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ABSTRACT 
Objectives: To assess how radiomic features may be combined with plaque morphological 

and compositional features identified by multi-contrast magnetic resonance imaging (MRI) to 

improve upon conventional risk assessment models in determining culprit lesions. 

 

Methods: Fifty-five patients (mean age: 62.6; 35 males) with bilateral carotid stenosis who 

experienced transient ischaemic attack (TIA) or stroke were included from the CARE-II 

multi-centre carotid imaging trial (ClinicalTrials.gov Identifier: NCT02017756). They 

underwent MRI within 2 weeks of the event. Classification capability in distinguishing 

culprit lesions was assessed by machine learning. Repeatability and reproducibility of the 

results were investigated by assessing the robustness of the radiomic features. 

 

Results: Radiomics combined with a relatively conventional plaque morphological and 

compositional metric-based model provided incremental value over a conventional model 

alone [area under curve (AUC), 0.819 ± 0.002 vs. 0.689 ± 0.019 respectively, p = 0.014]. The 

radiomic model alone also provided value over the conventional model [AUC, 0.805 ± 0.003 

vs. 0.689 ± 0.019 respectively, p = 0.031]. T2-weighted imaging-based radiomic features had 

consistently higher robustness and classification capabilities compared with T1-weighted 

images. Higher-dimensional radiomic features outperformed first-order features. Grey Level 

Co-occurrence Matrix (GLCM), Grey Level Dependence Matrix (GLDM) and Grey Level 

Size Zone Matrix (GLSZM) sub-types were particularly useful in identifying textures which 

could detect vulnerable lesions. 

 

Conclusions: The combination of MRI-based radiomic features and lesion morphological 

and compositional parameters provided added value to the reference-standard risk assessment 

for carotid atherosclerosis. This may improve future risk stratification for individuals at risk 

of major adverse ischemic cerebrovascular events. 

 

Keywords: Radiomics, Stroke, Carotid, Atherosclerosis, MRI. 

 

Clinical Relevance: The clinical relevance of this work is that it addresses the need for a 

more comprehensive method of risk assessment for patients at risk of ischemic stroke, 

beyond conventional stenosis measurement. Radiomics provides a non-invasive means of 

assessing plaque vulnerability. 
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Key points 

• T2-weighted imaging-based radiomic features had consistently higher robustness and 

classification capabilities compared with T1-weighted images.  

• Higher dimensional radiomic features had better performance than first-order features in 

identifying textures which could detect vulnerable carotid lesions.  

• Radiomic features combined with MRI plaque features may improve atherosclerotic 

plaque risk stratification.  

 

Abbreviations and acronyms 

ANOVA = analysis of variance 

AUC = area under the curve 

CARE = Chinese atherosclerotic risk evaluation 

CAS = carotid artery stenting 

CEA = carotid endarterectomy 

CVD = cardiovascular disease 

FC = fibrous cap  

GLCM = grey level co-occurrence matrix 

GLRLM = grey level run length matrix 

GLSZM = grey level size zone matrix 

GLDM = grey level dependence matrix 

NGTDM = neighbouring grey tone difference matrix 

MLA = minimum lumen area 

MMAL = minimum minor axis length 

MP-RAGE = magnetisation prepared rapid gradient echo 

MRI = multi-contrast magnetic resonance imaging 

ICC = intra-class correlation co-efficient 

IPH = intra-plaque haemorrhage 

IRI = inward remodelling index 

LASSO = least absolute shrinkage and selection operator 

LRNC = lipid-rich necrotic core 

MDIR = multi-slice double inversion recovery  

MLA = minimum lumen area 
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MMAL = minimum minor axis length 

NPV = negative predictive value 

OR = odds ratio 

ORI = outward remodelling index  

PPV = positive predictive value 

QIR = quadruple inversion recovery 

ROC = receiver operating characteristic 

ROI = region of interest 

TIA = transient ischemic attack 

TOF = time of flight 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.19.23291556doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.19.23291556


1 
 

INTRODUCTION 

Carotid atherosclerotic disease is a subset of cardiovascular diseases (CVD), which is the 

leading cause of stroke and death worldwide [1]. Measuring the degree of luminal stenosis 

remains the major approach for clinical assessment of the severity of carotid atherosclerosis. 

It is the only currently validated diagnostic criterion for patient risk stratification. However, 

the majority of clinical events occur in patients with mild to moderate carotid stenosis [2]. 

Moreover, while the severe stenosis patients (≥70%) have been proven through clinical trials 

to benefit from carotid endarterectomy (CEA) and carotid artery stenting (CAS), the benefits 

of surgery taper off when stenosis severity is reduced (<70%) [2]. Therefore, those who lie in 

the mild-to-moderate stenosis range in particular require improved risk stratification for 

future ischaemic events.  

 

Previous studies have suggested that morphological and compositional characteristics of 

atherosclerotic plaques may potentially better define clinical progression than luminal 

stenosis alone. A vulnerable carotid atherosclerotic plaque is often characterised by the 

presence of intra-plaque hemorrhage (IPH) and a large lipid-rich necrotic core (LRNC) with a 

thin or defective fibrous cap (FC) that can be visualized by high-resolution, multi-contrast 

magnetic resonance imaging (MRI) [3]. A comprehensive picture of plaque vulnerability 

should therefore include lesion morphological and compositional features [4,5]. Instead of 

simply identifying features which relate to atherosclerotic composition, radiomics may have 

the potential to add incremental value by using the data directly from images to identify 

features which describe lesions in a way which is beyond the reach of already established 

methods [6]. Some radiomic features may have obvious clinical relevance, such as the size of 

different zones within the image or the maximum brightness of an image; others are more 

abstract in nature, and represent patterns typically hidden to the human eyes.  

 

In this study, it is hypothesised that radiomic features extracted from MRI can improve risk 

stratification of carotid plaques beyond conventionally used features such as the reference-

standard degree of stenosis.  

 

MATERIALS AND METHODS 

Patients and image segmentation 

Data from fifty-five patients with bilateral carotid stenosis from the Chinese atherosclerotic 

risk evaluation (CARE-II) multicentre clinical trial were used in this study (ClinicalTrials.gov 
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Identifier: NCT02017756). IRB approvals were obtained for the entire study and for each 

participating institution, all participants in the study provided written informed consent [7]. 

The primary objective of CARE-II study was to determine the prevalence and characteristics 

of high-risk atherosclerotic plaques in the carotid arteries in Chinese patients with recent 

ischaemic stroke or transient ischaemic attack (TIA). In this study, linear logistic regression 

models were trained to differentiate culprit and non-culprit carotid artery lesions. The term 

`culprit’ always refers to the causative ipsilateral carotid artery or plaque, as determined 

following the assessment of ultrasound and MRI examinations. The `non-culprit’ side was 

deemed to have no causative basis for symptoms. 

 

Those recruited underwent MRI of bilateral carotid arteries with the following sequences: 

three-dimensional (3D) time-of-flight (TOF), T1-weighted (T1) quadruple inversion recovery 

(QIR), T2-weighted (T2) multi-slice double inversion recovery (MDIR), and Magnetisation 

Prepared Gradient Recalled Echo (MPRAGE). Detailed MR imaging parameters can be 

found in the references [7], and in Supplemental Material A. Detailed patient demographics 

are provided in Table 1 below. 

 

Age, year (Mean ± SD) 62.6 ± 10.6 

Smoker, n(%) 26 (47.3%) 

Male, n(%) 35 (63.6%) 

Hypertension, n(%) 36 (65.5%) 

Hyperlipidemia, n(%) 36 (65.5%) 

BMI, kg/m2 (Mean ± SD) 24.9 ± 3.4 

Table 1. Patient demographics (n=55). 
 

 
The MRI segmentations were performed manually by experts with reference to 3D time-of-

flight (TOF), T1-weighted, T2-weighted and magnetisation-prepared rapid gradient echo 

(MP-RAGE) images to discern lumen and outer wall boundaries and various atherosclerotic 

components including IPH, LRNC and calcification [8]. The segmentation and related pre-

processing procedures were as follows: (1) lumen and outer wall boundaries were drawn 

manually on the T1-weighted images to define the region of interest (ROI); (2) all images 

including the masks for the lumen and outer wall were converted into NIFTI format; (3) radio 
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frequency bias correction [9] and de-noising using a spatially adaptive method [10] were 

performed; (4) global rigid and local deformable co-registrations were performed with T1-

weighted images being the reference modality [11]; and (5) pixels of all images were finally 

extracted according to the segmentation masks. Except for Step (1), all other steps were 

performed automatically in MR-VascularView© (Nanjing Jingsan Medical Science and 

Technology, Ltd., Jiangsu, China).  

 
Radiomic feature extraction and robustness assessment 
The PyRadiomics tool (v2.2.0) [12] was used to extract radiomic features based on the MRI 

pixels from slices which contained atherosclerotic disease defined by local plaque burden ≥ 

50%. The feature families obtained by running multi-slice radiomic analysis were: shape 

features; first-order intensity histogram statistics; Grey Level Co-occurrence Matrix features 

(GLCM) [13-15]; Grey Level Run Length Matrix (GLRLM) [16]; Grey Level Size Zone 

Matrix (GLSZM) [17]; Grey Level Dependence Matrix (GLDM) [18]; and Neighbouring 

Grey Tone Difference Matrix (NGTDM) [19]. The default PyRadiomics setting, a fixed bin 

width of 25, was used. No resampling was applied.  

 

The overall workflow is illustrated in Figure 1 and includes: calibration; pre-processing 

procedure to select robust features; development of the predictive model for the identification 

of culprit lesions; a post-processing procedure to select the most useful features; and the 

validation methodology. The dependence of radiomic features on the ROI, which defines the 

area from which features are extracted, was tested by measuring feature robustness using the 

intra-class correlation co-efficient (ICC) [20-22]. The ROI was manipulated by expanding 

and eroding the wall boundary outwards and inwards with 1-2 pixels. Only stable radiomic 

features would then be carried forward to the final analysis and those highly sensitive to 

minor ROI changes and image quality were omitted.  

 

Feature regularisation and model cross-validation 

Least absolute shrinkage and selection operator (LASSO) and ridge regression were used to 

reduce over-fitting by introducing regularisation penalty terms to the cost function. In both 

LASSO and ridge regression, large co-efficients in the linear model are penalised by a 

characteristic penalty term, though in slightly different ways. LASSO regression involves the 

L1 norm of the vector of feature co-efficients � in its penalty term, which is the sum of the 
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absolute values of the feature co-efficients. In ridge regression, the penalty term involves the 

square of the L2 norm, which is the sum of squares of feature co-efficients [23]. The 

corresponding penalty terms are shown below, where �  refers to the number of features 

involved in the model. 
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Since the sum of squares of co-efficients less than one is less than their sum, the ridge 

regression penalty is more accommodating for a more balanced co-efficient vector, while 

LASSO regression tends to favour multiple co-efficients being set to zero, resulting in a 

sparser model. While both types of regularisation were performed, with feature selection in 

mind, the results following LASSO regularisation were typically considered in the final 

analysis.  

 

To validate the predictive ability of the model and assess its sensitivity to the dataset, a five-

fold cross-validation scheme was employed where the data were split into five equally sized 

folds. Four fifths of the data are used to train a linear logistic regression model, and one fifth 

of the data are left unseen to evaluate the model. Additionally, to assess the repeatability of 

this analysis, this scheme was performed on resampled datasets 1,000 times according to the 

bootstrapping technique of resampling with replacement. Bootstrapping resampling measures 

the sensitivity to the data set of the cross-validation analysis. This also allowed for a more 

comprehensive analysis for feature selection.  

 

The combined model and feature selection 

The combined model consisted of the radiomic model and conventional risk features 

composed of morphological and compositional metrics. Morphological metrics included: 

degree of stenosis; minimum minor axis length (MMAL); minimum lumen area (MLA); 

inward remodelling index (IRI); and outward remodelling index (ORI), plaque burden, and 

plaque volume. Compositional features included calcification presence, calcification volume, 

IPH presence, IPH volume, and LRNC presence, and LRNC volume. The merit of these 

features alone was considered in the univariate analysis.   
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To select features, a protocol was developed based on the cross-validation procedure used to 

identify the most useful features for the combined model. Using LASSO regularisation, the 

frequency of non-zero feature co-efficients across all five cross-validation folds and all 

bootstrap iterations was plotted to illustrate the features that were most commonly included 

across all possible models. With ridge regression, a similar principle was utilised, except that 

the features were considered selected if their corresponding average co-efficient across all 

five cross-validation folds was found to be in the top ten among all features considered in the 

model. 

 

Statistical analysis 

Univariate analysis was performed using the χ2 test, Fisher’s exact test, or a student t-test 

when appropriate and those with p-value ≤ 0.1 were included in the multivariate analysis. The 

ICC was defined using a 2-way mixed analysis of variance (ANOVA) model. The 

relationship between sensitivity and specificity forms the basis of receiver-operating 

characteristic (ROC) curves. For all possible cut-offs (the point which separates culprit and 

non-culprit predictions) of the logistic regression S-curve, a point was added to the ROC 

curve and the resulting area under the curve (AUC) calculated accordingly. The AUC value is 

then used to measure the effectiveness of a given predictive model. The significance of the 

difference between two ROC AUC measurements were assessed using the Wilcoxon statistic 

for paired samples [24]. 

 

 
RESULTS 
Univariate baseline predictors 
The baseline model is firstly built upon the consideration of the univariate predictive value of 

morphological and compositional features. Geometric features except for ORI all had 

significant univariate predictive value, as did calcification presence and IPH presence. This is 

presented in Table 2 below. The multivariate predictive value of these features and the 

significance of the multivariate odds ratio within the model are also presented in Table 2. 
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Lesion geometry 
features 

Univariate  
p-value 

Multivariate  
Odds Ratio (95% CI) 

Multivariate  
p-value 

Stenosis 0.009 t 0.596 (0.161, 2.2) 0.421 
MMAL 0.0034 t 1.708 (0.08, 34.2) 0.717 
MLA 0.036 t 0.242 (0.014, 4.07) 0.308 
IRI 0.08 t 2.315 (0.79, 6.73) 0.111 
ORI 0.735 t / / 
Plaque Burden 0.102 t 1.213 (0.316, 4.659) 0.771 
Plaque Volume 0.18 t / / 
Calcification Presence 0.07 f 2.779 (1.196, 6.459) 0.014 
Calcification Volume 0.33 t  / / 
IPH Presence 0.06 f 0.954 (0.345, 2.637) 0.925 
IPH Volume 0.138 t / / 
LRNC Presence 0.535 c / / 
LRNC Volume 0.32 t  / / 
MMAL = minimum minor axis length; MLA = minimum luminal area; IRI = inward 
remodelling index; ORI = outward remodelling index. IPH = intra-plaque hemorrhage; 
LRNC = lipid-rich necrotic core; f = Fisher’s exact test; t = Student’s t-test; c = χ2 test. 
 
Table 2. Univariate and multivariate analysis of the baseline model, consisting of lesion 
geometry and plaque morphology (n=55). 
 

 
Robustness of radiomic features 
Robustness of the radiomic features across 12 extraction settings (bin width: 10, 15, 20, 25, 

30, 35 and bin count: 8, 16, 32, 64, 128, 256) was calculated for all 107 radiomic features 

produced by PyRadiomics. The T2-weighted images provided a higher proportion of 

moderate (0.5 ≤ ICC < 0.9) and high (ICC ≥ 0.9) robust features in comparison with T1-

weighted images. Of the features derived from T1-weighted images, 20% had low robustness 
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(ICC < 0.5), compared with almost none which were derived from T2-weighted images. The 

bin width was a more reliable extraction setting compared to the bin count, which led to a 

high number of low robustness features. This is presented in Figure 2. 

Integration of the radiomics and conventional models 

The classification capabilities of models with different features included is tabulated in Table 

3 across five cross-validation folds. It can be seen that if only lesion geometry (including 

stenosis) was considered, the overall accuracy was slightly greater than 60% at the optimal 

operating point, which is comparable to the case where only lesion components (calcification, 

etc) were considered.  

 

Classifier AUC Accuracy PPV NPV 

Lesion geometry 0.638 ± 0.004 0.609 ± 0.010 0.610 ± 0.062 0.629 ± 0.022 

Lesion composition 0.625 ± 0.004 0.644 ± 0.034 0.685 ± 0.042 0.646 ± 0.054 

Geometry + 
composition 

0.689 ± 0.019 0.684 ± 0.031 0.663 ± 0.042 0.729 ± 0.066 

Radiomic model 0.805 ± 0.030 0.747 ± 0.030 0.745 ± 0.053 0.761 ± 0.050 

Combined model 0.819 ± 0.020 0.758 ± 0.022 0.779 ± 0.064 0.754 ± 0.048 

Simplified radiomic 
model 

0.760 ± 0.011 0.712 ± 0.021 0.683 ± 0.021 0.753 ± 0.037 

Simplified combined 
model 

0.792 ± 0.015 0.778 ± 0.016 0.758 ± 0.009 0.802 ± 0.036 

AUC = area under the curve; PPV = positive predictive value; NPV = negative predictive 
value. 
 

Table 3. Classification capabilities of models with morphological and compositional features 
and radiomic features included and combined based on T2-weighted images. 
 

 

The combination of lesion geometric and compositional features improved the classification 

capabilities, albeit without a significant difference when compared with either plaque 

morphology or composition alone. The radiomics model had better performance than any of 

the previous models. The combination of radiomic and lesion morphological and 

compositional features further improved the accuracy to 75.8%. The ROC plots relating to 

the performance of these models are illustrated in Figure 3.  

 

The multivariate odds ratios of all features within the combined model are presented in 

Supplemental Material B, which highlights the relative weight of each feature within the 
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cross-validated predictive models. This contains a conventional model, radiomic model, and a 

combined model.  

 

In light of prioritising clinical interpretability, a simplified radiomic model was tested, which 

includes only seven radiomic features: Gray Level Non-Uniformity (GLSZM), Large 

Dependence High Gray Level Emphasis (GLDM), Small Dependence Low Gray Level 

Emphasis (GLDM), Difference Variance (GLCM), Informational Measure of Correlation 

(GLCM), kurtosis (first order), and skewness (first order). The performance of these 

simplified features is tabulated in Table 4 and the ROC plots may be found within 

Supplemental Material C, which contrasts the ability of simplified and full models 

(containing all available features) to distinguish culprit and non-culprit plaques.  

 

Feature selection 
Each feature class was analysed individually, and the corresponding ROC curves were 

created for calculation of the AUC. This is shown in Table 4. The AUC was calculated based 

on the performance of predictive models on a hold-out set according to the cross-fold 

validation method. In general, GLDM features derived from T2-weighted images had the best 

performance, followed by GLSZM and GLCM. NGTDM features had the poorest predictive 

value, and the poorest robustness profile. 

 

 AUC (T1-weighted) AUC (T2-weighted) 
Shape features 0.645 ± 0.017 0.650 ± 0.016 
First order histogram 0.576 ± 0.008 0.611 ± 0.009 
GLCM 0.654 ± 0.019 0.670 ± 0.022 
GLDM 0.667 ± 0.022 0.719 ± 0.023 
GLRLM 0.617 ± 0.012 0.632 ± 0.027 
GLSZM 0.692 ± 0.021 0.681 ± 0.022 
NGTDM 0.577 ± 0.012 0.543 ± 0.014 
GLCM = Grey Level Co-occurrence Matrix features; GLDM = Grey Level Dependence 
Matrix; GLRLM = Grey Level Run Length Matrix; GLSZM = Grey Level Size Zone Matrix; 
NGTDM = Neighbouring Grey Tone Difference Matrix 
 
Table 4. Classification capabilities of each family of radiomic features with cross-validation. 
 

 

The frequency of selection using LASSO and ridge protocols developed in this study are 

presented in the Supplemental Materials D and E. First order features skewness and kurtosis 
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appear consistently in feature selection according to the established protocol, despite the first-

order feature family in itself not having the strongest predictive performance. The 

morphological and compositional features including calcification, IPH and plaque burden 

(PB) were often selected by the linear model under different perturbations of the training 

data. 

 

DISCUSSION 

While univariate analysis revealed the capability of stenosis and other more intricate 

geometrical features to differentiate culprit and non-culprit plaques, these assessments do not 

tell the whole story. Features obtained using MRI improved upon the predictive capability of 

stenosis measurement alone. Radiomics then further improved the predictive model to 

provide a robust means of describing the plaque vulnerability. This was also true of a 

simplified model with the involvement of GLSZM, GLDM and GLCM features, kurtosis, and 

skewness. This implies that interpretable features become more useful when combined with 

other higher order features along with the plaque features; it also emphasises the 

multifactorial, complex nature of carotid plaque vulnerability. T2-weighted imaging-based 

radiomic features had consistently higher robustness than T1-weighted images as measured 

by the ICC among radiomic features. This may have then carried through to the superior 

classification capabilities of features derived from the T2-weighted images as opposed to the 

T1-weighted images. This suggests that T2-weighting may be more efficient at picking up 

tissue contrasts which relate to plaque vulnerability. 

 

Since the plaque components such as IPH and the extracellular fibrous matrix can take 

multiple forms, it is possible that radiomic texture features detect the particular sub-types of 

these plaque features which are more vulnerable. The profile of plaque haemorrhage - for 

instance, how it has developed and progressed - as identified by its texture features, may be a 

more powerful tool to investigate plaque vulnerability than knowledge of its presence alone. 

The high recurrence of inclusion of IPH and PB in the linear models following bootstrap 

resampling re-enforces the notion that the application of AI in carotid plaque vulnerability 

detection should be seen as a tool to incrementally improve risk stratification, since the 

radiomic features provided complementary information to the traditional plaque-based model 

– the features in the plaque morphological and compositional model ultimately remain more 

clinically interpretable than even simpler radiomic features, since they relate directly to 

pathology.  
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The model which combined the full radiomics signature with plaque morphological and 

compositional information provided a significant improvement in AUC [AUC, 0.819 ± 0.002 

vs. 0.689 ± 0.019 respectively, p = 0.014], while the radiomic model alone also provided 

significant improvement over the conventional model [AUC, 0.805 ± 0.003 vs. 0.689 ± 0.019 

respectively, p = 0.031]. On closer inspection, though the discrepancy in the AUC increase 

between the radiomic-only and all-inclusive models is relatively low, with a mean AUC 

increase of 1.74%, the statistical significance was improved by 98.6%, which increases the 

certainty of improvement over conventional methods when radiomic features are combined 

with the morphological and compositional features.  

 

Limitations include the retrospective nature of the analysis and number of patients. Imaging 

was performed post-event, and the analysis aims to formulate a means of predicting patient 

outcome before the event occurs. Classifiers may not be so meaningful if the rupture has 

already happened and caused significant remodelling within the timeframe between event and 

patient presentation. Therefore, this work relies upon the implicit assumption that the 

underlying morphology is highly similar to what it was in the time leading up to the event. In 

the CARE-II trial, the MRI protocol was pre-defined. The 2mm slice thickness could incur 

information loss. The effect of different image quantisation settings was explored, but how 

well the radiomic features would perform under MRI scanners with different signal-to-noise 

ratio and other imaging parameters remains to be seen. Image pixel intensity normalisation 

during pre-processing was forwent due to homogeneous image acquisition parameters. 

External validation on different scanners would be required to validate the robustness of the 

risk prediction models recommended by this study. Different ROI delineations, as defined by 

the original manual segmentation, impact the radiomic feature extraction. Perturbations of the 

original ROI using dilation and erosion allows us to understand which image modalities are 

robust to inter-observer variability. Radiomic features extracted from T2-weighted images 

were generally more robust to these ROI perturbations.  

 

In conclusion, risk stratification for carotid atherosclerosis can be improved by a more 

comprehensive overview of the plaque risk beyond the current gold-standard degree of 

stenosis measurement. These results suggest that the geometric and plaque compositional 

features, in conjunction with radiomic features, can provide diagnostic improvement for 

patients with carotid atherosclerosis.    
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Figure legends 

Figure 1. Schematic which demonstrates the methodology of extracting and evaluating 
radiomic features, and the cross-validation technique. 
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Figure 2. Robustness of T1- and T2-weighted images-derived radiomic features across 6 bin 
width and bin count settings (Low: intra-class correlation coefficient (ICC)<0.5; Moderate: 
0.5≤ICC<0.9; High: ICC≥0.9).   

Figure 3. Receiver operating characteristic curves of the models considering lesion 
morphological and compositional features, and radiomic features alone and in combination. 
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