scores for within iPSYCH classification were computed using SNPs with MAF>0.01 and

INFO>0.8, clumped and thresholded with Plink 1.90b6.2727, using parameters --clump-kb 625 --clump-p1
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0.1 --clump-p2 0.1 --clump-r2 0.8. Improvements in predictions were assessed using the difference in

AUC test in the pROC package.
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