
1 

 

Title: Parkinson’s disease-associated genetic variants synergistically shape brain 

networks 

Authors: Zhichun Chen,a,b Bin Wu,c Guanglu Li,a Liche Zhou,a Lina Zhang,d and Jun Liua,* 

aDepartment of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai 

Jiao Tong University School of Medicine, Shanghai, 200025, China 

bDepartment of Neurology, The Second Xiangya Hospital, Central South University, 139 

Renminzhong Road, Changsha, 410011, China 

cDepartment of Neurology, Xuchang Central Hospital affiliated with Henan University of 

Science and Technology, Henan, 461000, China 

dDepartment of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, 

200025, China 

*Corresponding author at: Department of Neurology and Institute of Neurology, Ruijin 

Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, 

China.  

E-mail address: jly0520@hotmail.com (J. Liu). 

 

Author Emails: 

Zhichun Chen: airudihou@qq.com 

Bin Wu: wubindoctor@126.com 

Guanglu Li: 372933704@qq.com 

Liche Zhou: zlclich-47@sjtu.edu.cn 

Lina Zhang: zhanglina@shsmu.edu.cn 

Jun Liu: jly0520@hotmail.com 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2022.12.25.22283938doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.12.25.22283938


2 

 

Summary 

Background Over 90 genetic variants have been found to be associated with Parkinson’s 

disease (PD) in genome-wide association studies, however, the neural mechanisms of 

previously identified risk variants in PD were largely unexplored. The objective of this study 

was to evaluate the associations between PD-associated genetic variants and brain gene 

expressions, clinical features, and brain networks.  

Methods PD patients (n = 198) receiving magnetic resonance imaging examinations from 

Parkinson’s Progression Markers Initiative (PPMI) database were included in the analysis. 

The effects of PD-associated genetic variants assayed in PPMI database on clinical 

manifestations and brain networks of PD patients were systematically evaluated.  

Findings Most associations between 14 PD-associated risk variants and clinical 

manifestations of PD patients failed to reach the stringent p-value threshold of 0.00026 

(0.05/14 clinical variables x 14 variants). Shared and distinct brain network metrics were 

significantly shaped by PD-associated genetic variants. Small-worldness properties at the 

global level and nodal metrics in caudate and putamen of basal ganglia network were 

preferentially modified. Small-worldness properties in gray matter covariance network 

mediated the effects of OGFOD2/CCDC62 rs11060180 on motor assessments of PD patients.  

Interpretation Our findings support that both shared and distinct brain network metrics are 

shaped by PD-associated risk variants. Small-worldness properties modified by 

OGFOD2/CCDC62 rs11060180 in gray matter covariance network are associated with motor 

severity of PD patients. Future studies are encouraged to explore the underlying mechanisms 

of PD-associated risk variants in PD pathogenesis.  

Funding This work was supported by grants from the National Key Research and 

Development Program (2016YFC1306505) and the National Natural Science Foundation of 

China (81471287, 81071024, 81171202).  

Keywords: Parkinson’s disease; genetic variant; brain networks; graphical analysis; clinical 

manifestations. 
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Introduction 

Parkinson's disease (PD) is the most common movement disorder and the second most 

common neurodegenerative disease in the world. Since PD was first reported in 1817, the 

study of PD has a history of more than 200 years. However, PD patients remain incurable 

now due to the limited understanding of PD pathogenesis. Recent studies have shown that 

genetic variation is a fundamental mechanism to drive the initiation and progression of PD.1-9 

Additionally, a rapidly growing number of genes associated with PD risk have been detected, 

including GPNMB and MAPT.10-12 However, the specific roles of previously identified risk 

genes in PD pathogenesis are still unclear. With the discovery of new risk genes in PD, in 

recent years, deciphering the biological functions of PD-associated risk genes and their roles 

in the occurrence and progression of PD at the molecular, cellular, neural circuit, and 

behavior levels has continuously driven the new research breakthroughs in PD.2-9 Over the 

past decade, both the physiological and pathological functions of a range of  PD-associated 

risk genes have been dissected, including SNCA,7,13-15 Parkin,2-5 PINK1,4-6 LRRK2,16-21 

TMEM175,9 and ATP13A2.8 These breakthroughs deepen our understanding of the 

neurodegenerative process of PD and lay the foundation for the exploration of new 

therapeutic targets. 

     Currently, one of our main challenges is to investigate the biological functions and 

pathogenic or protective roles of numerous single nucleotide polymorphisms (SNPs) that 

have been identified in PD. However, it is time-consuming and laborious to study the 

biological functions and its specific roles in disease pathogenesis for each PD-associated risk 

SNP. Previously, several SNPs have been reported to modify clinical features of PD patients, 

including motor symptoms, non-motor symptoms, striatal dopamine transporter (DAT) 

uptake, and biomarkers in cerebrospinal fluid (CSF).11,20,22-29 Through expression quantitative 

trait loci (eQTL) analysis, studies have also reported some SNPs conferring risk of PD were 

associated with brain gene expressions.10,30-32 Due to these findings, there is no doubt that 

those SNPs significantly associated with clinical features and brain gene expressions are 

more likely to be functional genetic variants in PD. Therefore, with the eQTL analysis and 

association analysis between clinical assessments and genotypes of PD-associated risk SNPs, 

we can screen out more meaningful SNPs that deserved to be further investigated.  

     Over the past three decades, the methodologies of functional magnetic resonance imaging 

(fMRI) have been utilized to identify the structural or functional presentations associated with 
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specific genetic variants.33-35 In addition, recent studies have combined the functional and 

structural network analysis to identify network alterations associated with genetic variants 

and clinical features of diseases.36-39 In familial PD, PD-associated mutated genes, such as 

GBA and LRRK2, have been shown to significantly modify the brain networks.40-42 Recently, 

we showed that a PD-associated risk SNP, MAPT rs17649553, is associated with small-world 

topology of structural network in PD.43 Nevertheless, whether PD-associated risk genes 

affected brain networks in sporadic PD remain largely elusive. Accumulated evidence has 

shown that network metrics in both functional network and structural network were 

significantly associated with motor and non-motor symptoms of PD patients.44-48 Therefore, 

brain networks modified by PD-associated risk genes may contribute to the heterogeneity of 

clinical features of PD patients.43  

    In this study, our hypothesis is that brain network metrics can be shaped by PD-associated 

risk genes and mediate the effects of PD-associated genetic variants on clinical 

manifestations of PD patients. We determine to combine the eQTL analysis, clinical 

phenotype association analysis, and neuroimaging analysis to respectively assess how the 

PD-associated risk genes affect the brain gene expressions, clinical manifestations, and brain 

network metrics in PD patients from Parkinson’s Progression Markers Initiative (PPMI) 

database (www.ppmi-info.org/data). Specifically, our objectives include: (i) to identify PD 

risk-associated SNPs with significant eQTL effects from 72 SNPs assayed in PPMI database. 

(ii) to examine whether PD-associated risk variants were associated with the clinical 

assessments of PD patients; (iii) to determine whether PD-associated genetic variants modify 

the brain functional and structural network metrics; (iv) to explore the associations between 

brain network metrics and clinical assessments of PD patients; (v) to investigate whether the 

functional and structural network metrics mediate the effects of PD-associated genetic 

variants on clinical assessments of PD patients.  

Methods 

Participants 

The data used in the preparation of this Article were obtained from PPMI database, which is a 

robust open-access online resource platform, providing clinical, imaging, ‘omics, genetic, 

sensor, and biomarker data set to deepen the understanding of PD and speed scientific 

breakthroughs and new treatments. The data collection protocols for PPMI have been 
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published and available online (http://www.ppmi-info.org/).49,50 The PPMI study was 

approved by institutional review boards at each participating site and was conducted in 

accordance with the Declaration of Helsinki and the Good Clinical Practice (GCP) guidelines 

after approval of the local ethics committees of the participating sites. All participants 

completed written informed consent before they were enrolled into PPMI study. The 

inclusion criteria for participants in PPMI cohort has been published previously.50 

Specifically, PD participants were included if they met the criteria below: (i) The participant 

was diagnosed with PD based on the diagnostic criteria of International Parkinson and 

Movement Disorder Society;51 (ii) The participant underwent 3D T1-weighted MPRAGE 

imaging or resting-state fMRI or diffusion tensor imaging (DTI); (iii) The participants 

received whole exome sequencing on DNA samples extracted from the whole blood; (iv) The 

participants didn’t carry genetic mutations of familial PD demonstrated by whole exome 

sequencing; (v) The participants were not diagnosed with other neurological diseases except 

PD; (vi) The participants had no evidence of structural abnormalities in T1-weighted or T2-

weighted images, which were visually inspected by the investigators of this study (Jun Liu 

and Zhichun Chen). The PD patients were excluded if they were diagnosed with dementia or 

treated with neuroleptics, anticoagulants, metoclopramide, α-methyldopa, methylphenidate, 

reserpine, or amphetamine derivative. Finally, a total of 198 PD patients were identified to 

have 3D T1 images. Of these PD patients, one hundred and forty-six of them underwent DTI 

examinations and 83 patients having DTI images also received resting-state fMRI. In 

addition, almost all the patients performed iodine-123-labelled ioflupane SPECT to measure 

DAT activity. Volume of interest were placed on the left and right caudate, left and right 

putamen, and the occipital cortex (reference tissue) to extract the count densities for each of 

the four striatal regions.50 Striatal binding ratios (SBR) of caudate and putamen were 

calculated as (target region/reference region)-1.50 We downloaded all the SBR data from the 

PPMI database. Most of the PD patients also got tested for indices in CSF, including levels of 

β-amyloid (Aβ), α-syn (α-synuclein), p-tau, and tau, which were also downloaded from PPMI 

database. The control participants were included if they met the inclusion criteria below: (i) 

They were 30 years old or above; (ii) They received clinical assessments that PD participants 

examined; (iii) They were relatively healthy and not diagnosed with active, clinically 

manifested neurological disease. The exclusion criteria for control participants include: (i) 

They had first-degree relatives with PD; (ii) They carried genetic mutations of PD; (iii) They 

were treated with neuroleptics, anticoagulants, metoclopramide, α-methyldopa, 
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methylphenidate, reserpine, or amphetamine derivative. Both PD and control participants 

were not from the genetic PPMI cohort and prodromal cohort. Because only a small 

percentage of control participants received MRI examinations, they were not included in the 

neuroimaging analysis. To ensure consistency in the timing of data collection, we kept the 

maximum time gap for all types of data collection within 3 months. The basal demographical 

data, motor symptoms, non-motor symptoms, SBR, and CSF indices were collected for 198 

PD patients and 189 control participants (Table 1). Unpaired t test or X2 test was used for the 

comparison of clinical variables between control and PD patients. The demographical and 

clinical data were not statistically different among those with 3D T1 images, or DTI images, 

or resting-state images (Table S1). One-way ANOVA test was used for the comparisons of 

clinical variables among three groups. To investigate how PD-associated risk genes affect 

clinical assessments and brain networks, the genotypes of 72 SNPs examined by whole-

genome sequencing in PPMI database were downloaded and investigated (http://www.ppmi-

info.org/). The study flowchart of key risk variants from 72 SNPs was shown in Figure 1. 

Among 72 SNPs, fourteen SNPs both conferring risk for PD and exerting significant eQTL 

effects were specifically selected and their effects on clinical assessments and brain network 

metrics were systematically evaluated (Fig. 1).  

Image acquisition 

All the fMRI images were acquired on 3T Siemens MRI scanners (either Trio™ or Verio™ 

systems, Siemens Healthcare, Malvern, PA) at different participating site. Most of 3D T1 

MPRAGE sequence was scanned with following parameters: TR = 2300 ms, TE = 2.98 ms, 

Inversion time = 900 ms, Voxel size = 1 mm3, Matrix = 240 x 256 mm, Flip Angle = 9o, Slice 

thickness =1.2 mm. The resting-state fMRI was acquired for 8 minutes and 24 seconds with 

parameters of TR = 2400 ms, TE = 25 ms, Voxel size = 3.3 mm3, Field of View = 222 mm, 

Flip Angle = 80o, Slice thickness = 3.3 mm. Single shot echo-planar imaging (EPI) sequence 

was used for DTI with the following parameters 52: TR= 8,400-8,800 ms, TE = 88 ms, Voxel 

size = 2 mm3, twofold acceleration, Slice thickness = 2 mm. The DTI images were performed 

along 64 sensitization directions with a b-value of 1000 s/mm2. The MRI protocols were 

electronically distributed to each participating site to guarantee consistent installations. 

During the resting-state imaging, participants were required to stay quietly with clear mind 

and not to sleep.  

Image preprocessing 
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The processes of structural and functional network analysis were shown in Figure 2. Before 

all the images were preprocessed, the DICOM format images were transformed into NIFTI 

format images. For the preprocessing of resting-state fMRI images, the first 10 volumes were 

removed to achieve magnetization equilibrium. The remaining images were then slice-timing 

corrected and realigned. The rest of datasets were spatially normalized to Montreal 

Neurological Institute (MNI) space using EPI template in SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). A 4-mm Gaussian smoothing kernel 

was applied to improve anatomical variance and signal to noise ratio. All voxel time series 

were then bandpass filtered (0.01~0.1 HZ) to emphasize the low-frequency correlations and 

eliminate the low-frequency drift and high-frequency noises. To adjust the head motions, six 

head motion parameters, signals of white matter and CSF, were regressed out from each 

dataset. Among 83 PD participants with resting-state fMRI, we excluded 9 participants with 

head motions frame-wise displacement > 0.5 mm and head rotation > 2°. The remaining 74 

PD participants underwent functional network analysis.  

     For DTI analysis, we included all 146 PD participants. Their DTI images were 

preprocessed using the FMRIB Software Library toolbox (FSL, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The images preprocessing included the following major 

steps: (i) Removing the nonbrain tissue and extracting the brain using the Brain Extraction 

Tool; (ii) Correcting the eddy-current distortion and head motions using eddy_correct 

command; (iii) Computing the diffusion tensor metrics using dtifit command. (iv) 

Normalizing the images into MNI space.  

     The gray matter images of 198 PD participants were preprocessed using voxel-based 

morphometry (VBM) methodology 53 implemented on CAT12 toolbox 54 running within 

SPM12. Briefly, the T1 images were firstly normalized with Di�eomorphic Anatomic 

Registration Trough Exponentiated Lie algebra algorithm template and then segmented into 

gray matter, white matter, and CSF. The segmented gray matter images were further 

smoothed before the construction of gray matter covariance network. For surface-based 

morphometry (SBM), a fully automated method was used to measure cortical thickness and 

reconstruct the central surface using CAT12 toolbox. Partial volume information, sulcal 

blurring and asymmetries were handled by projection-based thickness. The processed surface 

data were smoothed using 15 mm kernel (12~18mm kernels are widely used for SBM) before 

statistical analysis. 
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Network construction 

The widely-used Automated Anatomical Labelling (AAL) atlas with 90 regions provided 

reliable and unbiased localizations of regions of interest (ROIs) with a good anatomical 

interpretability,55,56 thus, AAL-90 template was used to define 90 cortical and subcortical 

nodes. The functional connectivity was calculated using the Pearson’s correlation of mean 

time courses of the 90 nodes. To improve the normality, the Fisher’s r-to-z transformation 

was performed. This created a 90 x 90 functional connectivity matrix for each subject.  

     Deterministic tractography was performed for individual preprocessed DTI images based 

on AAL atlas using the Fiber Assignment by Continuous Tracking (FACT) algorithm 

embedded in a free open Matlab toolbox PANDA (http://www.nitrc.org/projects/panda/). To 

construct white matter fibers, streamlines were created in each voxel along the principle 

diffusive direction. When the streamline reached a voxel with fractional anisotropy (FA) < 

0.2 or tract angle > 45o, the streamline tracking was terminated. We used the fiber number 

(FN) to define structural connectivity. We didn’t set the threshold for FN within network 

here, because the threshold didn’t significantly affect the network properties. Finally, a 90 x 

90 white matter FN matrix was constructed for each participant.  

     The methodology to construct the gray matter covariance network has been described 

previously.57,58 In brief, the AAL atlas was used to define the 90 subcortical and cortical 

nodes with 3 x 3 x 3 voxels. The network edges were computed as the correlation coefficients 

of gray matter volume between each pair of 90 nodes. The correlation coefficients were then 

Fisher’s r-to-z transformed. Finally, a 90 x 90 gray matter covariance matrix was created for 

individual participant.  

Network graphical analysis 

The graph theory was used to analyze the topological properties of above three types of 

networks. We calculated both global and nodal metrics of networks using GRETNA toolbox 

(https://www.nitrc.org/projects/gretna/). The global network metrics included global 

efficiency, local efficiency, and small-worldness properties: clustering coefficient (Cp), 

characteristic path length (Lp), normalized clustering coefficient (γ), normalized 

characteristic path length (λ), and small worldness (σ). The nodal metrics estimated in this 

study included nodal betweenness centrality, nodal degree centrality, nodal efficiency, nodal 

local efficiency, nodal Cp, and nodal shortest path length. We calculated the area under curve 
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(AUC) for each network metric. The definitions and computations of above topological 

parameters were described below and could also be found in previous studies.59,60 We defined 

N as the set of all nodes in a network, n as the number of nodes, L as the set of all edges 

(links) in the network, and l as the number of edges. (i, j) is a link between nodes i and j (i, j 

∈ N). ��� is the connection status between node i and node j. ���  =1 when the link between 

node i and node j exists, ��� = 0 otherwise (��� = 0 for all i). The number of links is computed 

as  � � ∑ ����,��� .  

The degree (��) is defined as the number of links connected to a node i, then the degree of 

this node i is computed as below: 

�� � � ���
���

 

The shortest path length between node i and node j is computed as below: 

��� � � ���
����	�
�

 

 �	 
 � is the shortest path between node i and node j.  

The nodal shortest path length is the average shortest path length between node i and all other 

nodes. It is computed as below: 

�� � ∑ �	����,���


 � 1  

The node local efficiency measures the efficiency of local information transfer in node i. The 

node local efficiency is computed as below: 

��	� � 1

�� 

�
��
� 1� � 1

��,

��
���

 

G�  is the Graph composed of neighbor nodes of node i. ��,
 represents shortest path length 

between node j and node k. 

The node efficiency measures the efficiency of information transfer for node i in the network. 

Node efficiency is computed as below:  
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�� � 1

 � 1 � 1

���
�,���,���

 

��,� represents shortest path length between node i and node j. 

The global efficiency is defined as the average ��  of all nodes in a network. It is computed as 

below: 

�	����� � 1

�
 � 1� � 1

���
�,���,���

 

The local efficiency is defined as the average ��	� of all nodes in a network. It is computed as 

below: 

���� �� ��	� �� 1

 � ��	�
���

 

The node Cp measures how closely nodes in a network tend to group together. It is computed 

as below: 

�� � 2��
����� � 1� 

The network Cp is the average node Cp of a network and is computed as below: 

� �� �� ��  1

 � 2��

����� � 1�
���

  

Characteristic path length (Lp) of the network is defined as the average shortest path length 

of all nodes in a network. It is computed as below: 

� � 1

 � �� � 1


 � ∑ �	����,���


 � 1
������

 

where Li is the average shortest path length between node i and all other nodes. 

The small-worldness � is computed as below:  

� � ������
������� 
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where ������  and �������  represents the Cp of brain network and random network, 

respectively. 

The small-worldness � is computed as below:  

� � ������
�������  

where ������  and ������� represents the L (Characteristic path length) of brain network and 

random network, respectively. 

The small-worldness � is computed as below:  

� � �
� 

The acquisition of eQTL data 

All the eQTL data of analyzed SNPs were obtained from the Genotype-Tissue Expression 

(GTEx, https://www.gtexportal.org/home/) Project. The normalized effect size (NES) was 

computed as the effect of the alternate allele relative to the reference allele 

(https://www.gtexportal.org/home/faq). Uncorrected p < 0.05 was reported to identify the 

potential eQTL effect. A smaller p < 0.0001 was reported as higher eQTL effect.  

Statistical Analysis 

Association analysis between clinical assessments and genotypes 

The associations between genotypes of SNPs and clinical features of PD patients were 

analyzed using multivariate regression models. During the multivariate regression analysis, 

the dependent variables (n=14) included the scores of Unified Parkinson’s Disease Rating 

Scale part III (UPDRS-III), Epworth Sleepiness Scale (ESS), Geriatric Depression Scale, 

REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ), Scale for Outcomes in 

Parkinson's Disease-Autonomic (SCOPA-AUT), Benton Judgment of Line Orientation 

(BJLOT), Letter Number Sequencing, Montreal Cognitive Assessment (MoCA), Hopkins 

Verbal Learning Test-Revised (HVLT-R: Total Recall and Immediate Recall), Semantic 

Fluency Test, and SBRs (bilateral striatum), as well as α-syn level in CSF. The independent 

variables were the genotypes of 14 SNPs. During the multivariate regression analysis, age, 
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sex, disease duration, and genotypes of remaining 13 SNPs were included as covariates and β 

(coefficients) and p-values were reported for each SNP. Because of the lack of total levodopa 

equivalent daily dose (LEDD) data in most PD patients, LEDD was not included as a 

covariate during the association analysis. The multivariate regression models were shown 

below (SNP1, SNP2, …, SNPi represent the genotypes of SNPs): 

��������� �	
�	��
� � �� � �� � ��� � �� � ��� � �� � ����	�� ��
	���� � �� � ���� � �� �

���� � � � ���� � ����                                                                                                         �� � 1, 2, … , 14"                                 

     Results with p < 0.05 and p < 0.00026 (0.05/14*14; 14 clinical variables x 14 SNPs) after 

Bonferroni correction for multiple statistical tests were reported.  

Comparisons of clinical assessments among different genotype configurations 

Unpaired t-test (for two groups comparison) and one-way ANOVA test followed by 

Bonferroni post-hoc test (for three or more groups comparison) were used to compare the 

difference of clinical assessments among different SNP configurations. p < 0.05 was 

considered statistically significant.  

Comparisons of graphical network metrics 

The group differences of global graphical network metrics (global efficiency, local 

efficiency, and small-worldness properties) were analyzed using two-way ANOVA test 

followed by Bonferroni post-hoc test. Bonferroni-corrected p < 0.0036 (0.05/14; 14 SNPs) 

was considered statistically different for global network metrics. The nodal network metrics 

(nodal betweenness centrality, nodal degree centrality, nodal efficiency, nodal local 

efficiency, nodal Cp, and nodal shortest path length) of 90 nodes in AAL atlas were 

compared between 2 or among 3 genotype groups of 14 SNPs using two-way ANOVA test 

followed by Bonferroni post-hoc test. Uncorrected and Bonferroni-corrected results were 

reported based on the number of network metrics and SNPs.  

Association analysis between clinical assessment or genotypes and network metrics 

The univariate correlation analysis between scores of clinical assessments and graphic 

network metrics was conducted by Pearson correlation method. The multivariate regression 

models were also used for the association analysis between scores of clinical assessments or 

genotypes of risk SNPs and graphical network metrics. Before regression analysis, IBM 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2022.12.25.22283938doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.25.22283938


13 

 

SPSS Statistics Version 26 was used to check whether multicollinearity occurred and no 

multicollinearity was found. Age, sex, years of education, and disease duration were included 

as covariates during multivariate regression analysis. Results with uncorrected p < 0.05 and 

Bonferroni-corrected results were reported.  

Comparisons of gray matter volume or cortical thickness 

The whole brain comparison of gray matter volume or cortical thickness among different 

genotype groups was performed using ANOVA models in CAT12 toolbox and SPM12. The 

age, sex, and disease duration were included as covariates. p < 0.05 after Bonferroni 

correction was considered statistically different.  

Comparisons of integrity of white matter tracts 

The comparison of integrity (FA) of white matter tracts among different genotype groups was 

performed using ANOVA models. The age, sex, and disease duration were included as 

covariates. p < 0.05 after Bonferroni correction was considered statistically different.  

Mediation analysis 

IBM SPSS Statistics Version 26 was utilized to perform mediation analysis. The independent 

variable in the mediation model was genotypes of OGFOD2/CCDC62 rs11060180, GCH1 

rs11158026, and ZNF646/KAT8/BCKDK rs14235. The dependent variable was UPDRS-III 

scores. The mediators were small-worldness γ and σ of gray matter covariance network. We 

modeled the mediated relationships (indirect path) between genotypes and UPDRS-III scores. 

The model also included the direct path from genotypes to the UPDRS-III scores. During the 

mediation analysis, age, sex, disease duration, and years of education were included as 

covariates. p < 0.05 was considered statistically significant.  

Cross-validation analysis 

K-fold cross-validation analysis was performed using R version 4.3.0 to evaluate the 

robustness of the regression models in this study. Statistical metrics derived from cross-

validation analysis included root mean squared error (RMSE), coefficient of determination 

(R²), and mean absolute error (MAE). These metrics were used to assess the statistical 

robustness of the regression models.  
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Results 

Demographical variables 

The clinical data of 198 PD patients and 189 control participants were shown and compared 

in Table 1.  

The identification of 14 key risk SNPs in PD 

The study flowchart of key risk variants from 72 SNPs assayed in PPMI database was shown 

in Figure 1. The selected key risk SNPs exhibited the characteristics shown below: (i) The 

SNP was associated with PD risk according to previous genetics studies;10,11,61-63 (ii) The 

SNP showed significant eQTL effect according to GTEx database 

(https://www.gtexportal.org/home/).  

     Initially, we identified 36 SNPs conferring risk of PD from 72 SNPs examined in PPMI 

database according to previous literature, SNP database of NCBI 

(https://www.ncbi.nlm.nih.gov/snp/), and PDGene database (http://www.pdgene.org/). With 

the exception of COMT rs4680, which was shown to be associated with PD in small samples, 

all remaining 35 SNPs have been reported as risk variants of PD in previous large-scale 

genome-wide association studies.10,11,61-63 For example, recent studies have confirmed that 

GPNMB rs199347 was significantly associated with PD.10,12  

    Based on the GTEx Project (https://www.gtexportal.org/home/), we checked whether 36 

SNPs associated with PD risk were significantly correlated with gene expressions in multiple 

brain regions. Of 36 SNPs assessed, a total of 14 key risk SNPs were shown to be associated 

with brain gene expressions. The 14 key risk SNPs were located in 14 loci of the genome, 

including OGFOD2/CCDC62 rs11060180, GCH1 rs11158026, ZNF646/KAT8/BCKDK 

rs14235, COMT rs4680, BIN3 rs2280104, NUCKS1/Rab7L1 rs823118, MAPT rs17649553, 

LRRK2 rs76904798, GALC/GPR65 rs8005172, ZNF184 rs9468199, FAM47E/STBD1 

rs6812193, TMEM163 rs6430538, NCKIPSD rs12497850, and GPNMB rs199347 (Table 2 

and Table S1). The genotype distribution of 14 key risk SNPs in our participants didn’t 

deviate Hardy-Weinberg equilibrium (all p > 0.05, X2 test). In addition, the distribution of 

genotype was not significantly different with regard to age, sex, and disease duration (p > 

0.05). Of 14 key risk SNPs, six of them, including MAPT rs17649553, 

ZNF646/KAT8/BCKDK rs14235, and NCKIPSD rs12497850, dramatically modified the gene 
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expressions of multiple brain regions, including caudate, hippocampus, substantia nigra, and 

cortex according to GTEx project (Fig. S1). To understand the biological pathways and 

cellular functions associated with 14 SNPs, we used STRING database to construct the 

protein-protein interaction (PPI) network of differentially expressed genes and performed 

functional enrichment analysis to reveal the biological processes, local network cluster, 

cellular components, and molecular functions associated with the PPI network. As shown in 

Figure S2, we found these SNPs were associated with molecular pathways involved in 

endocytosis, autophagy, lysosome, mitochondria metabolism, nuclear pore complex, gene 

transcription, and synaptic vesicles. 

Associations between 14 key risk SNPs and clinical variables 

The associations between 14 key risk SNPs and clinical variables were performed using 

multivariate regression analysis. The results were shown in Table 2. We found most 

associations between genotypes and clinical variables had low effect sizes and did not reach 

the stringent Bonferroni-corrected p threshold of 0.00026 (0.05/14 clinical variables x 14 

SNPs), except that GCH1 rs11158026 was significantly associated with striatal binding ratios 

of bilateral striatum (β = -0.16, p < 0.00026).  

Group differences of clinical assessments among different genotypes of individual SNP 

We have revealed some SNPs were significantly associated with scores of clinical 

assessments as shown above (Table 2), then we examined whether scores of clinical 

assessments were significantly different among different genotype groups. As shown in 

Figure S3, OGFOD2/CCDC62 rs11060180 G-carriers showed higher UPDRS-III scores 

compared to AA carriers (p < 0.05; Fig. S3a). Consistently, UPDRS-III scores in GG carriers 

were higher than those of AA (p < 0.01) and AG carriers (p = 0.0744). Similarly, GCH1 

rs11158026 T-carriers exhibited higher UPDRS-III scores compared to CC carriers (p < 0.05; 

Fig. S3b). In contrast, ZNF646/KAT8/BCKDK rs14235 A-carriers showed lower UPDRS-III 

scores compared to GG carriers (p < 0.05; Fig. S3c). GCH1 rs11158026 T-carriers exhibited 

lower SBRs in bilateral caudate (p < 0.01; Fig. S3d), putamen (p < 0.01; Fig. S3e), and 

striatum (p < 0.01; Fig. S3f). T-carriers for both MAPT rs17649553 (Fig. S3g) and LRRK2 

rs76904798 (Fig. S3h) showed higher Immediate Recall scores (p < 0.01 and p < 0.05, 

respectively) and Derived Total Recall T-scores (p < 0.01 for both SNPs) of HVLT-R 

compared to CC carriers. NUCKS1/Rab7L1 rs823118 T-carriers showed higher α-syn levels 
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compared to CC carriers (p < 0.01; Fig. S3i). The differences in the scores of clinical 

assessments among genotype groups of other SNPs were not statistically different (data not 

shown). 

Group differences in clinical assessments among different multi-SNP configurations 

Though the statistical power of associations between 14 key risk SNPs and clinical variables 

is low, we found several clinical variables, such as UPDRS-III scores, were associated with 

multiple small-effect SNPs based on multivariant regression analysis (Table 2). These 

findings indicate that some clinical variables of PD patients could be predicted by multiple 

SNPs with small effect sizes. Thus, we used ANOVA test to further examine whether patients 

with different genotype configurations of multiple SNPs exhibited differential clinical 

features. As shown in Table 2, OGFOD2/CCDC62 rs11060180 G allele (β = 2.71, p < 0.01) 

and GCH1 rs11158026 T allele (β = 2.27, p < 0.05) were associated with higher UPDRS-III 

scores, while ZNF646/KAT8/BCKDK rs14235 A allele (β = -2.30, p < 0.05) was associated 

with lower UPDRS-III scores. Thus, PD patients can be classified into 8 groups according to 

the genotypes of these SNPs. As shown in Figure 3a, UPDRS-III scores of PD patients were 

significantly different among diverse genotype configurations of OGFOD2/CCDC62 

rs11060180 (A > G: AA, AG/GG), GCH1 rs11158026 (C > T: CC, CT/TT) and 

ZNF646/KAT8/BCKDK rs14235 (G > A: GG, GA/AA) (Fig. 3a). Those PD patients with 

AG/GG+CT/TT+GG genotype had highest UPDRS-III scores (28.65 ± 11.30), while PD 

patients with AA+CC+GA/AA genotype had lowest UPDRS-III scores (17.07 ± 8.19; Fig. 

3a). The difference of UPDRS-III scores between these 2 groups was 11.58 (p < 0.001, One-

way ANOVA test). Similarly, we found Derived Total Recall T-Scores of HVLT-R were 

significantly different in a gender-dependent manner among different genotype 

configurations of LRRK2 rs76904798 (β = 4.07, p < 0.05; C > T: CC, CT/TT) and MAPT 

rs17649553 (β = 4.76, p < 0.01; C > T: CC, CT/TT) (Fig. 3b). Female patients with 

CC+CT/TT genotypes had higher Derived Total Recall T-Score compared to male patients 

with CC+CC genotype (p < 0.0001, Two-way ANOVA test). Furthermore, α-syn level in 

CSF were significantly different among different genotype configurations of 

NUCKS1/Rab7L1 rs823118 (β = 215.40, p < 0.05; C > T: CC, CT/TT), TMEM163 

rs6430538 (β = -161.00, p < 0.05; C > T: CC, CT/TT), and NCKIPSD rs12497850 (β = -

188.80, p < 0.05; G > T: GG, GT/TT) (Fig. 3c). Patients with CT/TT+CC+GG genotype had 
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higher α-syn level compared to patients with CC+CT/TT+GT/TT genotype who exhibited 

lowest α-syn level (p < 0.001, One-way ANOVA test).  

Group differences of global topological metrics 

As noted above, we have identified 14 key risk SNPs for PD and revealed some SNPs 

significantly modified the clinical assessments of PD patients. To examine whether PD-

associated risk SNPs affected brain functional and structural networks, we evaluated how 14 

key risk SNPs shaped the topological properties of brain networks. As shown in Figure 4, we 

revealed that 6 of 14 risk SNPs significantly modified the small-worldness properties of gray 

matter covariance network (Bonferroni-corrected p < 0.0036, n = 198, Two-way ANOVA 

test; Fig. 4a), especially for small-worldness γ and σ. The effects of 3 risk SNPs, including 

OGFOD2/CCDC62 rs11060180, GCH1 rs11158026, and ZNF646/KAT8/BCKDK rs14235 on 

global network metrics of gray matter covariance network were specifically shown in Figure 

4b-d. The G-carriers (AG and GG carriers) of OGFOD2/CCDC62 rs11060180 showed 

significantly lower small-worldness γ and σ of gray matter covariance network compared to 

AA carriers (Bonferroni-corrected p < 0.0036, Two-way ANOVA test; Fig. 4b). In contrast, 

AA carriers of ZNF646/KAT8/BCKDK rs14235 seemed to have higher small-worldness γ of 

gray matter covariance network compared to GG carriers (Bonferroni-corrected p < 0.0036, 

Two-way ANOVA test; Fig. 4d).  

Similarly, we found 5 of 14 risk SNPs significantly modified the small-worldness 

properties of white matter network (Bonferroni-corrected p < 0.0036, n = 146, Two-way 

ANOVA test; Fig. 5a). For example, AA carriers of ZNF646/KAT8/BCKDK rs14235 

exhibited lower small-worldness γ and σ of white matter network compared to GG and GA 

carriers (Bonferroni-corrected p < 0.0036, Two-way ANOVA test; Fig. 5b). Additionally, T-

carriers of MAPT rs17649553 showed higher small-worldness γ and σ of white matter 

network compared to CC carriers (Bonferroni-corrected p < 0.0036, Two-way ANOVA test; 

Fig. 5c). Furthermore, GG carriers of GPNMB rs199347 showed higher small-worldness γ 

and σ of white matter network compared to AA and AG carriers (Bonferroni-corrected p < 

0.0036, Two-way ANOVA test; Fig. 5d).  

For functional network, we revealed 4 of 14 risk SNPs significantly modified the small-

worldness properties of functional network (Bonferroni-corrected p < 0.0036, n = 74, Two-

way ANOVA test; Fig. S4a). For instance, AG carriers of OGFOD2/CCDC62 rs11060180 
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showed higher small-worldness γ of functional network compared to AA carriers 

(Bonferroni-corrected p < 0.0036, Two-way ANOVA test; Fig. S4b). A-carriers of 

ZNF646/KAT8/BCKDK rs14235 exhibited higher small-worldness γ and σ of functional 

network compared to GG carriers (Bonferroni-corrected p < 0.0036, Two-way ANOVA test; 

Fig. S4c). GG carriers of GPNMB rs199347 showed higher small-worldness γ of functional 

network compared to AA carriers (Bonferroni-corrected p < 0.0036, Two-way ANOVA test; 

Fig. S4d).  

Group differences of nodal topological metrics 

We also examined whether 14 risk SNPs modified the nodal metrics of brain networks. 

Interestingly, we found shared modifications of nodal network metrics (nodal Cp, nodal 

efficiency, nodal local efficiency, and nodal shortest path length) by most of 14 risk SNPs in 

both left caudate and right caudate of functional network, but not in white matter network and 

gray matter covariance network (Bonferroni-corrected p < 0.0008, n = 74, Two-way ANOVA 

test; Fig. 6a-b). For example, G-carriers of OGFOD2/CCDC62 rs11060180 exhibited higher 

nodal Cp, nodal efficiency, nodal local efficiency, and lower nodal shortest path length 

compared to AA carriers (all Bonferroni-corrected p < 0.0008, Two-way ANOVA test; Fig. 

6c).  In addition, we found shared modifications of nodal betweenness centrality by most of 

14 risk SNPs in both left putamen and right putamen of white matter network, but not in 

functional network and gray matter covariance network (Bonferroni-corrected p < 0.0036, n 

= 146, Two-way ANOVA test; Fig. 7a-b). 

Associations between 14 risk SNPs and graphical metrics 

To examine whether the effects of PD-associated risk SNPs on small-worldness properties of 

brain networks were independent of confounding factors, such as age, sex, disease duration, 

and years of education, multivariate regression analysis was performed. The Table S3 showed 

the associations between small-worldness properties and genotypes of risk SNPs showing 

statistical differences in Figure 4-5 and Figure S4. The analysis indicated that only partial risk 

SNPs exhibited significant associations with small-worldness properties of brain networks 

after Bonferroni corrections for multiple regression analysis (Table S3). We also analyzed the 

associations between nodal network metrics and genotypes of risk SNPs showing statistical 

differences in Figure 6-7, no significant associations were revealed after Bonferroni 

corrections for multiple regression analysis.  
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Comparisons of gray matter structure and white matter integrity 

We also evaluated whether 14 key risk SNPs modified the gray matter and white matter 

structure of PD patients. We found 14 key risk SNPs had no significant effects on the gray 

matter volume and cortical thickness of PD patients (Bonferroni-corrected p > 0.05, data not 

shown). Additionally, 14 key risk SNPs were also not shown to modify the integrity of white 

matter tracts (Bonferroni-corrected p > 0.05, data not shown).  

Associations between gray matter covariance network metrics and verbal memory 

Because PD-associated risk SNPs significantly shaped small-worldness properties of gray 

matter covariance network, white matter network, and functional network, we analyzed the 

associations between small-worldness properties of brain network metrics and scores of 

clinical assessments. For small-worldness properties of gray matter covariance network, we 

found small-worldness γ (r = -0.21, p < 0.01 and β = -25.52, p < 0.01; Fig. 8a) and small-

worldness σ (r = -0.21, p < 0.01 and β = -33.34, p < 0.01; Fig. 8b) of gray matter covariance 

network were negatively associated with UPDRS-III scores. In addition, small-worldness γ (r 

= 0.17, p < 0.05 and β = 4.89, p < 0.05; Fig. 8c) and small-worldness σ (r = 0.22, p < 0.01 

and β = 6.65, p < 0.01; Fig. 8d) of gray matter covariance network were positively associated 

with BJLOT scores. For small-worldness properties of white matter network, we found global 

efficiency (r = 0.28, p < 0.001 and β = 63.89, p < 0.01; Fig. S5a), local efficiency (r = 0.32, p 

< 0.0001 and β = 34.65, p < 0.01; Fig. S5b), and small-worldness Cp (r = 0.26, p < 0.01 and β 

= 30.75, p = 0.06; Fig. S5c) of white matter network were positively associated with BJLOT 

scores. Additionally, small-worldness Lp (r = -0.26, p < 0.01 and β = -11.95, p < 0.01; Fig. 

S5d), small-worldness γ (r = -0.18, p < 0.05 and β = -3.27, p < 0.05; Fig. S5e) and small-

worldness σ (r = -0.21, p < 0.01 and β = -4.37, p < 0.01; Fig. S5f) of white matter network 

were negatively associated with BJLOT scores. 

Mediation analysis  

As shown above, we revealed 3 risk SNPs, including OGFOD2/CCDC62 rs11060180, GCH1 

rs11158026 and ZNF646/KAT8/BCKDK rs14235, significantly modified UPDRS-III scores 

(Table 2, Fig.3, Fig.S3). We also showed that small-worldness γ and small-worldness σ of 

gray matter covariance network were negatively associated with UPDRS-III scores (Fig. 8a-

b). Thus, we examined whether small-worldness γ and small-worldness σ of gray matter 

covariance network mediated the effects of 3 risk SNPs (OGFOD2/CCDC62 rs11060180, 
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GCH1 rs11158026 and ZNF646/KAT8/BCKDK rs14235) on UPDRS-III scores. Using 

mediation analysis, we demonstrated that AUCs of γ and σ in gray matter covariance network 

mediated the effects of OGFOD2/CCDC62 rs11060180 on UPDRS-III scores (Fig. 8e-f). The 

mediation analysis of GCH1 rs11158026 and ZNF646/KAT8/BCKDK rs14235 approached 

but failed to achieve a customary level of statistical significance (Fig. S6).  

Cross-validation analysis 

K-fold cross-validation analysis was performed to validate the regression results shown in 

Fig. 8 and Figure S5. As shown in Table S4, the RMSE, R2, and MAE for the regression 

models in Figure 8 and Figure S5 were calculated by k-fold cross-validation analysis. These 

findings also supported that small-worldness γ and σ in gray matter covariance network were 

significantly associated with UPDRS-III scores and mediated the effects of 

OGFOD2/CCDC62 rs11060180 on UPDRS-III scores.  

Discussion 

The major finding of our study was that we revealed 14 functional SNPs conferring risk of 

PD in PPMI database significantly modified the topological metrics of brain functional and 

structural networks. Initially, we found the multi-SNP models constructed by some SNPs 

successfully predicted clinical assessments of PD patients. Particularly, 14 functional risk 

SNPs exhibited shared modifications of small-worldness properties in gray matter covariance 

network, white matter network, and functional network. In addition, the modifications of 

nodal network metrics in caudate and putamen were specifically enriched in functional 

network and white matter network, respectively. Furthermore, differential small-worldness 

properties in gray matter covariance network and white matter network modified by some 

SNPs were significantly correlated with UPDRS-III scores and BJLOT scores of PD patients. 

Finally, we demonstrated that OGFOD2/CCDC62 rs11060180 G allele was associated with 

higher UPDRS-III scores and small-worldness γ and σ in gray matter covariance network 

mediated the effects of OGFOD2/CCDC62 rs11060180 on UPDRS-III scores. To conclude, 

14 functional risk SNPs evaluated by our study were better candidates for future functional 

and mechanistic studies. 

    To date, a large number of SNPs have been identified to be associated with the risk of PD, 

nevertheless, the underlying neural mechanisms of previously reported risk SNPs were 

largely unknown.10,11 Some preliminary studies have revealed PD-associated risk SNPs were 
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associated with common pathological pathways in PD, such as endocytosis, autophagy, 

lysosome, mitochondria metabolism, immunological surveillance, DNA replication, synaptic 

vesicle recycling, and microtubule polymerization,10,64,65 which were consistent with our 

functional enrichment results (Fig. S2) based on PPI network derived from differentially 

expressed genes. Interestingly, we found nuclear pore complex was a novel biological 

pathway associated with PD-associated risk SNPs. In fact, altered nucleocytoplasmic 

transport has been thought as an emerging pathomechanism for multiple neurodegenerative 

diseases, including amyotrophic lateral sclerosis, Alzheimer disease (AD), frontotemporal 

dementia, and Huntington disease.66 It has been reported that specific nucleoporin 

abnormalities occurred in both sporadic and familial forms of neurodegenerative diseases and 

the dysfunction of nuclear pore complex contributed to disrupted nucleocytoplasmic 

transport.67-69 However, it was still unclear whether the nuclear pore complex was altered and 

related to the disease pathogenesis in PD, and further exploration was required. 

    Accumulated evidence has demonstrated that most of the traits or phenotypes in humans 

were affected by multiple genetic variants 70-72 and our study also supports this notion. 

Although single genetic variant in our study is not significantly associated with clinical 

manifestations of PD patients after stringent Bonferroni corrections (Table 2), some clinical 

variables, such as UPDRS-III scores and α-syn level in CSF, actually showed statistical 

differences among different genotype configurations of multiple SNPs (Fig. 3). Importantly, 

the effects of individual SNP on clinical assessments were independent of age, sex, disease 

duration, and genotypes of other 13 SNPs. Taken together, our novel findings support a 

polygenic basis underlying the clinical heterogeneity of PD patients.11 Because 6 SNPs 

(NCKIPSD rs12497850, NUCKS1/Rab7L1 rs823118, MAPT rs17649553, ZNF184 

rs9468199, BIN3 rs2280104, and ZNF646/KAT8/BCKDK rs14235) associated with clinical 

assessments also exhibited dramatical eQTL effects (p < 0.0001; Fig. S1), these SNPs 

deserved to be further investigated in future studies. As shown in Table 2, 

OGFOD2/CCDC62 rs11060180, GCH1 rs11158026 and ZNF646/KAT8/BCKDK rs14235 

were significantly associated with motor symptoms of PD patients, therefore, these SNPs 

may have essential effects on motor symptoms of PD patients, which were demonstrated by 

our results showing significant differences among different genotype configurations of multi-

SNP models constructed by these SNPs (Fig. 3). In fact, a previous study has shown that 

GCH1 rs11158026 T-carriers had earlier age of onset by 5 years, higher UPDRS-III scores, 

and lower SBRs in striatum.27 Consistently, we also found GCH1 rs11158026 T-carriers 
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exhibited higher UPDRS-III scores and lower SBRs in bilateral striatum (Fig. S3 and Table 

2). The association between OGFOD2/CCDC62 rs11060180 and UPDRS-III score was also 

supported by a recent study showing that OGFOD2/CCDC62 rs11060180 was associated 

with rapid motor progression in 365 PD patients.73 As shown in Table 2 and Figure S3, both 

LRRK2 rs76904798 and MAPT rs17649553 were significantly associated with Derived Total 

Recall T-scores of PD patients, indicating that the verbal memory function was affected by 

PD-associated risk SNPs. These results were supported by our recent finding demonstrating 

that MAPT rs17649553 T allele was significantly associated with the maintenance of verbal 

memory in PD,43 in addition to its effects on PD susceptibility.74,75 Taken together, our results 

suggested that PD-associated risk SNPs indeed modified the clinical assessments of PD 

patients.  

    The disruption of network topology was an essential hallmark of PD 76-81 and significantly 

associated with motor and non-motor symptoms of PD patients.44-48 However, few studies 

have ever explored whether PD-associated risk SNPs modified the network topology of the 

patients. In this study, we elucidated that both global network metrics and nodal network 

metrics of brain networks were differentially affected by PD-associated risk SNPs. These 

results suggested that PD-associated risk SNP played an important role in the modifications 

of brain network topology. Specifically, we found small-worldness properties of both 

functional network and structural network were shaped by 14 risk SNPs. These results were 

novel and indicated that small-world topology was a shared network target of PD-associated 

risk SNPs. Consistently, our recent study also showed that PD-associated risk SNP, MAPT 

rs17649553, was associated with increased small-worldness γ, λ, and σ of white matter 

network.43 The small-worldness topology has been reported in a multitude of biological 

networks, such as gene transcriptional network,82 microRNA functional similarity networks,83 

protein interaction network,84 and brain networks.85 Previous studies have shown that small-

worldness topology was associated with the successful encoding of memory.86,87 In addition, 

a recent study also reported that higher small-worldness properties were associated with 

better working memory of patients with schizophrenia.88 Interestingly, the significant 

associations between small-worldness and memory function have been supported by other 

studies.89,90 In old adults, small-worldness properties of brain networks significantly declined 

compared to young people.91 In patients with PD, the reduction of small-worldness has been 

revealed,92 however, the potential mechanisms underlying the changes of small-worldness 

properties in PD remained elusive. In a recent study, we have demonstrated that age and sex 
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significantly shaped the small-worldness properties of structural networks in PD patients,44 

suggesting that age and sex were important individual factors modifying the small-world 

topology of brain networks. In current study, we provided evidence that small-world topology 

might also be modified by PD-associated risk SNPs, because the effects of some PD-

associated risk SNPs on small-worldness properties were independent of individual 

demographic factors, including age, sex, disease duration, and education. Future studies were 

required to decipher how the PD-associated risk SNPs regulated the small-world topology of 

brain networks in PD.  

    We found OGFOD2/CCDC62 rs11060180, ZNF646/KAT8/BCKDK rs14235, and GPNMB 

rs199347 exerted significant influences on global network properties of functional network 

and structural network, indicating that these SNPs significantly shaped both functional 

network and structural network. In contrast, MAPT rs17649553 specifically modified small-

worldness properties of white matte network but not that of gray matter covariance network 

and functional network. These results suggested that MAPT rs17649553 was specifically 

associated with the small-world topology of white matter network, which was consistent with 

our recent study showing that MAPT rs17649553 T allele is specifically associated with 

higher small-world topology in white matter network of PD patients.43 COMT rs4680 seemed 

to be different from other SNPs due to its specific effects on the local efficiency of functional 

network and no effects on small-worldness properties of structural network, which were not 

investigated before. By contrast, three risk SNPs, including GCH1 rs11158026, 

NUCKS1/Rab7L1 rs823118, and LRRK2 rs76904798 were not found to affect the global 

network metrics of functional network and structural network compared to other SNPs. To 

summarize, we concluded that the global network metrics were distinctly modified by 14 risk 

SNPs.  

    We elucidated that nodal network metrics of brain networks were significantly affected by 

14 risk SNPs, however, the effects of 14 risk SNPs on nodal network metrics in functional 

network and structural network exhibited different characteristics. Specifically, the nodal 

metrics, such as nodal Cp, nodal efficiency, nodal local efficiency, and nodal shortest path 

length, in bilateral caudate of functional network were preferentially modified by 14 risk 

SNPs. In agreement with our results, the nodal changes of caudate nucleus in functional 

network of PD patients have been reported in previous studies.80,93,94 In contrast, the nodal 

betweenness centrality of bilateral putamen in white matter network was specifically shaped 
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by PD-associated risk SNPs. In consistent with these findings, the changes of nodal network 

metrics in putamen of white matter network have also been revealed in PD patients.95 

Therefore, PD-associated risk SNPs had distinct impacts on the nodal network metrics of 

functional network and white matter network. It should be noted that both caudate and 

putamen were key hubs of basal ganglia network, thus, our findings suggested that key nodes 

in basal ganglia network were diversely shaped by PD-associated risk SNPs. We found no 

significant associations between nodal network metrics and genotypes of risk SNPs using 

multivariate regression analysis with age, sex, disease duration, and years of education as 

covariates. One of the explanations for this may be that individual demographic factors, such 

as age and sex, have greater effects on the topological metrics of brain networks, as shown by 

our recent findings. 44 

    The significant correlations between graphical network metrics and clinical assessments in 

PD indicated that topological metrics of brain networks were predictors of clinical features in 

PD patients. As mentioned above, shared modifications of small-worldness properties by PD-

associated risk SNPs were found in functional network and structural network, however, only 

small-worldness properties in structural network were significantly correlated with clinical 

assessments of PD patients (Fig. 8 and Fig. S5). These results indicated that small-world 

topological metrics in structural network but not functional network were better predictors of 

clinical features in PD patients. In agreement with these results, we have recently shown that 

small-worldness γ, λ, and σ in white matter network but not functional network were 

significantly correlated with verbal memory.43 Using mediation analysis, we demonstrated 

that small-worldness γ and σ in gray matter covariance network mediated the effects of 

OGFOD2/CCDC62 rs11060180 on UPDRS-III scores. Therefore, graphical network metrics 

may provide mechanistic explanations for the effects of PD-associated risk SNPs on clinical 

assessments of PD patients at the network level.43 Although OGFOD2/CCDC62 rs11060180, 

GCH1 rs11158026 and ZNF646/KAT8/BCKDK rs14235 were all significantly associated with 

UPDRS-III scores and affected the small-worldness properties of gray matter covariance 

network in PD patients, only OGFOD2/CCDC62 rs11060180 exhibited statistical 

significance during mediation analysis. These results suggested that small-world topology of 

gray matter covariance network played a more important role in the effects of 

OGFOD2/CCDC62 rs11060180 on motor symptoms of PD patients. It was worth noting that 

small-worldness γ and σ in gray matter covariance network only partially mediated the effects 

of OGFOD2/CCDC62 rs11060180 on UPDRS-III scores, which indicated that other 
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mechanisms may also mediate the effects of OGFOD2/CCDC62 rs11060180 on UPDRS-III 

scores. Future studies were required to decipher the potential molecular mechanisms 

underlying the effects of OGFOD2/CCDC62 rs11060180 on motor symptoms and brain 

networks of PD patients.  

    In this study, we identified 14 PD-associated risk SNPs significantly associated with 

topological properties of brain networks. Among these risk genes, some of them have already 

been investigated before. According to previous literature, the most significant GCH1 variant 

associated with PD risk is GCH1 rs11158026 (C > T) 96-98 and it has been shown that 

rs11158026 T-carriers exhibited impaired DAT uptake and higher UPDRS-III scores.27 

GCH1 encoded GTP Cyclohydrolase 1(GTPCH, GCH1), which is the first and rate-limiting 

enzyme in the biosynthesis pathway of tetrahydrobiopterin.99-101 Tetrahydrobiopterin is a key 

cofactor required for the biosynthesis of monoamine neurotransmitters, such as serotonin, 

melatonin, dopamine, norepinephrine, and epinephrine.102,103 The dominant mutation of 

GCH1 causes dopamine-responsive dystonia (DRD) or Segawa syndrome, characterized by 

the deficiency of catecholamines in the brain.104-108 Patients with DRD usually exhibited 

diurnally fluctuating dystonia and parkinsonian features, such as bradykinesia, tremor, 

rigidity, and postural instability.104 However, the neural mechanisms of GCH1 variants 

contributing to PD risk and progression were unknown. Recently, GCH1 deletion has been 

shown to reduce the expression of tyrosine hydroxylase (TH) and indirectly contribute to 

neuronal cell death via aberrant microglia activation.109 Thus, it was possible that GCH1 

polymorphisms might modify PD risk and clinical features of the patients by disrupting 

tetrahydrobiopterin biosynthesis, reducing dopamine availability, and exacerbating 

neuroinflammation in PD.27,109 Future studies were required to examine whether GCH1 

rs11158026 T allele was associated with impaired GCH1 enzyme activity, which was 

essential for its normal physiological functions. 

    Catechol-O-methyltransferase (COMT) is one of the key enzymes responsible for the 

degradation of catecholamines, including dopamine, epinephrine, and norepinephrine, as well 

as other substances containing a catechol structure. Levodopa, the first line therapy of PD, is 

also a substrate of COMT. COMT inhibitors, like entacapone and opicapone, prolong the 

efficacy of levodopa by inhibiting its degradation.110,111 COMT gene is enriched with multiple 

SNPs, such as rs6269, rs4633, rs4818, and rs4680.112,113 According to previous literature, 

rs4680 was found to be associated with executive function,114 obsessive-compulsive 
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disorder,115-117 schizophrenia,118,119 anxiety,120,121 addiction,122,123 bipolar disorder,124,125 

suicide,126,127 depression,128,129 psychosis in AD,130 and treatment response of levodopa 

therapy in PD.131,132 Therefore, the changes of COMT activity due to single nucleotide 

variation may affect brain function and disease susceptibility. In PD, COMT rs4680 was 

associated with fronto-cortical dopamine turnover,133 striatal denervation,134 gray matter 

atrophy,135 age at onset,136 executive function,131,137-140 attention control,141 treatment 

response of COMT inhibitors,23 levodopa response variability,142 dyskinesias,143 pain,144 

wearing-off phenomenon,145,146 and mild cognitive impairment.24 In our study, we found 

COMT rs4680 was associated with LNS scores (β = 0.65, p = 0.0119) and affected global and 

nodal metrics of functional network. Future studies were required to understand how COMT 

rs4680 modified the clinical manifestations and brain network metrics of PD patients.  

    GPNMB rs199347 has been demonstrated to be a key genetic locus of PD and associated 

with α-syn pathology 10,12 and the expression of GPNMB is selectively enhanced in the 

substantia nigra of PD patients and increases after lysosomal stress.147 According to GTEx 

database, GPNMB rs199347 G allele was significantly associated with reduced expression of 

GPNMB in multiple brain regions, including cortex (p < 1.8 x 10-20), caudate (p < 3.0 x 10-

19), putamen (p < 5.5 x 10-24), and substantia nigra (p < 2.1 x 10-5). In addition, GPNMB 

rs199347 G allele was also significantly associated with reduction of NUPL2 expression in 

cortex (p < 5.0 x 10-17), caudate (p < 6.6 x 10-10), putamen (p < 5.6 x 10-8), and substantia 

nigra (p < 1.3 x 10-11). Consistently, Diaz-Ortiz et al. (2022) demonstrated that individuals 

carrying GPNMB rs199347 haplotype exhibited allele-specific expression for GPNMB.12 

They also confirmed that moderate to high levels of GPNMB protein are expressed in the 

human brain of multiple postmortem cases by immunoblotting and immunohistochemistry.12 

Because higher expression of GPNMB conferred pathogenicity in PD,12 G allele was 

protective for the reductions of GPNMB levels in G-carriers of PD. Considering that GPNMB 

expression was found in multiple cell types of the brain,12 future studies were required to 

dissect its role in the modulation of brain function.  

We revealed that NCKIPSD rs12497850 specifically affected the small-worldness 

properties of gray matter covariance network and white matter network. How this genetic 

variant modified structural networks has not been explored before. NCKIPSD encodes 

SPIN90 protein, which is highly expressed in synapses.148-150 Recent studies have shown that 

SPIN90 protein is involved in the endocytosis of synaptic vesicles and also critical for the 
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formation of normal dendritic spines.148-151 Phosphorylated SPIN90 enhances neuronal 

synaptic activity by interacting with PSD95 and Shank proteins.151 Whereas activation of 

NMDA receptor induces the dephosphorylation of SPIN90 and initiates cofilin-mediated 

actin assembly and dendritic spine contraction.152 Kim et al. (2017) reported that SPIN90 

regulates long-term depression and hippocampus-dependent behavioral flexibility.153 A 

recent study further revealed that SPIN90 regulates the assembly of cortical actin by 

interacting with mDia1 and Arp2/3 complexes.154 Taken together, it was possible that 

NCKIPSD rs12497850 might modify structural networks in PD patients by regulating the 

development of cerebral cortex and the morphology of neurite processes. 

     It remained unknown about the molecular mechanisms underlying the effects of MAPT 

rs17649553 T allele on verbal memory and small-wordlness properties of white matter 

network. According to the eQTL data, MAPT rs17649553 was associated with differential 

expressions of multiple genes, including ARL17A, CRHR1, KANSL1, LRRC37A, and MAPT. 

Interestingly, these genes have been reported to be associated with multiple neuropsychiatric 

diseases.155-160 In addition, MAPT rs17649553 was also associated with the splicing of 

CRHR1, KANSL1, MAPT, PLEKHM1, and ARHGAP27. The detailed associations between 

MAPT locus and PD have been discussed in our recent study.43 Future studies were required 

to decipher the molecular mechanisms underlying the effects of MAPT rs17649553 on the 

risk, small-world topology, and verbal memory of PD patients. LRRK2 is an essential risk 

gene for PD and G2019S was the most common genetic mutation of LRRK2 that was widely 

investigated in previous decades.161-164 In this study, we found LRRK2 rs76904798 was 

significantly associated with verbal memory. This finding was novel and deserved to be further 

validated with a larger sample size of PD patients. The associations between GALC/GPR65 

rs8005172 and clinical features or brain networks of PD patients have been not investigated 

so far. A recent study reported that another GALC variant rs979812 affected the enzymatic 

activity of galactosylceramidase and risk of PD patients.165 It seemed that it was increased but 

not reduced galactosylceramidase activity that causally associated with PD.165 Additionally, 

GALC was hypothesized to modulate the clearance of misfolded α-syn aggregates through 

autophagic-lysosomal pathway.166 Whether altering the activity of galactosylceramidase 

could be utilized as a therapeutic target of PD should be further explored. 

Compared to above risk SNPs, OGFOD2/CCDC62 rs11060180, BIN3 rs2280104, 

NUCKS1/Rab7L1 rs823118, ZNF184 rs9468199, FAM47E/STBD1 rs6812193, TMEM163 
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rs6430538, and ZNF646/KAT8/BCKDK rs14235 were less investigated in previous literature. 

Future studies were required to decode the neural mechanisms underlying the effects of these 

SNPs on the clinical manifestations and network metrics of PD patients.  

    In current study, we revealed motor and non-motor symptoms could be successfully 

predicted by multi-SNP models constructing by some PD-associated risk SNPs, suggesting 

that these risk SNPs may have potential clinical utility to predict and monitor the clinical 

manifestations of PD patients. In addition, this study systematically evaluated how multiple 

PD-associated risk SNPs affected brain network metrics. The relevant findings may provide 

potential explanations for the significant associations between these SNPs and PD risk at the 

network level. The specific effects of PD-associated risk SNPs on the small-world topology 

of gray matter covariance network, white matter network, and functional network indicate 

that PD-associated risk SNPs preferentially shaped the global small-world properties of brain 

networks. Particularly, the enrichment of nodal changes in bilateral caudate and putamen of 

basal ganglia network suggested that key hubs in basal ganglia network were essential targets 

for PD-associated risk variants. Furthermore, our mediation analysis provided potential 

network mechanisms to explain the effects of OGFOD2/CCDC62 rs11060180 on UPDRS-III 

scores. Taken together, the results revealed by our study deepened our understanding of the 

potential associations between PD-associated risk SNPs and clinical characteristics and brain 

networks of PD patients. The limitation of this study was that we didn’t investigate the 

molecular mechanisms underlying the effects of PD-associated risk SNPs on clinical features 

and brain networks of PD patients. Future studies were needed to explore how these risk 

SNPs affect the pathophysiology of PD at the molecular level and whether these risk genes 

could be utilized to develop potential diagnostic biomarkers and therapeutic targets for PD.  

To summarize, we found 14 PD-associated SNPs, including OGFOD2/CCDC62 

rs11060180, were eQTLs and associated with multiple biological pathways involved in 

endocytosis-autophagy-lysosome, mitochondria, gene transcription, and nuclear pore 

complex. Interestingly, PD patients with specific combinations of some SNPs exhibited 

statistically different clinical features. In addition, we revealed both shared and distinct brain 

network metrics were significantly shaped by PD-associated genetic variants. Small-

worldness properties at the global level and nodal metrics in caudate and putamen of basal 

ganglia network were preferentially modified. Finally, we demonstrated that small-worldness 
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properties in gray matter covariance network mediated the effects of OGFOD2/CCDC62 

rs11060180 on motor severity of PD patients. 
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Figure 1. The study flowchart of key risk variants from 72 SNPs assayed in PPMI database. 
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Figure 2. The flowchart of structural and functional network analysis in the present study. 

The 90 x 90 matrices of gray matter, white matter, and functional networks were derived 

from T1 images, DTI images, and resting-state functional images, respectively. The global 

network metrics and nodal network metrics were computed using GRETNA toolbox.  
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Figure 3. Group differences of clinical assessments among different genotype configurations. 

(a) Group difference of UPDRS-III scores among different genotype configurations (n = 23 

for ++-, n = 27 for --+, n = 48 for +++, n = 32 for +-+, n = 19 for +--, n = 8 for ---, n = 25 for 

-++, n = 13 for -+-). (b) Group difference of derived total recall T-scores of HVLT-R among 

different genotype configurations (Male: n = 61 for --, n = 33 for -+, n = 21 for +-, n = 9 for 

++; Female: n = 35 for --, n = 25 for -+, n = 7 for +-, n = 7 for ++). (c) Group difference of α-

syn level in CSF among different genotype configurations (n = 39 for ++-, n = 7 for --+, n = 

51 for +++, n = 23 for +-+, n = 9 for +--, n = 6 for ---, n = 26 for -++, n = 17 for -+-). Data 

were shown as mean ± SD (standard deviation). ANOVA test was used to compare the 

difference of clinical assessments among different genotype configurations with Bonferroni 

post-hoc test for multiple comparisons. p < 0.05 was considered statistically significant. * p 

< 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Abbreviations, HVLT-R, Hopkins 

Verbal Learning Test – Revised; UPDRS-III, Unified Parkinson’s Disease Rating Scale Part 

III.  
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Figure 4. Small-worldness properties of gray matter covariance network were specifically 

shaped by PD-associated risk SNPs. (a) Group differences of global network metrics among 

different genotype groups (*p < 0.05 and #p < 0.0036).  (b) Group differences of global 

network metrics among different genotype groups of OGFOD2/CCDC62 rs11060180. (c) 

Group differences of global network metrics among different genotype groups of GCH1 

rs11158026 (*p < 0.05). (d) Group differences of global network metrics among different 

genotype groups of ZNF646/KAT8/BCKDK rs14235 (*p < 0.05 and #p < 0.0036). Two-way 

ANOVA test followed by Bonferroni post-hoc test was used to compare the difference of 

global network metrics among different genotype groups. *p < 0.05 and #Bonferroni-

corrected p < 0.0036 (0.05/14; 14 SNPs) were shown. Abbreviations: Cp, clustering 

coefficient; Lp, characteristic path length; γ, normalized clustering coefficient; λ, normalized 

characteristic path length; σ, small worldness. 
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Figure 5. Small-worldness properties of white matter network were specifically shaped by 

PD-associated risk SNPs. (a) Group differences of global network metrics among different 

genotype groups (*p < 0.05 and #p < 0.0036).  (b) Group differences of global network 

metrics among different genotype groups of ZNF646/KAT8/BCKDK rs14235 (*p < 0.05 and 
#p < 0.0036). (c) Group differences of global network metrics between CC carriers and T-

carriers of MAPT rs17649553 (*p < 0.05 and #p < 0.0036). (d) Group differences of global 

network metrics among different genotype groups of GPNMB rs199347 (*p < 0.05 and #p < 

0.0036). Two-way ANOVA test followed by Bonferroni post-hoc test was used to compare 

the difference of global network metrics among different genotype groups. *p < 0.05 and 
#Bonferroni-corrected p < 0.0036 (0.05/14; 14 SNPs) were shown. Abbreviations: Cp, 

clustering coefficient; Lp, characteristic path length; γ, normalized clustering coefficient; λ, 

normalized characteristic path length; σ, small worldness. 
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Figure 6. Consistent modifications of nodal metrics in bilateral caudate of functional 

network. (a) Group differences in the nodal metrics of left caudate in functional network 
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among different genotype groups (*p < 0.05 and #p < 0.0008). (b) Group differences in the 

nodal metrics of left caudate in functional network among different genotype groups (*p < 

0.05 and #p < 0.0008). (c) Group differences in the nodal metrics of bilateral caudate in 

functional network among different genotype groups of OGFOD2/CCDC62 rs11060180 (*p 

< 0.05 and #p < 0.0008). Two-way ANOVA test followed by Bonferroni post-hoc test was 

used to compare the difference of nodal network metrics (90 nodes) among different 

genotype groups. *p < 0.05 and #Bonferroni-corrected p < 0.0008 (0.05/4*14; 4 nodal metrics 

x 14 SNPs) were shown. Abbreviations: Cp, clustering coefficient. 
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Figure 7. Shared modifications of nodal betweenness centrality in bilateral putamen of 

white matter network. (a) Group differences in the nodal betweenness centrality of left 

putamen in white matter network among different genotype groups (*p < 0.05 and #p < 

0.0036). (b) Group differences in the nodal betweenness centrality of right putamen in white 

matter network among different genotype groups (*p < 0.05 and #p < 0.0036). Two-way 

ANOVA test followed by Bonferroni post-hoc test was used to compare the difference of 

nodal network metrics among different genotype groups. *p < 0.05 and #Bonferroni-corrected 

p < 0.0036 (0.05/1*14; 1 nodal metrics x 14 SNPs) were shown.  
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Figure 8. Small-worldness properties mediated the effects of OGFOD2/CCDC62 

rs11060180 on UPDRS-III scores of PD patients. (a) Small-worldness γ of gray matter 

covariance network was negatively associated with UPDRS-III scores (p < 0.01 in both 

Pearson correlation analysis and multivariate regression analysis). (b) Small-worldness σ of 

gray matter covariance network was negatively associated with UPDRS-III scores (p < 0.01 

in both Pearson correlation analysis and multivariate regression analysis). (c) Small-

worldness γ of gray matter covariance network was positively associated with BJLOT scores 

(p < 0.05 in both Pearson correlation analysis and multivariate regression analysis). (d) 

Small-worldness σ of gray matter covariance network was positively associated with BJLOT 

scores (p < 0.01 in both Pearson correlation analysis and multivariate regression analysis). (e) 

Mediation analysis for small-worldness γ in gray matter covariance network. (f) Mediation 

analysis for small-worldness σ in gray matter covariance network. The association analysis 

between graphical network metrics and UPDRS-III scores or BJLOT scores was conducted 

by Pearson correlation method (#Bonferroni-corrected p < 0.0125 [0.05/4]) and multivariate 

regression analysis with age, sex, disease duration, and years of education as covariates 

(#Bonferroni-corrected p < 0.0125). During the mediation analysis, age, sex, disease duration, 

and years of education were included as covariates. p < 0.05 was considered statistically 
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significant for mediation analysis. Abbreviations: UPDRS-III, Unified Parkinson’ s Disease 

Rating Scale Part III; BJLOT, Benton Judgement of Line Orientation; γ: normalized 

clustering coefficient; σ: small worldness. 
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5.38 (2.85) 2.05 (2.36) 59.50 (9.65) 60.99 (9.26) 1.67 (0.52) 4.42 (2.80) 4.41 (3.69) 21.03 (9.36) 

6.13 (2.88)  NA NA NA 0.01 (0.10)  0.21 (0.64)  0.28 (0.84)  1.17 (2.17)  

2.55 NA NA NA 43.37 20.09 15.00 28.42 

0.01 NA NA NA < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Non-motor assessments 

COPA-AUT  
n = 192/187)  BJLOT  LNS SFT  SDMT  

MoCA  
(n = 197/189) 

HVLT-R 
Immediate 

Recall  

HVLT-R 
Total Recall  

HVLT-R 
Delayed Recall  

9.51 (5.48) 
12.66 
(2.23) 

10.46 
(2.79) 

49.61 
(11.81) 

40.37 
(10.44) 

26.68 (2.78) 24.52 (5.48) 46.04 (11.58) 45.66 (12.30) 

5.81 (3.61)  
13.14 
(1.94)  

10.84 
(2.59) 

52.07 
(11.22)  

46.85 
(10.68)  

28.24 (1.11)  26.02 (4.49)  48.92 (9.97)  49.00 (10.74)  

7.75 2.24 1.36 2.11 6.03 7.17 2.94 2.62 2.84 

< 0.0001 0.03 0.18 0.04 < 0.0001 < 0.0001 0.004 0.009 0.005 

Striatum SBR (n = 193/186) 

tamen_R  Putamen_L  Striatum_R  Striatum_L  Bilateral Caudate  Bilateral putamen  Bilateral striatum  

5 (0.32) 0.76 (0.33) 2.63 (0.87) 2.65 (0.90) 1.89 (0.58) 0.75 (0.27) 1.32 (0.40) 

6 (0.58)  2.15 (0.57)  5.12 (1.15)  5.15 (1.17)  2.99 (0.63)  2.15 (0.56)  2.57 (0.57)  

29.48 29.09 23.84 23.45 17.65 31.35 24.65 

 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

CSF assessments 

el (pg/mL) 
72/180) 

p-tau level  
(pg/mL) 

(n = 159/170) 

Tau/Aβ ratio 
(n = 170/178) 

p-tau/Aβ ratio 
(n = 157/168) 

p-tau/tau ratio  
(n = 159/170) 

Aβ/α-syn ratio 
(n = 176/181) 

Tau/α-syn ratio 
(n = 172/180) 

p-tau/α-syn ratio 
(n = 159/170) 

 (56.48) 14.69 (5.28) 0.209 (0.097) 0.018 (0.009) 0.084 (0.007) 0.632 (0.227) 0.119 (0.035) 0.010 (0.003) 

 (80.11)  17.57 (8.44)  0.215 (0.151) 0.020 (0.018) 0.087 (0.007)  0.634 (0.223) 0.116 (0.026) 0.010 (0.002) 

.49 3.69 0.46 1.14 3.66 0.10 0.88 1.16 
.000 0.000 0.64 0.25 0.000 0.92 0.38 0.25 

n (%). The number of participants for each variable was shown for PD group and control group if data of some variables were not available. 
Hoehn & Yahr stage; UPDRS-III, Unified Parkinson’ s Disease Rating Scale Part III; ESS, Epworth Sleepiness Scale; GDS, Geriatric Depression 
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 = 2.27, p = 0.0224 Not significant Bilateral striatum: β = -0.16, #p = 0.0002 Not significant 

 = -2.30, p = 0.0243 GDS: β = -0.71, p = 0.0105 Not significant Not significant 

 LNS: β = 0.65, p = 0.0119 Not significant Not significant 

 ESS: β = -1.29, p = 0.0018 Not significant Not significant 

 Not significant Not significant α-syn: β = 215.40, p = 0.0103 

 HVLT-R/Immediate Recall: β = 1.96, p = 0.0059 

HVLT-R/Total Recall: β = 4.76, p = 0.0025 

Not significant Not significant 

 HVLT-R/Immediate Recall: β = 2.01, p = 0.0240 

HVLT-R/Total Recall: β = 4.07, p = 0.0388 

Not significant Not significant 

 GDS: β = 0.60, p = 0.0214 Not significant Not significant 

 SFT: β = -3.58, p = 0.0133 Not significant Not significant 

 GDS: β = -0.59, p = 0.0189 Not significant Not significant 

 Not significant Not significant α-syn: β = -161.00, p = 0.0466 

 RBDSQ: β = 0.54, p = 0.0552 Not significant Not significant 

 SCOPA-AUT: β = 1.55, p = 0.0126 

MoCA: β = -0.81, p = 0.0097 

Not significant α-syn: β = -188.80, p = 0.0387 

 multivariant regression models adjusted by age, sex, disease duration, and genotypes of remaining 13 SNPs.  # Indicates the results pass the p < 
e correction for multiple comparisons. Abbreviations: α-syn, α-synuclein; UPDRS-III, Unified Parkinson’ s Disease Rating Scale Part III; ESS, 

cale; RBDSQ, REM Sleep Behavior Disorder Screening Questionnaire; SCOPA-AUT, Scale for Outcomes in Parkinson's Disease-Autonomic; LNS, 
otal Score;  MoCA, Montreal Cognitive Assessment; HVLT-R, Hopkins Verbal Learning Test – Revised; SBR, striatal binding ratio; CSF, 

m. 
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