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Abstract 1 

Deciphering the complex causal relationships between multiple organs and major clinical 2 

outcomes and the causal interplay among multiple organs remains a significant challenge. 3 

By utilizing imaging biomarkers, we can characterize the functional and structural 4 

architectures of major human organs. Mendelian randomization (MR) provides a valuable 5 

framework for inferring causality by leveraging genetic variants as instrumental variables. 6 

In this study, we conducted a systematic multi-organ MR analysis involving 402 imaging 7 

biomarkers and 88 clinical outcomes. Our analysis revealed 488 genetic causal links for 62 8 

diseases and 130 imaging biomarkers across various organs, tissues, and systems, 9 

including the brain, heart, liver, kidney, lung, pancreas, spleen, adipose tissue, and 10 

skeletal system. We specifically focused on critical intra-organ causal connections, such 11 

as the bidirectional genetic links between Alzheimer's disease and brain function, as well 12 

as inter-organ causal effects, such as the detrimental impact of heart diseases on brain 13 

health. These findings shed light on the genetic causal links spanning multiple organs, 14 

contributing to a deeper understanding of the intricate relationships between organ 15 

imaging biomarkers and clinical outcomes. Our multi-organ MR results can be explored 16 

at https://mr4mo.org/. 17 

 18 
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Medical imaging techniques such as magnetic resonance imaging (MRI) measure the 1 

structure and function of many human organs, such as the brain, heart, liver, and kidney. 2 

Their derived imaging biomarkers have found widespread use in both clinical research 3 

and practical applications. For example, structural and functional imaging biomarkers 4 

extracted from brain MRIs have consistently revealed abnormalities associated with 5 

Alzheimer's disease, particularly within the hippocampal region1. Cardiovascular MRI 6 

(CMR) provides insights into changes in ventricular function, cardiovascular structure, and 7 

myocardial perfusion, all of which are intricately linked to cardiovascular diseases2. 8 

Furthermore, skeletal Dual-Energy X-ray Absorptiometry (DXA) aids in identifying novel 9 

genetic variants that influence the human skeletal structure, thereby revealing significant 10 

evolutionary trends in human anatomical changes leading to pathogenesis3. Several large-11 

scale organ imaging datasets (on the scale of over 10,000 participants) have recently been 12 

made publicly available, revealing details about human organ structure and function4-8. A 13 

multitude of complex traits and clinical outcomes have been found to associate with 14 

organ imaging biomarkers, as evidenced by these robust, population-based studies9,10. 15 

Despite these advances, inherent limitations in observational data pose challenges in 16 

definitively establishing causal relationships between imaging biomarkers and clinical 17 

outcomes, as well as in gaining a comprehensive understanding of the causal interplay 18 

across various organs11. Mendelian randomization (MR) utilizes genetic variants as 19 

instrumental variables to infer causality from observational data12,13. Operating under 20 

certain assumptions regarding genetic, exposure, and outcome variables, MR seeks to 21 

uncover causal relationships between exposure and outcome variables, while controlling 22 

for confounding factors. Both family and population-based studies have demonstrated 23 

that numerous imaging biomarkers and complex diseases are profoundly influenced by 24 

genetics. Hundreds of associated genetic loci have been pinpointed in large-scale 25 

genome-wide association studies (GWAS)8,14-29. By utilizing these GWAS summary-level 26 

data (summary statistics), MR methods can unveil causal relationships between imaging 27 

measurements and clinical outcomes. Numerous recent MR studies have explored the 28 

genetic causality of imaging biomarkers11,30-35. However, a common limitation of these 29 

MR studies is their focus on a single organ (or imaging modality) and/or a single disease, 30 

or diseases in a specific domain, such as brain imaging and psychiatric disorders30. It is 31 

crucial to note, though, that many diseases act as the causes and/or consequences of 32 
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functional and structural changes in various organs of the human body. Cross-organ 1 

analysis can elucidate the complexity of human physiology, subsequently improving our 2 

capacity to diagnose, treat, and prevent a multitude of diseases. Consequently, it is 3 

essential to conduct MR analysis from a multi-organ perspective to comprehend the 4 

clinical implications of imaging biomarkers amidst the complex interrelationships of organ 5 

systems.  6 

 7 

In this paper, we carried out a systematic two-sample MR analysis to explore the causal 8 

relationships between multi-organ imaging and clinical endpoints. We consolidated 9 

GWAS summary statistics from 402 multi-organ imaging biomarkers (with an average 10 

sample size n » 35,000) from the UK Biobank (UKB)36 study along with 88 clinical outcomes 11 

(each with more than 10,000 cases) sourced from the FinnGen project27 (Fig. S1 and 12 

Tables S1-S2). Our focus was on three major brain MRI modalities: 1) 101 regional brain 13 

volumes21 from structural MRI (sMRI); 2) 110 diffusion tensor imaging (DTI) parameters23 14 

from diffusion MRI (dMRI); and 3) 90 functional activity (amplitude37) and connectivity 15 

traits from functional MRI (fMRI)25. Furthermore, we incorporated 82 CMR traits 16 

extracted from short-axis, long-axis, and aortic cine cardiac MRI38,39. We also considered 17 

11 abdominal MRI biomarkers, measuring volume, fat, or iron content in seven organs 18 

and tissues8, and eight DXA imaging biomarkers that gauged the lengths of all long bones 19 

and the width of the hip and shoulder29. We applied 8 MR methods40-48 to investigate 20 

bidirectional genetic causal links. The study design is presented in Figure 1A, while Figure 21 

1B offers a high-level summary of our key findings. Additional details on these multi-organ 22 

imaging biomarkers are provided in the Methods section. We have made our database 23 

publicly available and developed a browser framework to facilitate the exploration of 24 

multi-organ MR findings (http://mr4mo.org/). 25 

 26 

RESULTS 27 

Genetic causality between brain imaging and multi-organ diseases 28 

We explored the causal relationship between brain imaging biomarkers and multi-organ 29 

diseases. At the Bonferroni significance level (P < 5.18´10-6, multiple testing adjustment 30 
for both directions), MR highlighted 127 significant genetic causal effects on 58 brain 31 

imaging biomarkers stemming from 20 diseases in 8 major categories. These categories 32 
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include mental and behavioral disorders, diseases of the nervous system, diseases of the 1 

circulatory system, cardiometabolic endpoints, interstitial lung disease endpoints, 2 

diseases marked as autoimmune origin, diseases of the eye and adnexa, and diseases of 3 

the genitourinary system (Fig. S2 and Table S3). Heart-related diseases were the most 4 

frequent (66/127) and were predominantly linked to DTI parameters and a smaller set of 5 

regional brain volumes. We did not observe significant causal effects from heart diseases 6 

to fMRI traits. The top three heart diseases demonstrating causal genetic influences on 7 

brain structures were peripheral artery disease (15/66), hypertension (14/66), and 8 

hypertensive diseases (12/66) (Figs. S2-S4). For example, peripheral artery disease 9 

causally impacted the white matter microstructure within the anterior limb of the internal 10 

capsule (ALIC, |b|>0.15, P < 3.04´10-8), the body of corpus callosum tract (BCC, |b|>0.14, 11 

P < 8.44´10-7), and the genu of corpus callosum tract (GCC, |b|>0.13, P < 4.24´10-6). 12 
Hypertension and hypertensive diseases causally affected the superior corona radiata 13 

(SCR, |b|>0.07, P < 9.47´10-8). Beyond DTI parameters, hypertension also negatively 14 

impacted the total grey matter volume (|b|>0.02, P < 1.26´10-8) (Figs. 2C and S2-S3). In 15 
addition to heart-related diseases, several other non-neurological clinical endpoints also 16 

influenced brain health. For example, asthma had negative causal effects on the SCR 17 

(|b|>0.05, P < 7.26´10-7) and the volume of the right inferior lateral ventricle (|b|>0.09, 18 

P < 8.66´10-7) (Fig. S5). 19 
 20 

Brain disorders also demonstrated causal effects on brain imaging biomarkers (49/127), 21 

with dementia and Alzheimer's disease emerging as the most common brain-related 22 

diseases (Fig. S2). Intriguingly, brain disorders are primarily linked to fMRI traits. For 23 

example, Alzheimer’s disease consistently exhibited a causal relationship with decreased 24 

functional activity in the dorsal attention (|b|>0.04, P < 5.07´10-8), frontoparietal, and 25 

secondary visual network (|b|>0.04, P < 4.70´10-8), as well as DTI parameters of the SCR 26 

(|b|>0.03, P < 1.85´10-6) (Figs. 2A and S6). Both functional MRI and DTI parameters have 27 
been widely used in Alzheimer's disease research49. White matter abnormalities, such as 28 

those in the left SCR, and decreased functional connectivity in attention-related networks, 29 

have been identified in patients with Alzheimer's disease50,51. Similar to Alzheimer’s 30 

disease, dementia showed negative causal genetic effects on functional activity in 31 

multiple networks, including the cingulo-opercular, default mode, dorsal attention, 32 
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frontoparietal, language, posterior multimodal, and secondary visual networks (|𝛽|>0.12, 1 

P < 4.74´10-8) (Figs. 2B and S7). Additionally, mood disorders affected brain volume traits, 2 

such as the left and right putamen (| 𝛽 |>0.04, P < 5.64´10-7) (Fig. S8). A more 3 
comprehensive summary of causal genetic links from clinical endpoints to brain imaging 4 

biomarkers can be found in Figures S3-S9. 5 

 6 

Brain and other organ-related diseases may also be caused by structural or functional 7 

changes in the brain. To investigate this, we used brain imaging biomarkers as exposure 8 

variables and clinical endpoints as the outcome variables. At the Bonferroni significance 9 

level (P < 5.18´10-6), we identified 85 significant relationships between 22 brain imaging 10 
biomarkers and 20 clinical endpoints (Fig. S10 and Table S3). Most of the significant 11 

imaging-disease pairs were related to fMRI traits. Specifically, 66 of the 85 pairs were 12 

linked to fMRI traits, 10 to DTI parameters, and 9 to regional brain volumes. The majority 13 

of the significant findings pertained to brain diseases (65/85), with a minor proportion 14 

linked to heart diseases (13/85), autoimmune diseases (4/85), COPD and related 15 

endpoints (1/85), diseases of the eye and adnexa (1/85), and diseases of the genitourinary 16 

system (1/85). For example, we found that reduced activity in several functional networks 17 

correlated with an increased risk of Alzheimer’s disease, such as the default mode and 18 

dorsal-attention networks (|𝛽|>0.5, P < 5.65´10-13) (Figs. 3A and S11). Additionally, 19 
genetic causal effects from DTI parameters on Alzheimer’s disease were identified, such 20 

as those related to the BCC and SCR (|b|>0.49, P < 6.79´10-7) (Figs. 3A and S11). 21 
 22 

Dementia exhibited a pattern similar to Alzheimer's disease, being causally influenced by 23 

decreased activity in multiple networks, such as the default mode, dorsal-attention, and 24 

secondary visual network (|b|>0.002, P < 2.77´10-7) (Fig. 3B and S12). Other brain 25 

diseases, such as neuropsychiatric disorders (|b|>0.09, P<8.88´10-16) and neurological 26 

diseases (|b|>0.06, P < 1.72´10-6) were also found to be causally linked to fMRI traits, 27 
including the functional activity of the secondary visual network and functional 28 

connectivity of the default mode network (Figs. S13 and S14). Finally, we discovered that 29 

alterations in brain structure may also impact other non-neurological diseases. For 30 

example, the left basal forebrain exhibited a negative causal effect on hypertensive 31 

diseases (|b|>0.12, P < 8.47´10-9) and hypertension (|b|>0.15, P < 6.19´10-11). 32 
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Additionally, the left lingual was found to negatively influence female genital prolapse 1 

(|b|>0.75, P < 8.68´10-7).  2 

Causal genetic relationships between CMR traits and clinical outcomes 3 

We first assessed the causal effects from clinical endpoints to CMR measures of heart 4 

structure and function. We identified 111 significant results at the Bonferroni significance 5 

level (P < 6.85´10-6), encompassing 41 unique CMR traits of the ascending aorta (AAo), 6 
descending aorta (DAo), left atrium (LA), and left ventricle (LV). These significant causal 7 

effects were identified from 13 unique clinical endpoints in three categories: diseases of 8 

the circulatory system (8/13), cardiometabolic endpoints (4/13), as well as COPD and 9 

related endpoints (1/13). Most significant findings were linked to heart-related diseases, 10 

with 66 out of 111 associated with diseases of the circulatory system and 44 out of 111 11 

tied to cardiometabolic endpoints (Fig. S15 and Table S4).  12 

 13 

The most frequently occurring genetic effects were linked to hypertensive diseases and 14 

hypertension (Figs. 4A and S16). Specifically, hypertensive diseases exerted negative 15 

causal impacts on AAo and DAo distensibility (|b|>0.10, P < 1.26´10-7), associations of 16 
which have been identified in prior studies52-54. Hypertensive diseases also influenced LV 17 

and LA traits, such as the global radial strain (|b|>0.06, P < 4.47´10-9), LA stroke volume 18 

(|b|>0.07, P < 3.04´10-8), and LV myocardial mass (|b|>0.11, P < 3.04´10-15, and see Fig. 19 
4B). These findings align with findings from previous genetic association studies55,56. 20 

Hypertension exhibited a similar pattern to hypertensive diseases, causing impacts on 21 

various AAo and DAo traits, like DAo distensibility, and LA and LV traits, such as the LA 22 

minimum volume (LAmin volume, |b|>0.03, P < 7.11´10-6, and see Fig. 4C).  23 

 24 

Moreover, angina pectoris was found to causally influence the AAo maximum and 25 

minimum areas (AAomax and AAomin areas, |b|>0.71, P < 1.44´10-7). Aortic aneurysm 26 

positively affected the DAo maximum and minimum areas (DAomax and DAomin areas, 27 

|b|>0.71, P < 1.63´10-24) as well as AAomax and AAomin areas (|b|>0.16, P < 2.22´10-6), 28 
aligning with clinical observations. Atrial fibrillation and flutter primarily impacted LA 29 

traits, such as the LA ejection fraction (|b|>0.07, P < 5.88´10-8), LA maximum volume 30 

(LAmax volume, |b|>0.07, P < 1.62´10-6), and LAmin volume (|b|>0.08, P < 8.26´10-8). 31 
Notably, atrial fibrillation is often linked to a decrease in ejection fraction and an increase 32 
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in LA volumes57,58. Apart from heart-related diseases, COPD and related endpoints were 1 

found to influence CMR traits. Specifically, COPD had a negative effect on DAomax area 2 

(|b|>0.10, P < 4.45´10-11, and see Fig. S16). Emphysema, a variant of COPD characterized 3 
by the deterioration of lung tissue, could contribute to the dilatation of the thoracic 4 

aorta59. This could be due to emphysema's role in damaging elastic fibers in the lungs, 5 

which could then lead to changes in the elasticity of the aortic wall60. Such alternations 6 

could cause the thoracic aorta to dilate or balloon, thus increasing the risk of both aortic 7 

aneurysm and abdominal aortic abnormalities59. These findings help elucidate the 8 

potential biological mechanisms driving these causal relationships. 9 

 10 

Alternatively, structural and functional abnormalities within the heart may escalate the 11 

risk of multi-organ diseases, considering the heart’s role in pumping blood to all other 12 

organs to sustain their functions61. We examined this direction by treating CMR traits as 13 

exposure variables and clinical endpoints as the outcomes. After Bonferroni adjustment 14 

(P < 6.85´10-6), we identified 27 significant causal pairs, 25 related to heart-related 15 
diseases and 2 to autoimmune diseases (Figs. 4D-G, S17, and Table S4). For example, the 16 

global peak circumferential strain was positively correlated with heart failure and 17 

antihypertensive medication use (|b|>0.51, P < 8.49´10-8), whereas the LV ejection 18 

fraction exerted a negative causal effect on these conditions (|b|>0.55, P < 1.12´10-6). In 19 
addition to heart-related diseases, heart structural alternations also influenced diseases 20 

of autoimmune origin. For example, the right ventricular end-systolic volume negatively 21 

affected autoimmune diseases as defined by FinnGen27 (|b|>0.18, P < 3.10´10-6) (Figs. 22 
4D and S18). In summary, we discovered causal relationships between CMR traits and 23 

heart-related diseases, which generally exhibited bidirectionality. Furthermore, we 24 

elucidated the inter-organ causal relationships between the heart and other organs. 25 

 26 

Causal genetic links between abdominal imaging biomarkers and clinical outcomes 27 

We first investigated the impact of multi-organ diseases on abdominal imaging 28 

biomarkers, encompassing the volume or iron content of organs like the spleen, kidney, 29 

liver, lung, and pancreas8. At the Bonferroni significance level (P < 6.69´10-5), we 30 
identified 51 significant causal pairs from multi-organ diseases to abdominal imaging 31 

biomarkers. Among these, liver imaging biomarkers were the most affected (26/51). 32 
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Brain-related diseases emerged as the most common in all significant findings (35/51), 1 

succeeded by heart-related diseases (7/51), rheumatoid endpoints (4/51), diseases of the 2 

eye and adnexa (3/51), and autoimmune diseases (2/51) (Figs. 5A-E, S19, and Table S5). 3 

These findings corroborated ongoing research concerning the interplay between the 4 

brain and abdominal organs, such as the brain-gut connection62-64, brain-kidney 5 

connection65,66, and brain-liver connection67.  6 

 7 

Alzheimer’s disease and dementia were consistently observed to have causal 8 

relationships with various abdominal imaging biomarkers, such as the percent liver fat 9 

(|b|>0.37, P < 4.96´10-6), liver volume (|b|>0.03, P < 5.88´10-5), and adipose tissue 10 

measurement (|b|>0.06, P < 3.13´10-5, and see Figs. 5A and 5C). Apart from Alzheimer’s 11 

disease and dementia, several other brain-related diseases were found to potentially 12 

affect abdominal organs. These included mental and behavioral disorders due to alcohol 13 

and psychoactive substance use, and sleep apnoea. For example, sleep apnoea impacted 14 

various abdominal traits, such as the liver volume (|𝛽|>0.11, P < 2.80´10-5) and kidney 15 

volume (|b|>0.23, P < 2.57´10-6, and see Fig. 5B). Sleep apnoea may contribute to renal 16 
damage via mechanisms such as ischemic stress, hemodynamic changes, or intermediary 17 

conditions like hypertension, which may result in early chronic kidney disease68,69. Several 18 

heart-related diseases also genetically influenced abdominal organs. For example, heart 19 

failure and the use of antihypertensive medication could lead to an increase in spleen 20 

volume (|b|>0.004, P < 2.66´10-6). It’s well-established that heart splenic enlargement 21 
often results from blood stasis and right heart disease frequently coincides with 22 

splenomegaly70. Atherosclerosis was found to be causally linked to pancreas iron content, 23 

a finding also supported by clinical evidence71,72. 24 

 25 

Beyond brain and heart-related diseases, we also observed causal effects from other 26 

diseases, such as autoimmune diseases on spleen volume and liver iron content. The 27 

spleen, as the largest immune organ in the body, may become enlarged due to various 28 

rheumatic and immune system diseases including systemic lupus erythematosus, Felty's 29 

syndrome, sarcoidosis, and autoimmune hepatitis73-76. We found a causal connection 30 

between liver iron content and both autoimmune and rheumatological diseases 31 

(|b|>0.10, P < 3.02´10-5). Excessive iron ions have been observed to deposit in tissues 32 
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affected by autoimmune diseases, such as brain tissues of multiple sclerosis patients and 1 

the synovial fluid of patients with rheumatoid arthritis77. Additionally, we observed 2 

disorders of the choroid and retina, along with the eye and adnexa diseases, to be causally 3 

connected to liver iron content (|b|>0.10, P < 6.48´10-5, and refer to Figs. 5A and S20). 4 
Metal, including iron, tends to accumulate in human ocular tissues, notably in the choroid 5 

and retinal pigment epithelium78. 6 

 7 

Next, we tested the opposite direction that abdominal imaging biomarkers as exposure 8 

variables and multi-organ diseases as outcomes. At the Bonferroni significance level (P < 9 

6.69´10-5), we identified 55 significant pairs, with heart-related diseases being the most 10 
common (34/55). These were followed by brain-related diseases (11/55), diseases 11 

marked as autoimmune origin (2/55), diseases of the eye and adnexa (5/55), and diseases 12 

of the genitourinary system (3/55) (Figs. 5D-E, S21, and Table S5). For example, pancreas 13 

fat was found to have a causal impact on deep vein thrombosis of the lower extremities 14 

and pulmonary embolism (|b|>0.38, P < 1.04´10-12). Reduction in pancreatic fat content 15 
might directly enhance cellular function and insulin secretion rate, which could influence 16 

triglyceride levels and blood flow79. Consequently, we found that larger liver, spleen, and 17 

kidney volumes were all causally linked to heart-related diseases (Figs. 5D and S22). 18 

Specifically, a larger liver volume was causally linked to hypertensive diseases and 19 

hypertension (|b|>0.13, P < 1.19´10-10); a larger kidney volume was causally related to 20 

an increased risk of stroke (|b|>0.25, P < 3.33´10-5); and a larger spleen volume had 21 
causal effects on a range of heart-related diseases, including coronary angioplasty 22 

(|b|>0.14, P < 4.94´10-7), coronary atherosclerosis (|b|>0.07, P < 6.94´10-10), and 23 

peripheral artery diseases (|b|>0.21, P < 4.98´10-5). Kidney diseases, especially nephrotic 24 
syndrome, often lead to thrombotic and embolic complications, increasing the risk of 25 

stroke, due to platelet over-activation and the use of diuretics and glucocorticoids that 26 

can exacerbate hypercoagulability80-82. For brain-related disorders, we observed causal 27 

effects from liver volume to alcohol use disorder, as well as mental and behavioral 28 

disorders due to alcohol and psychoactive substance use. In addition, percent liver fat 29 

was causally linked with Alzheimer’s disease, dementia, and psychiatric diseases. Prior 30 

studies have reported that non-alcoholic fatty liver disease may contribute to 31 

neurological conditions such as cognitive impairment and memory loss via pathways of 32 
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insulin resistance, inflammation, and excessive cytokine secretion83-86. In conclusion, we 1 

found that brain-related disorders can lead to changes in abdominal organs, and that 2 

these bidirectional relationships are observed in both neurodegenerative and psychiatric 3 

disorders. Conversely, various abdominal organs were found to be causally linked to 4 

heart-related diseases.  5 

 6 

Causal genetic links between skeleton DXA traits and clinical outcomes  7 

We first identified the causal effects of multiple organ diseases on DXA-derived skeleton 8 

traits3. At the Bonferroni significance level (P < 3.39´10-5), we found compelling evidence 9 
that multi-organ diseases impacted human skeleton health. The majority of these 10 

diseases were heart-related diseases (6/12) and nervous system (4/12), with rheumatic 11 

disease (1/12) and diseases of the genitourinary system (1/12) also having an impact (Fig. 12 

S23 and Table S6). Carpal tunnel syndrome (|b|>0.0007, P < 6.25´10-8) and sleep apnoea 13 

(|b|>0.001, P < 6.35´10-8) were causally related to a higher average forearm length. 14 

Carpal tunnel syndrome occurs when the median nerve, which extends from the forearm 15 

to the palm of the hand, is compressed, impacting the wrist-to-forearm ratio87,88. It has 16 

been observed that oral appliance therapy89,  an effective treatment of sleep apnea, is 17 

associated with skeletal changes90. Moreover, disorders of the nerve, nerve root, and 18 

plexus disorders were causally linked with higher average tibia length (|b|>0.001, P < 19 

2.78´10-5), which aligns with the previous finding that a specific type of plexus disorder, 20 

the lumbosacral plexus disorder, is associated with the lower leg91. Heart-related diseases 21 

also had causal effects on several DXA traits. For example, coronary heart disease had a 22 

negative causal effect on average tibia length (|b|>0.0002, P < 2.50´10-5), and a positive 23 

causal effect on hip width (|b|>0.0004, P < 1.68´10-5). Additionally, gonarthrosis affected 24 

the average tibia length (|b|>0.0005, P < 1.69´10-5) (Figs. 6A and S24). 25 
 26 

The skeletal system serves as the foundational support for the human body, and as such, 27 

skeletal abnormalities could potentially contribute to the risk of multi-organ diseases. We 28 

identified 17 causal pairs at the Bonferroni significance level (P < 3.39´10-5). Over half 29 

(10/17) of these results were related to the heart, with the remainder pertaining to 30 

rheumatic disease (3/17), diseases of the eye and adnexa (2/17), interstitial lung diseases 31 

(1/17), and diseases of the genitourinary system (1/17) (Fig. S23 and Table S6). Average 32 
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tibia length was causally linked to coxarthrosis (|b|>30.03, P < 3.11´10-9), gonarthrosis 1 

(|b|>19.39, P < 3.18´10-7), and other rheumatological endpoints (|b|>13.12, P < 2.74´10-2 
5). There is evidence that leg length discrepancy could lead to issues with lower limb 3 

biomechanics, such as gonarthrosis, coxarthrosis, and other lower limb symptoms92,93. 4 

Torso length was found to causally affect heart-related issues, such as coronary 5 

angioplasty (|𝛽|>38.85, P < 9.45´10-5), coronary atherosclerosis (|b|>22.94, P < 1.22´10-6 
5), hard cardiovascular diseases (|b|>18.12, P<1.30´10-5), and ischemic heart diseases 7 

(|b|>30.99, P < 1.33´10-5). Previous studies examining the relationship between skeletal 8 

length and heart diseases have primarily focused on leg length or overall body height, 9 

generally reporting negative associations94,95. Consistent with these associations, we 10 

found that a long torso can lead to a higher risk of heart disease. We also observed that 11 

a higher average tibia length is causally linked to a lower risk of hypertension (|b|>6.46, 12 

P < 1.27´10-7), which is in line with previous findings96 (Figs. 6B and S25). In conclusion, 13 
we found that rheumatoid endpoints (such as gonarthrosis) and diseases of the nervous 14 

system (such as nerve, nerve root, and plexus disorders) had a significant impact on bone 15 

health. Conversely, skeletal traits, like torso length, demonstrated a causal link with heart 16 

diseases. 17 

 18 

Discussion  19 

Observational studies have identified numerous links between various imaging-derived 20 

phenotypes and clinical outcomes. However, these associations are often influenced by 21 

residual confounding, complicating the accurate inference of causal effect sizes 97. MR 22 

allows for the inference of causal relationships between exposure and outcome variables. 23 

MR leverages the natural and random assortment of genetic variants during meiosis, 24 

making these variants ideal instrumental variables for discerning causal effects. In the 25 

present study, we evaluated the causal relationship between 402 multi-organ imaging 26 

biomarkers and 88 clinical outcomes through bidirectional MR. To circumvent the issue 27 

of sample overlap98, which can bias the causal effect and has been overlooked in many 28 

current MR-based studies, we utilized a two-sample MR design and sourced our imaging 29 

and clinical data from different large-scale cohorts. The interconnected nature of our 30 

organ systems means that diseases often affect more than one part of the human body.  31 

The brain and heart are particularly critical, with the brain controlling a variety of 32 
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functions, including reactions, emotions, vision, memory, and cognition99,100, while the 1 

heart acts as the body’s engine, pumping oxygen and nutrientrich blood to other organs. 2 

Dysfunctions in various organs can potentially have detrimental effects on the brain and 3 

heart, and vice versa. Besides connections to the brain and heart, we also uncovered 4 

many other causal relationships across different organs. A visualization of the interactions 5 

across different organ systems can be found in Figure 1B. We will delve into these specific 6 

findings in more detail below. 7 

 8 

Intra-brain causal connections. 9 

Alternations in brain structure and function were found to be closely linked with brain 10 

disorders, with some of these relationships appearing to be bidirectional. We consistently 11 

identified causal connections between brain imaging biomarkers and a variety of 12 

psychiatric disorders or neurological diseases, such as Alzheimer’s disease, dementia, 13 

mood disorder, and sleep apnea. For example, Alzheimer’s disease and dementia 14 

exhibited bidirectional causal relationships with fMRI traits and DTI parameters. Prior 15 

studies have consistently reported that resting fMRI connectivity patterns are disrupted 16 

in patients with Alzheimer’s disease101,102, particularly in brain regions involved in 17 

memory and cognitive function103,104.  18 

 19 

Brain-heart causal connections. 20 

Despite the increasing number of association studies investigating the brain-heart 21 

interaction39,105, causal genetic links within these systems remain largely uncharted. In 22 

our research, we identified causal connections from several heart-related diseases such 23 

as hypertension, hypertensive diseases, heart failure, and peripheral artery disease, to 24 

DTI parameters in white matter tracts. These tracts include the SCR, ALIC, BCC, GCC, the 25 

splenium of corpus callosum, and the retrolenticular part of the internal capsule (RLIC). 26 

Additionally, these diseases were also linked to regional brain volumes, such as grey 27 

matter and left amygdala. Hypertension can lead to damage in the brain’s blood vessels106, 28 

which may, in turn, cause a reduction in the volume of grey matter in certain brain 29 

regions107. This could potentially result in cognitive impairment and an increased risk of 30 

developing dementia. Hence, effective management of hypertension through lifestyle 31 

adjustments and medication could help mitigate these adverse effects on the brain. 32 



 14 

Conversely, we found that alterations in brain structure, such as deformations in the left 1 

ventral DC and left basal forebrain, contributed to heart-related diseases like 2 

hypertension. Changes in the left superior temporal region were also linked to heart 3 

failure. These associations could be attributed to the brain's essential function in 4 

regulating blood pressure through a complex network involving multiple regions and 5 

pathways108,109. 6 

 7 

Bidirectional connections between the brain and abdominal organs. 8 

Brain abnormalities were found to influence multiple abdominal organs as well as the 9 

skeletal system. For example, Alzheimer’s disease and dementia were observed causally 10 

influencing percent liver fat. Additionally, neurological diseases (defined by FinnGen27) 11 

exhibited a positive causal effect on lung volume. This could be attributed to the fact that 12 

neurological diseases, such as multiple sclerosis, Parkinson's disease, amyotrophic lateral 13 

sclerosis, and Huntington’s disease, can induce respiratory muscle weakness110,111. This 14 

weakness could subsequently influence lung volume and functionality. We also found 15 

that sleep apnoea may cause an increase in spleen and kidney volume. This could be due 16 

to the heightened workload on the spleen to filter blood and remove damaged red blood 17 

cells. Additionally, the low oxygen levels associated with sleep apnea can lead to an 18 

increase in the number of red blood cells in the body, which could contribute to 19 

splenomegaly and a change in kidney volume. Furthermore, sleep apnea was observed to 20 

be causally associated with an increase in pancreas iron content.  This could potentially 21 

be due to the decreased oxygen levels that accompany sleep apnea, resulting in an 22 

increase in iron absorption within the body. Excess iron in the pancreas can lead to 23 

oxidative stress and inflammation112,113, which can contribute to the development of 24 

pancreatic damage and dysfunction114-116. In addition to the previously mentioned 25 

neurological diseases, our study revealed that mental and behavioral disorders related to 26 

alcohol use can cause an increase in liver fat percentage. It is well documented that 27 

individual suffering from alcohol use disorder are more prone to develop alcoholic fatty 28 

liver disease117. Beyond brain-related diseases, alternations in brain structure could also 29 

contribute to a heightened risk of diseases in other organs. For example, changes in the 30 

right postcentral gyrus were causally linked to COPD. Some studies suggest that chronic 31 
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stress and anxiety, which are associated with changes in brain structure, may contribute 1 

to the development or exacerbation of respiratory conditions such as COPD118,119.  2 

Conversely, brain imaging biomarkers or disorders were causally affected by various 3 

diseases of other organs or systems. A high percentage of liver fat led to a reduced risk of 4 

Alzheimer’s disease and dementia. Past studies120,121 have reported associations between 5 

the two and our results aligned with the most recent study122. Further research is 6 

necessary to elucidate the underlying pathophysiological mechanism. Brain imaging 7 

biomarkers were impacted by diseases across multiple organs, although some may affect 8 

the brain indirectly, perhaps via the mediating effects of anxiety and depression. For 9 

instance, diseases of the genitourinary system (such as ovarian cyst and menorrhagia) 10 

causally influenced brain structural features. Ovarian cysts can cause hormonal 11 

imbalances due to the hormones they produce123. These hormonal shifts can prompt a 12 

variety of symptoms, including mood swings, anxiety, and depression124, which can 13 

impact brain function and emotional regulation. Diseases of the eye and adnexa 14 

(conjunctivitis) demonstrated genetic causal effects on functional connectivity traits. 15 

Conjunctivitis can result from viral or bacterial infections,  potentially leading to 16 

systemic inflammation in the body125. Such systemic inflammation has been linked to 17 

changes in brain function and structure, and may influence brain fMRI traits126,127.  18 

 19 

Moreover, asthma influenced regional brain volumes. A common mechanism through 20 

which asthma affects the brain is via the emotional and psychological stress associated 21 

with managing a chronic illness. Anxiety, stress, and depression, which are often 22 

experienced by individuals with asthma, can result in alterations to brain structure. Prior 23 

studies have demonstrated that individuals with asthma may have diminished cognitive 24 

function, including impaired memory and attention, as well as changes in brain activity 25 

patterns during cognitive tasks128,129. Notably, autoimmune diseases (as defined by 26 

FinnGen27) impacted brain imaging biomarkers, such as DTI parameters of the RLIC and 27 

SCR. Multiple sclerosis, an autoimmune disease affecting the central nervous system, can 28 

cause damage to the myelin sheath that surrounds axons and can occur in various brain 29 

regions130,131, including the internal capsule. This damage can disrupt neural connections 30 

passing through the anterior limb, leading to symptoms like weakness, spasticity, and 31 

difficulty with balance and coordination. In rare autoimmune diseases, such as 32 
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neuromyelitis optica132 and autoimmune encephalitis, inflammation, and damage can 1 

occur in the brain. The resulting neurological symptoms can vary based on the severity 2 

and location of the damage133,134. Additionally, autoimmune diseases causing systemic 3 

inflammation, such as rheumatoid arthritis and lupus, could potentially affect the brain135 4 

and white matter tracts136,137. Chronic inflammation can lead to changes in the 5 

microstructure of white matter tracts, resulting in alterations in neural connectivity and 6 

function138,139. 7 

 8 

Intra-heart causal connections. 9 

Bidirectional causal relationships were observed between heart-related diseases and 10 

CMR traits. Hypertension and hypertensive diseases were found to causally influence 11 

several CMR traits across different heart chambers and aorta regions. Conversely, 12 

alternations in CMR traits were suggested to potentially result in heart diseases. These 13 

findings corroborate with existing clinical evidence. For example, hypertension can lead 14 

to enlargement of the LA, a condition known as left atrial hypertrophy140,141. This 15 

enlargement can result in various complications, including atrial fibrillation, heart failure, 16 

and stroke142. In the case of atrial fibrillation, the electrical signals that regulate the 17 

heartbeat become erratic, causing an irregular and often repaid heartbeat. Over time, this 18 

persistent irregularity can further enlarge and weaken143. 19 

 20 

Bidirectional connections between the heart and abdominal organs. 21 

Heart diseases were found to be causally linked with various multi-organ imaging 22 

biomarkers. For instance, heart failure was observed to result in an increase in spleen 23 

volume. When the heart is unable to pump blood effectively, it can cause a rise in pressure 24 

from the veins leading to the spleen. This increased pressure can cause the spleen to 25 

enlarge, a condition known as splenomegaly144. In addition, the congestion of blood in 26 

the liver, which can occur with heart failure, can also contribute to splenomegaly.  27 

Conversely, a larger spleen volume can lead to heart failure. An enlarged spleen can 28 

intensify the workload on the heart, leading to further deterioration of heart failure 29 

symptoms.  30 

 31 
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The pancreas was also identified to have a causal effect on the heart. For example, excess 1 

pancreas fat was associated with a higher risk of developing deep vein thrombosis of 2 

lower extremities and pulmonary embolism. Pancreatic steatosis, a condition where fat 3 

accumulates in the pancreas, is linked with several metabolic abnormalities, including 4 

insulin resistance and inflammation, which can contribute to the development of 5 

cardiovascular diseases145,146. The proinflammatory and procoagulant effects of excess 6 

pancreatic fat could potentially contribute to an increased risk of deep vein thrombosis. 7 

The heart and lungs are intricately connected, working in conjunction as part of the 8 

cardiovascular system. The lungs are responsible for inhaling oxygen from the air and 9 

transferring it into the bloodstream, while the heart pumps the oxygen-rich blood 10 

throughout the body, nourishing cells and tissues. We identified strong evidence of causal 11 

links between COPD and CMR traits of DAo. A hallmark of emphysema is the degradation 12 

of elastic fibers via proteolysis147, which can potentially cause enlargement of the thoracic 13 

aorta.  14 

 15 

The spleen, as the body’s largest immune organ, has been found to be closely related to 16 

diseases marked as autoimmune origin. Our study uncovered robust evidence of a genetic 17 

causal relationship between spleen volume and autoimmune diseases, as defined by 18 

FinnGen27, including conditions like rheumatoid arthritis, systemic lupus erythematosus, 19 

and systemic sclerosis. There are documented instances where autoimmune diseases 20 

affect the spleen. For instance, conditions such as lupus or rheumatoid arthritis can result 21 

in splenomegaly, a condition that is often triggered by inflammation or the accumulation 22 

of abnormal immune cells within the spleen148,149. 23 

 24 

Skeleton DXA traits. 25 

We also found genetic causal connections between DXA-derived skeleton traits and 26 

multiple organ diseases. Skeleton traits were shown to be causally affected by diseases 27 

of the nervous system, rheumatic disease, and disorders of the nerve, nerve root and 28 

plexus. Heart diseases can also influence the skeletal system by influencing bone health. 29 

It has been observed that individuals with heart disease, especially those suffering from 30 

heart failure, have an increased risk of osteoporosis and bone fractures149,150. This can be 31 

attributed to various factors. For example, some medications used to treat heart diseases, 32 
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such as diuretics and steroids, can  increase the risk of osteoporosis151. Additionally, 1 

individuals with heart disease may experience reduced mobility and physical activity, 2 

leading to decreased bone density and strength152. Conversely, skeleton problems could 3 

contribute to numerous organ diseases, with heart conditions being the most prevalent 4 

in our analysis. A longer torso may lead to an increased risk of coronary heart disease. We 5 

also observed that a higher average tibia length was causally linked to a lower risk of 6 

hypertension, a finding that aligns with previous clinical observations96. 7 

 8 

Limitations and conclusions. 9 

Our study does come with several limitations. Firstly, our collection of GWAS summary 10 

statistics was sourced from publicly available databases. Thus, we could not evaluate the 11 

impact of unobserved confounders, such as population stratification, on our results. 12 

Secondly, a common limitation that most existing MR methods share is that they require 13 

several model assumptions. This may result in model misspecifications and issues related 14 

to data heterogeneity when integrating data from different data resources153. We have 15 

systematically applied quality control measures and conducted sensitivity analyses in our 16 

study. Future research implementing more advanced MR methods may relax some of 17 

these model assumptions154,155. Furthermore, MR studies are designed to examine the 18 

effects of lifetime exposure factors on outcomes, not interventions within a specified 19 

period. As a result, our findings may be interpreted differently than the rigorous results 20 

obtained from randomized controlled trials. Therefore, any clinical interventions based 21 

on these MR findings should be pursued. 22 

 23 

In conclusion, we used two-sample bidirectional MR analyses to comprehensively explore 24 

the multi-organ causal connections between 88 clinical outcomes and 402 image-derived 25 

phenotypes of various organ systems. Our results revealed robust genetic evidence 26 

supporting causal connections within and across multiple organs. This will be 27 

instrumental in unraveling complex pathogenic mechanisms and will contribute to the 28 

early prediction and prevention of multi-organ diseases from a whole-body perspective. 29 

 30 

 31 

METHODS 32 
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Methods are available in the Methods section. 1 

Note: One supplementary pdf file and one supplementary table zip file are available. 2 
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 16 

METHODS 17 

Multi-organ imaging biomarkers.  18 

The imaging data were sourced from the UK Biobank (UKB) study, which enrolled 19 

approximately 500,000 individuals aged between 40 and 69 from 2006 to 2010 20 

(https://www.ukbiobank.ac.uk/). These multi-organ imaging data were collected from 21 

the ongoing UKB imaging study project (https://www.ukbiobank.ac.uk/explore-your-22 

participation/contribute-further/imaging-study), which aims to collect brain, heart, and 23 

abdomen scans from 100,000 participants. Ethical approval for the UKB study was 24 

secured from the North West Multicentre Research Ethics Committee (approval number: 25 

11/NW/0382).  26 

 27 

Studies of brain and heart diseases usually rely on magnetic resonance imaging (MRI) 28 

scans, which are well-established clinical endophenotypes. Cardiovascular magnetic 29 

resonance imaging (CMR) is a set of MRI techniques that are designed to assess 30 

ventricular function, cardiovascular morphology, myocardial perfusion, and other cardiac 31 

functional and structural features156,157. They have been frequently used to reveal heart-32 



 34 

related issues clinically. The CMR traits used in the paper were originally generated from 1 

the raw short-axis, long-axis, and aortic cine images using the state-of-the-art heart 2 

imaging segmentation and feature representation framework38,158,159. We divided the 3 

generated 82 CMR traits into 6 categories. The first two are aortic sections, namely 4 

ascending aorta (AAo) and descending aorta (DAo), which serve as the main ‘pipe’ in 5 

supplying blood to the entire body. The other four are the global measures of 4 cardiac 6 

chambers, including the left ventricle (LV), right ventricle (RV), left atrium (LA), and right 7 

atrium (RA), which altogether manage the heartbeat and blood flow. There are also some 8 

other traits, such as regional phenotypes of the left ventricle myocardial-wall thickness 9 

and strain (Table S1). The summary-level GWAS data of these 82 CMR traits were 10 

obtained from Zhao, et al. 39.  11 

 12 

Brain MRI provides detailed information about brain structure and function160, such as 13 

abnormal growth, healthy aging, white matter diseases, structural issues, and functional 14 

abnormalities. In this paper, the summary-level GWAS data were collected from recent 15 

multi-modal image genetic studies, including regional brain volumes from structural 16 

MRI21,161 (sMRI), diffusion tensor imaging (DTI) parameters from diffusion MRI23,162 (dMRI), 17 

and functional activity (that is, amplitude37) and functional connectivity phenotypes from 18 

resting functional MRI25 (resting fMRI). In sMRI, we used ANTs163 to generate regional 19 

brain volumes for cortical and subcortical regions and global brain volume measures. In 20 

dMRI, we used the ENIGMA-DTI pipelines164,165 to generate tract-averaged parameters 21 

for fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, and mode of 22 

anisotropy in major white matter tracts and across the whole brain. For resting fMRI, we 23 

extracted phenotypes from brain parcellation-based analysis. We used the Glasser360 24 

atlas166, which divided the cerebral cortex into 360 regions in 12 functional networks167. 25 

We considered 90 network-level resting fMRI phenotypes that evaluated interactions and 26 

spontaneous neural activity at rest.  27 

 28 

The 11 imaging biomarkers from abdominal MRI were derived by Liu., et al8 using deep 29 

learning methods in terms of volume, fat, and iron in several organs and tissues, such as 30 

the liver, spleen, kidney, lung, pancreas, and adipose tissue. Skeleton DXA traits, including 31 

all long bone lengths as well as hip and shoulder width, were derived by Kun., et al3 using 32 
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deep learning methods on whole-body dual-energy X-ray absorptiometry (DXA) images. 1 

All eight skeleton traits have been controlled for height. The heritability of the above 2 

imaging biomarkers can be found in Supplementary Note. 3 

 4 

FinnGen clinical endpoints.  5 

We used 88 clinical endpoints collected by the FinnGen project, which were selected from 6 

the R7 release and with more than 10,000 cases for most of the clinical endpoints 7 

(https://www.finngen.fi/en/access_results). As for some important diseases, such as 8 

Alzheimer’s disease, we set the cutoff of the number of cases to be 6,000. The 88 clinical 9 

endpoints covered diseases from various categories, namely, mental and behavioral 10 

disorders, diseases of the nervous system, diseases of the eye and adnexa, diseases of the 11 

genitourinary system, diseases of the circulatory systems, cardiometabolic endpoints, 12 

diseases marked as autoimmune origin, rheuma endpoints, interstitial lung diseases, 13 

COPD and related endpoints, as well as some unclassified endpoints. The definitions can 14 

be found at https://risteys.finregistry.fi/. The FinnGen data used in our study was 15 

obtained from separate cohorts than those supplying imaging biomarkers, which were 16 

derived from the UKB study, thus ensuring there was no sample overlap. Detailed 17 

information of these 88 clinical variables can be found in Table S2. 18 

 19 

Mendelian randomization analysis.  20 

We examined the genetic causal relationships between the 402 imaging biomarkers (101 21 

brain regional volume traits, 110 brain DTI parameters, 90 network-level fMRI phenotypes, 22 

82 CMR traits, 11 abdominal traits, and 8 skeleton DXA traits) and 88 clinical endpoints. 23 

Prior to conducting the Mendelian randomization (MR) analysis, we conducted standard 24 

preprocessing and quality control procedures. First, we selected genetic variants based 25 

on a significance threshold of 5×10-8 in the exposure GWAS data. To ensure the 26 

independence of the genetic variants used in MR, we implemented LD clumping with a 27 

window size of 10,000 and an r2 threshold of 0.01, using the 1000 Genomes European 28 

ancestry data as a reference panel. We used the TwoSampleMR package 29 

(https://mrcieu.github.io/TwoSampleMR/) for harmonization, which enabled us to 30 

accurately align alleles between the selected variants in the exposure and the reported 31 

effect on the outcome. 32 
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 1 

We assessed the performance of 8 MR methods, which included Inverse variance 2 

weighted (fixed effect), Inverse variance weighted (multiplicative random effect), MR-3 

Egger, Simple Median, Weighted Median, Weighted Mode, DIVW, GRAPPLE, and MR-4 

RAPS40,41,43-48,168, where MR Egger was used as the pleiotropy test. To ensure the reliability 5 

of our results, we implemented several quality control procedures. We excluded causal 6 

estimates that relied on fewer than 6 genetic variants, as a larger number of genetic 7 

variants increases the statistical power of MR analysis46,47. We retained causal pairs that 8 

were significant in at least two out of the eight methods. We also screened for pleiotropy 9 

by using the MR-Egger intercept, the most used method for testing the pleiotropy 10 

assumption. If a causal estimate failed the MR-Egger intercept test, we required that it 11 

have significant results in at least one of the robust MR methods, such as Weighted 12 

Median, Weighted Model, MR-RAPS, or GRAPPLE. Out of 488 significant findings, 81 13 

causal estimates failed the MR-Egger intercept test. However, when we interpreted the 14 

results, we focused on the ones that passed the MR-Egger intercept test. 15 

 16 

Code availability  17 

We made use of publicly available software and tools. Our analysis code will be made 18 

freely available at Zenodo. 19 

 20 

Data availability 21 

We used summary-level GWAS data in this study, which can be obtained from the 22 

FinnGen project (https://www.finngen.fi/en/access_results), BIG-KP (https://bigkp.org/),  23 

Heart-KP (https://heartkp.org/), and project-specific resources detailed in Liu., et al8 and 24 

Kun., et al3. Our multi-organ MR results can be explored at https://mr4mo.org/. 25 

 26 

Figure legends 27 

 28 

Fig. 1 Overview of study design and findings. 29 

(A). An overview of our multi-organ imaging genetic study, investigating 88 clinical 30 

outcomes. We employed diverse imaging biomarkers including multi-modal brain, 31 
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cardiac, abdominal, and skeletal DXA imaging to explore their relationships with the 1 

clinical endpoints. Our study encompasses a comprehensive range of brain imaging 2 

modalities, such as structural MRI, diffusion MRI, and resting-state fMRI. The cardiac 3 

imaging data comprise short-axis, long-axis, and aortic cine images. Volume, iron content, 4 

and percent fat were measured across 6 different abdominal organs and tissues, yielding 5 

in 11 image-derived abdominal phenotypes. Additionally, we included 8 skeleton imaging 6 

biomarkers encompassing long bone lengths as well as hip and shoulder width. (B). A high-7 

level summary of our bidirectional findings. The left panel displayed all the imaging 8 

biomarkers that have been used in the study. The grey arrow demonstrates the main 9 

findings, such as the intra-brain, intra-heart, brain-heart, and brain-abdominal-organs 10 

causal connections. The right panel depicts the intricate web of causal interactions among 11 

various organs as uncovered in our study. Blue arrows signify causal relationships that 12 

involve either the heart or brain, while orange arrows represent causal connections that 13 

do not include the heart or brain. The width of an arrow corresponds to the volume of 14 

findings associated with it. 15 

 16 

Fig. 2 Selected genetic causal effects of clinical outcomes on brain imaging biomarkers. 17 

We illustrated selected significant (P < 5.18´10-6) causal genetic links from clinical 18 
endpoints (Exposure) to brain imaging biomarkers (Outcome), with adjustment for 19 

multiple testing using the Bonferroni procedure. (A). The causal effect of Alzheimer’s 20 

disease on brain imaging biomarkers. (B). The causal effect of dementia on brain imaging 21 

biomarkers. (C). The causal effect of hypertension on brain imaging biomarkers.   The 22 

term 'IDP Category' is used to signify the category of imaging biomarkers, while '#IVs' 23 

stands for the number of genetic variants utilized as instrumental variables. Various MR 24 

methods and their associated regression coefficients are marked with different colors for 25 

easy identification. See Table S1 for data resources of clinical endpoints and Table S2 for 26 

data resources of imaging biomarkers.  27 

 28 

Fig. 3 Selected genetic causal effects of brain imaging biomarkers on clinical endpoints. 29 

We illustrated selected significant (P < 5.18´10-6) causal genetic links from brain imaging 30 
biomarkers (Exposure) to clinical endpoints (Outcome), with adjustment for multiple 31 



 38 

testing using the Bonferroni procedure. (A). The causal effect of brain imaging biomarkers 1 

on Alzheimer’s diseases. (B). The causal effect of brain imaging biomarkers on dementia. 2 

The term 'IDP Category' is used to signify the category of imaging biomarkers, while '#IVs' 3 

stands for the number of genetic variants utilized as instrumental variables. Various MR 4 

methods and their associated regression coefficients are marked with different colors for 5 

easy identification. See Table S1 for data resources of clinical endpoints and Table S2 for 6 

data resources of imaging biomarkers. 7 

 8 

Fig. 4 Selected genetic causal effects between heart imaging biomarkers and clinical 9 

endpoints. 10 

(A). Selected significant (P < 6.85´10-6) causal genetic links from clinical endpoints 11 

(Exposure) to heart imaging biomarkers (Outcome) with adjustment for multiple testing 12 

using the Bonferroni procedure. (B-C). The heart diagram shows the region of the 13 

corresponding IDP when hypertensive diseases and hypertension are the exposure 14 

variables. (D). Selected significant (P < 6.85´10-6) causal genetic links from heart imaging 15 
biomarkers (Exposure) to clinical endpoints (Outcome) with adjustment for multiple 16 

testing using the Bonferroni procedure. (E-G). The heart diagram shows the region of the 17 

corresponding IDP when atrial fibrillation and flutter, heart failure and antihypertensive 18 

medication, as well as hypertension, are the outcome variables. The term 'IDP Category' 19 

is used to signify the category of imaging biomarkers, while '#IVs' stands for the number 20 

of genetic variants utilized as instrumental variables. Various MR methods and their 21 

associated regression coefficients are marked with different colors for easy identification. 22 

See Table S1 for data resources of clinical endpoints and Table S2 for data resources of 23 

imaging biomarkers. 24 

 25 

Fig. 5 Selected genetic causal effects between abdominal imaging biomarkers and 26 

clinical endpoints. 27 

We illustrated selected significant (P < 6.69´10-5) causal genetic links from (A) clinical 28 
endpoints (Exposure) to abdominal imaging biomarkers (Outcome) and (B) abdominal 29 

imaging biomarkers (Exposure) to clinical endpoints (Outcome) with adjustment for 30 

multiple testing using the Bonferroni procedure. The term 'IDP Category' is used to signify 31 
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the category of imaging biomarkers, while '#IVs' stands for the number of genetic variants 1 

utilized as instrumental variables. Various MR methods and their associated regression 2 

coefficients are marked with different colors for easy identification. (C-F). Selected causal 3 

associations between abdominal imaging biomarkers and multi-organ diseases. See Table 4 

S1 for data resources of clinical endpoints and Table S2 for data resources of imaging 5 

biomarkers. 6 

 7 

Fig. 6 Selected genetic causal effects between skeleton imaging biomarkers and clinical 8 

endpoints. 9 

We illustrated selected significant (P < 3.39´10-5) causal genetic links from (A) clinical 10 
endpoints to (Exposure) to skeleton imaging biomarkers (Outcome) and (B) skeleton 11 

imaging biomarkers (Exposure) to clinical endpoints (Outcome) with adjustment for 12 

multiple testing using the Bonferroni procedure. The term 'IDP Category' is used to signify 13 

the category of imaging biomarkers, while '#IVs' stands for the number of genetic variants 14 

utilized as instrumental variables. Various MR methods and their associated regression 15 

coefficients are marked with different colors for easy identification. The skeleton diagram 16 

on the right shows the region of the corresponding IDP. See Table S1 for data resources 17 

of clinical endpoints and Table S2 for data resources of imaging biomarkers. 18 

  19 
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