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Abstract  

 

Background: Referral of patients with heart failure (HF) who are at high mortality risk for 

specialist evaluation is recommended. Yet, most tools for identifying such patients are difficult 

to implement in electronic health record (EHR) systems.  

 

Objective: To assess the performance and ease of implementation of Machine learning 

Assessment of RisK and EaRly mortality in Heart Failure (MARKER-HF), a machine-learning 

model that uses structured data that is readily available in the EHR, and compare it with two 

commonly-used risk scores: the Seattle Heart Failure Model (SHFM) and Meta‐Analysis Global 

Group in Chronic (MAGGIC) Heart Failure Risk Score. 

 

Design: Retrospective, cohort study 

 

Participants: Data from 6,764 adults with HF were abstracted from EHRs at a large integrated 

health system from 1/1/10-12/31/19.  

 

Main Measures: One-year survival from time of first cardiology or primary care visit was 

estimated using MARKER-HF, SHFM and MAGGIC. Discrimination was measured by the area 

under the receiver operating curve (AUC). Calibration was assessed graphically. 

 

Key Results: Compared to MARKER-HF, both SHFM and MAGGIC required a considerably 

larger amount of data engineering and imputation to generate risk score estimates. MARKER-
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HF, SHFM, and MAGGIC exhibited similar discriminations with AUCs of 0.70 (0.69-0.73), 

0.71 (0.69-0.72), and 0.71 (95% CI 0.70-0.73) respectively. All three scores showed good 

calibration across the full risk spectrum.  

 

Conclusions: These findings suggest that MARKER-HF, which uses readily available clinical 

and lab measurements in the EHR and required less imputation and data engineering than SHFM 

and MAGGIC, is an easier tool to identify high-risk patients in ambulatory clinics who could 

benefit from referral to a HF specialist.  
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Introduction 

 

 Heart failure (HF) is a heterogenous, morbid condition that affects over 6.5 million adults 

in the United States.1 Mortality risk, while variable, is considerable and approaches 50% at five 

years after HF diagnosis with little variation across left ventricular ejection fraction (LVEF) 

spectrum.1 This risk is not always readily apparent to the wide range of clinicians, many of 

whom do not have training with diagnosing and managing patients with advanced HF, who take 

care of these patients in various care settings. The 2022 AHA/ACC/HFSA Guideline for the 

Management of Heart Failure states that increased predicted one year mortality is an indicator of 

advanced HF and that patients with advanced HF, when consistent with a patient’s goals, is a 

Class I recommendation.2 However, referral to a HF specialist for advanced therapies evaluation 

is often delayed when clinicians fail to recognize the severity of a patient’s condition and to 

identify those at high risk of death. This may result in lost opportunities to counsel patients and 

their families or initiate advanced therapies evaluation for cardiac transplantation or left 

ventricular device implantation (LVAD), which are life-saving therapies for a subset of patients 

with advanced HF.3  

The widespread adoption of electronic health records (EHRs) has created an opportunity 

to develop targeted health management strategies based on risk models for patients with HF.4 

However, many HF risk models, similar to many models for other conditions, were developed 

relying on data from outside of health systems, such as community-based, observational cohorts 

or clinical trials. They frequently rely on variables that may be subjective or that are not readily 

available in the EHR for data analytics. In addition, many of these risk models use medication 
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data, which is challenging to accurately extract from the EHR due to the lack of uniformity in the 

structure and reporting of dosing information.5–8 

The Machine learning Assessment of RisK and EaRly mortality in Heart Failure 

(MARKER-HF) is an externally-validated, boosted decision tree-based machine learning model 

that uses eight commonly measured variables (7 laboratory measurements plus diastolic blood 

pressure) to estimate 1-year risk of mortality in patients with HF.9 MARKER-HF was developed 

using inpatient and outpatient EHR data from patients treated at a large academic health center. 

Its performance has been shown to be superior to other HF and general risk models in diverse HF 

populations and in HF subgroups defined by LVEF.10 One important strength of MARKER-HF 

is its use of variables that are readily available in EHR repositories. This feature makes 

implementation relatively straightforward in clinical settings and could facilitate execution 

across a broad population of patients with HF in a health system.  

In this study, we compared the ease of implementation and the performance of two of the 

most widely used and tested HF risk models, Seattle Heart Failure Model (SHFM) and Meta‐

Analysis Global Group in Chronic (MAGGIC) Heart Failure Risk Score,11–19 with MARKER-HF 

in ambulatory patients with HF treated at a large, integrated health system using EHR data. We 

hypothesized that MARKER-HF would be easier to implement and require less data engineering 

than SHFM and MAGGIC while having similar overall performance for predicting 1-year risk of 

mortality in a larger, more representative population of patients with HF.   

 

Methods 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2023. ; https://doi.org/10.1101/2023.06.23.23291822doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.23.23291822


 6 

The data supporting the findings of the study are available from the corresponding author 

upon reasonable request and a data use agreement. The Northwestern University Institutional 

Review Board approved this study. 

 

Data source and Participants 

 

We identified a retrospective cohort of patients ages 18 to 89 years old with HF who 

visited outpatient primary care or cardiology at least once between 1/1/2010 to 12/31/2018 from 

the Northwestern Medicine Enterprise Data Warehouse (NMEDW), which houses 

comprehensive demographic, diagnostic, and prescription data from the 10 hospitals and over 

100 sites across the integrated health system.20   

Prevalent HF was defined by having a minimum of one inpatient or two outpatient 

diagnosis codes from distinct encounters for HF-based on a previously published algorithm that 

has been validated in the NMEDW.21,22 The index visit, which was the date of prediction, was 

defined as either the first primary care or cardiology visit after first inpatient HF diagnosis code 

in the study period or the first visit of the two qualifying ambulatory visits with a HF diagnosis 

code. Follow-up extended through 12/31/2019.  

Patients were excluded if they underwent heart transplantation or left ventricular assist 

implantation prior to or during the study period due to inability to accurately identify the date of 

surgery for the entire cohort. Patients who were not documented as deceased in the NMEDW and 

did not have a face-to-face encounter between one-year post-index visit through the end of the 

study period were excluded from the analysis. Race, ethnicity, and gender were captured as 

structured data in the EHR. 
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Outcome 

 

In all 3 HF risk prediction models, the outcome is death from all causes within one year 

of the index event (defined above). This information was captured in the NMEDW.  

 

 

HF Risk Prediction Model Inputs 

 

Table 1 shows data availability and definitions for each variable included in the 

MARKER-HF, SHFM, and MAGGIC models. Additional details on the definitions and lookup 

period for each variable are available in Supplemental Tables S1. Many variables were available 

as structured data from the EHR data repository and were abstracted directly into analytic 

datasets; here we highlight variables identified in other manners. As previously noted, each 

variable incorporated into MARKER-HF is available as structured data in the EHR data 

repository; the following variables were used in SHFM or MAGGIC. 

We used a combination of diagnosis and procedure codes to identify patients the presence 

of one of three types of cardiovascular implantable electronic device (CIEDs): implantable 

cardioverter defibrillator, chronic resynchronization therapy pacemaker, or combined device. 

History of chronic obstructive pulmonary disease, diabetes, and ischemic cardiomyopathy were 

ascertained using diagnosis codes. Because a history of HF first diagnosed ≥18 months ago is not 

readily available as structured data and challenging to extract with natural language processing, 

all patients were considered to have a history of HF first diagnosed < 18 months. NYHA was 
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only available in free text in a small subset of notes, so we assumed all patients had a mean value 

of 2.5 as previously done.11  

 

 

Creation of Common and Analytical Cohorts 

To evaluate relative ease of implementation of MARKER-HF with SHFM and MAGGIC, 

we first excluded patients with insufficient follow-up time, history of heart transplant or LVAD, 

and EHR data quality issues. We then examined the degree of data engineering and missingness 

and imputation requirements in the remaining cohort (n=9,231; Figure 1).  

Missing values for systolic blood pressure, weight, laboratory measurements, and LVEF, 

factors used in SHFM and MAGGIC, were imputed with single imputation using chained 

equations due to the high percentage of missing values for multiple variables. MARKER-HF 

score had much fewer missing values and those were imputed using mean value based on 

guidance from the model developers (AY and CC) and prior analysis demonstrating that the 

imputation of one of eight variables did not lead to substantial decrement in model performance.9 

Timing of HF diagnosis and NYHA Class were imputed for SHFM and MAGGIC as described 

above.  

To evaluate model performance, we then aimed to create an analytical cohort that 

minimized the number of imputed variables for the models while also maximizing the size of the 

analytic cohort (Figure 2). We therefore included patients with up to one missing variable for 

MARKER-HF, up to three missing for MAGGIC, and up to four missing variables for SHFM to 

achieve a reasonable cohort size of 6,764 patients.  
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Statistical Analysis: HF Risk Model Implementation and Validation 

We generated MARKER-HF risk scores (range -1 to +1) and 1-year survival estimates 

according to the code available on GitHub at https://github.com/claudiocc1/MARKER-HF and 

online calculator available at https://marker-hf.ucsd.edu/. We calculated risk scores and 1-year 

survival estimates for the SHFM and MAGGIC using published algorithms.13,17  

 We evaluated model discrimination, the ability of a model to correctly classify HF 

patients as alive or dead 1-year after the index date, using area under the receiver operating curve 

(AUC, or c-statistic) and compared AUCs between models with the DeLong Test.23,24 We 

assessed model calibration, the ability of a model to closely estimate the underlying risk, by 

comparing observed vs predicted 1-year survival for each model. 

To further evaluate model performance in subgroups, we estimated AUC in patients with 

each HF subtype: 1) HF with preserved EF (HFpEF) with LVEF (≥ 50%); 2) HF with mildly 

reduced EF (HFmrEF) with LVEF between 41% and 49%; and 3) HF with reduced EF (HFrEF) 

with LVEF ≤ 40%. We also estimated AUC in race and gender subgroups.   

To evaluate the risk of bias from right-censoring, we compared selected baseline 

characteristics and risk estimates from those included in the analytical sample to those who were 

lost to follow-up prior to one year. In addition, we performed two sensitivity analyses. First, we 

evaluated the discrimination of MAGGIC in a subset of patients who almost certainly were 

diagnosed with HF < 18 months prior to index date: those with at least 18 months of HF 

diagnosis code-free data in the EHR prior to index visit and for whom time of index visit equaled 

time of first HF diagnosis code. Second, we evaluated the performance of SHFM and MAGGIC 

with the use of mean imputation instead of chained equations to mirror the imputation approach 

for MARKER-HF. This is likely the strategy that would be used if the models were implemented 
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in a health system. All analyses were conducted using scikit-learn version25 1.01, Lifelines26 

version 0.26.4, and SPSS, Statistics, version 28.0.1. 

 

Results 

 

Baseline Characteristics  

 

From the health system electronic data warehouse, we identified 13,500 patients with 

diagnosed HF and at least one primary and cardiology ambulatory visit between 2010 and 2018  

(Figure 1). After excluding patients with insufficient follow-up time, history of heart transplant 

or LVAD, and EHR data quality issues, 9,231 patients were remaining in the cohort. After 

excluding patients with more than 3 missing variables for MAGGIC (n=573), 4 missing 

variables for SHFM (n=1,701), and more than 1 missing variable for MARKER-HF (n=1,776) 

the resulting analytical cohort had 6,764 patients remaining. In the analytical cohort, median age 

was 71 years (IQR 59-82), 54% were women, 90% were Non-Hispanic, and 20% were Black or 

African American (Table 2). This cohort had a high comorbidity burden: 40% had diabetes, 27% 

had chronic obstructive lung disease, and two-thirds had ischemic heart disease. 1,266 (19%) 

patients died within the first year of follow-up.  

 

Evaluation of ease of implementation and imputation requirements for each model 

 

Of the 20 variables used to calculate the SHFM score, 9 required data engineering (i.e diuretic 

dosing, use of computable phenotypes, and natural language processing to extract LVEF) and 1 
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variable (NYHA) required 100% mean imputation since unavailable for all patients. Of the 14 

variables MAGGIC uses, 5 required data engineering (i.e. use of computable phenotypes, LVEF 

extraction) and 2 variables (NYHA and history of HF first diagnosed ≥18 months ago) were 

100% missing and required imputation. Although we employed previously published algorithms 

to identify medical history, computable phenotypes have varying accuracy, and ranged from 

using a list of codes (i.e. diabetes, chronic obstructive lung disease) to combination of codes (i.e. 

CIED classification). MARKER-HF did not require comparable data engineering or use of 

computable phenotypes. No value for MARKER-HF was 100% missing from the cohort.  

 Figure 2 depicts the number of missing input variables for the three scores. It includes 

anthropometric, diagnostic testing, and clinical (NYHA for both SHFM and MAGGIC and 

variables and history of HF first diagnosed ≥18 months ago for MAGGIC) for each model and 

the resulting cohort sizes. With imputation of one variable, MARKER-HF can be executed on 

81% (7,455/9,231). For SHFM and MAGGIC, the imputation of four and three variables, 

respectively, were required to achieve a similar cohort size. Additional details on missingness for 

each variable in the analytical cohort are shown in Table S2.  

 

Performance of HF Risk Models 

MARKER-HF and SHFM demonstrated similar model discrimination. As shown in 

Figure 3, the AUC for MARKER-HF (0.70; [95% CI 0.69-0.72]) was similar to SHFM (0.71; 

[0.69-0.73]; DeLong test P=0.64) and MAGGIC (0.71; [0.70-0.73]; DeLong test P=0.43).   

The calibration, i.e. how well predicted risks match observed risks, for MARKER-HF, 

SHFM, and MAGGIC was good over the full range of predicted risk (Figure 4). There was 
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indication for over-estimation of 1-year mortality risk in the highest risk group by all three 

models.  

In subgroup analyses stratified by LVEF subtype, race (limited to patients who were 

Black and White due to small sample size leading to imprecise estimates in other groups), and 

gender, MARKER-HF, SHFM and MAGGIC all had similar performances, well within the 

confidence intervals for AUC from the subgroup analyses overlapping with the confidence 

intervals for the AUCs in the primary analysis (Supplemental Figures S1, S2, and S3). In a 

sensitivity analysis of MAGGIC examining a subpopulation of patients more likely HF 

diagnosed < 18 months at time of prediction (n=4908), the discrimination was similar (0.72; 

[95% CI 0.70-0.74]). In a sensitivity analysis of using mean imputation for systolic blood 

pressure, weight, laboratory measurements, and LVEF instead of chained equations for SHFM 

and MAGGIC, the change in AUC was insignificant (<5%). 

 

 
Discussion 

This study used data extracted from an enterprise data warehouse to evaluate the ease of 

implementation and the potential value of embedding three established risk scores into the EHR 

and incorporating them into routine care. MARKER-HF, a model that exclusively uses 

information available in the EHR, required less data engineering and imputation than SHFM and 

MAGGIC and was easier to implement. The imputation of only 1 variable for MARKER-HF 

enabled the execution of the risk score on 81% of patients meeting the cohort inclusion and 

exclusion criteria, whereas as SHFM and MAGGIC at a minimum required imputation of 4 and 3 

variables, respectively, to achieve a comparable cohort size. In the analytical cohort of 6,674 

patients, MARKER-HF had similar discrimination and calibration to SHFM and MAGGIC. 
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These findings were largely similar in subgroup analyses by HF class based on LVEF, race and 

gender. Results were also similar in sensitivity analyses that evaluated the potential effect of 

inaccurate HF diagnosis date in the EHR database on MAGGIC performance and the effect of 

different imputation strategies on SHFM and MAGGIC performance.  

Incorporating holistic risk HF prediction tools into routine care can provide valuable 

insight to inform patient-clinician shared decisions as well as potential population health 

strategies. Yet, many systems have not adopted these tools due to workflow issues – rather, the 

manner in which data are stored in the EHR renders many of the variables that are required for 

risk-prediction tools difficult to access. For example, NYHA class, which contributes 

substantially to the SHFM and MAGGIC scores, must be abstracted from clinician notes, 

embedded in the EHR where its presence is variable. In addition to potentially leading to 

misclassification or inaccuracies due to imputation(s) or computable phenotype definitions, our 

experience in generating this comparison was that it required a considerable amount of 

computational effort and resources to curate and analyze the data required for calculating the 

SHFM and MAGGIC from the EHR.  

Our analysis demonstrates that health systems do not need to undertake the additional 

backend work required to implement SHFM and MAGGIC; embedding MARKER-HF into the 

EHR could provide similarly valuable HF mortality risk information to the treating clinician or 

population health team. Moreover, by using readily available variables and relatively-

straightforward, publicly available Python code for implementation in the production setting, 

MARKER-HF would likely be more straightforward to build into the EHR and maintain than 

more complex risk scores that require a significant amount of data engineering and imputation.  
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Multiple factors likely contribute to the similar model performance of MARKER-HF, 

compared with SHFM and MAGGIC, despite the relative simplicity of its inputs. First, 

MARKER-HF employs a boosted decision tree-based machine learning model, which can 

capture complex correlations between the inputs. Second, implementing SHFM and MAGGIC in 

EHR data requires imputation for outright missing information, as well as reliance on 

computable phenotypes based on diagnosis and procedure codes. For example, both SHFM and 

MAGGIC require NYHA class, which is unavailable in structured EHR data. Our imputed value 

of 2.5 removes the nuance introduced into the SHFM and MAGGIC scores by the extreme 

values. Identification of current smoking status, presence of CIED and type, etiology of HF, 

chronicity of HF, co-morbidities (such as diabetes and chronic obstructive pulmonary disease), 

and in particular medication prescription and diuretic dosing, are highly challenging to obtain 

reliably using EHR data.5–8  

The concept of embedding predictive analytics in routine care to inform population health 

strategies and shared-decision making is central to the creation of learning health systems, which 

are care systems where all available data are used to enable evidence-based care equitably while 

also generating new evidence to inform future clinical care decisions.27 Using risk as part of care 

decision is particularly important for HF. Studies suggest that patients, particularly racial and 

ethnic minorities and other under-resourced populations, are often referred to a HF specialist too 

late.3,28,29 This delay places them at risk for worse outcomes if advanced therapies, such as 

cardiac transplantation or left ventricular assist device implantation, are pursued.3 Moreover, 

estimation of mortality risk may also inform discussions on therapeutics, palliative care referral, 

and end-of-life decision making.  Although an extensive literature of risk model derivation and 

validation studies for HF mortality and hospitalization exist,30–32 MARKER-HF has the unique 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2023. ; https://doi.org/10.1101/2023.06.23.23291822doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.23.23291822


 15 

ability to be executed with relative simplicity and similar performance across a large, diverse HF 

populations in health systems due to its use of few, routinely-collected laboratory and diastolic 

blood pressure measurements.  

This study has limitations. Due the lack of availability of several of the SHFM and 

MAGGIC variables as structured data in the EHR, we used imputation, natural language 

processing, and computable phenotypes for several variables similar to other studies that have 

evaluated these models using EHR-extracted, health system data. The use of these strategies, 

some of which were developed by our team, may have led to misclassification or biased these 

risk scores to the mean. However, we based our definitions, when able, on prior validation 

studies of SHFM and MAGGIC and on previously published electronic health data algorithms. 

Furthermore, only a subsample of patients had one-year follow-up, which may have biased the 

sample due to right censoring. However, baseline age, gender, ethnicity, race, and risk scores 

were similar between those with at least of year of follow-up for documented death and those 

without (Table 2), which suggests that our results are representative of the larger population. 

MARKER-HF had a lower discrimination in this study compared to the initial development and 

validation paper.9 This is may be due to a difference in prediction task; this study used 1-year 

mortality as the outcome whereas prior study predicted high risk (90-day mortality) vs low risk 

(those who did not die within 800 days) as the main outcome as well as differences in the data 

sources and populations.  Because the guidelines for HF specifically cite elevated one-year 

mortality risk as a sign of advanced HF that might trigger a referral to a HF specialist and the 

need to standardize the model for model comparison, we used over the same time horizon of one 

year for all three models.2  
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The findings from this study suggest that MARKER-HF may be informative to identify 

patients at high risk of death, including those who may benefit from HF specialist evaluation 

based on expert consensus guidance to use risk as part of the referral decision making process.3 It 

also may allow the identification of low risk patients who may require less intensive resource 

utilization.  Although some criticism has been raised at the “black box” nature of machine 

learning models, other experts have argued that rigorous external validation machine learning 

models achieves the goals of explainability.33 Moreover, MARKER-HF uses variables with 

biological relevance to and previously described association with advanced heart failure and 

mortality.  However, future implementation studies are needed to better understand how to 

embed HF risk models as part of routine care to improve patient-centered outcomes and their 

acceptability to clinicians and patients. This includes the development of a more robust digital 

infrastructure and governance system to execute predictive models and evaluate model 

performance and its impact on clinical care longitudinally,34–37 and trials like The REVeAL-HF 

(Risk EValuation And its Impact on ClinicAL Decision Making and Outcomes in Heart Failure) 

trial, which tested the impact of displaying HF risk estimates to clinicians for admitted HF 

patients using a clinical decision support tool in a pragmatic clinical trial in a single health 

system.38 Although this trial did not show an impact on its primary endpoints, additional studies 

in evaluating the use of risk of death for ambulatory patients either as part clinical decision 

support tool or by a population health team are needed.  

In summary, in this study, we found that MARKER-HF, a machine learning model that 

uses readily available variables, required less imputation and data engineering and had similar 

discrimination and calibration to SHFM and MAGGIC in a large, diverse population of patients 

with HF from an integrated health system. These findings indicate that MARKER-HF is a useful 
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tool to execute in system-wide EHR data from diverse health care settings to enable patient-

clinician shared decision making and population health management strategies.  
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Figure Legends: 

 

Figure 1: Flowchart for Cohort Identification in a Large, Regional Health System 

 

Figure 2: Cohort size by number of missing variables in 9,231 patients meeting study criteria. 

This bar chart depicts the size (percentage) of the cohort for which each score can be computed 

for a given number of missing variables in the cohort of 9,231 patients meeting the inclusion and 

exclusion criteria for the study. The percentage of top of each bar represents the number of 

patients in each bar divided by the cohort size (n=9,231). MARKER-HF=Machine learning 

Assessment of RisK and EaRly mortality in Heart Failure; SHFM= Seattle Heart Failure Model; 

MAGGIC= Meta‐Analysis Global Group in Chronic  

 

Figure 3: Receiver operating curve and corresponding area under the curve from 3 models 

(MARKER-HF, SHFM and MAGGIC) of 1-year survival in heart failure patients in a large, 

regional US health system.  DeLong AUC test for MARKER-HF vs SHFM and MARKER-HF 

vs MAGGIC had p-values of 0.64 and 0.43 respectively. MARKER-HF= The Machine learning 

Assessment of RisK and EaRly mortality in Heart Failure; MAGGIC= Meta‐Analysis Global 

Group in Chronic; SHFM= Seattle Heart Failure Model. 

 

Figure 4: Calibration of 3 models (MARKER-HF, SHFM and MAGGIC) of 1-year survival in 

heart failure patients in a large, regional US health system. A) MARKER-HF; B) SHFM; and C) 

MAGGIC. Error bars represent the one sigma statistical uncertainty on the mean. MARKER-

HF=The Machine learning Assessment of RisK and EaRly mortality in Heart Failure; 
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MAGGIC=Meta‐Analysis Global Group in Chronic (MAGGIC); SHFM=Seattle Heart Failure 

Model. 
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Table 1: Data availability and definitions for risk predictors in MARKER-HF, Seattle 
Heart Failure Model, and MAGGIC Heart Failure Risk Score 

 
*Structured data refer to values that than can be pulled directly from the data warehouse without an additional manipulation or processing.  
† Includes ace-inhibitors, beta-blockers, angiotensin receptor blockers, aldosterone blockers, statins, allopurinol, and diuretics  
‡ Includes ace-inhibitors, beta-blockers, angiotensin receptor blockers 
MAGGIC= Meta‐Analysis Global Group in Chronic; MARKER-HF=Machine learning Assessment of RisK and EaRly mortality in Heart 
Failure; SHFM= Seattle Heart Failure Model 

Variables by Model Data Availability and Definition 

MARKER-HF (No. predictors = 8) 
 

   Diastolic blood pressure  
 
 

Structured data* 
 

   BUN 
   Creatinine 
   White Blood Cell Count 
   Hemoglobin 
   Platelet Count 
   Albumin 
   Red cell distribution width 

Seattle Heart Failure Model (No. predictors = 20)  

   Age  
 

Structured data* 
   Gender 
   Weight 
   Systolic Blood Pressure 
   Laboratory measurements 
   NYHA Class Unavailable 
   Left ventricular ejection fraction Extracted as either structured data from echo data 

repository or by natural language processing in echo notes 

   Medications† Prescription data structured; diuretic dosing required 
natural language processing and data engineering 

   Ischemic Etiology  
Diagnosis and Procedural Codes 

   Devices (ICD, CRT-P, CRT-D) 

MAGGIC Heart Failure Risk Score (No. predictors = 14) 

    Age 

Structured data* 

    Gender 
    Body Mass Index 
    Current Smoker  
    Medications‡ 
    Systolic Blood Pressure  
    Creatinine 
    NYHA Class Unavailable 

    Left ventricular ejection fraction Extracted as either structured data from echo data 
repository or by natural language processing in echo notes 

    Diabetes Diagnosis codes     Chronic obstructive pulmonary disease 

    Heart failure first diagnosed    
     ≥18 months ago Unavailable 
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Table 2: Baseline characteristics for the analytical cohort and those who excluded due 
follow-up of less than one year 
 

Variable  Analytical Cohort 
(n=6,764) 

Cohort lost to 
follow-up 
(n=2,295) 

Age at time of prediction, median (IQR) 71 (59-82) 70 (58-80) 
Female, n (%) 3,627 (54) 1,277 (56) 
Ethnicity, n (%)   
  Hispanic 402(6) 168 (7) 
  Non-Hispanic 6,068(90) 1,888 (83) 
  Not Available 291 (4) 230 (10) 
Race, n (%)   
  White 4,601 (68) 1,364 (60) 
  Black or African American  1,323 (20) 451 (20) 
  Asian 193 (3) 71 (3) 
  Other 412 (6) 185 (8) 
  Not Available 218 (3) 203(9) 
Current Smoker, n (%) 476 (7) 176 (8) 
Diabetes, n (%) 2,727 (40) 897(39) 
Chronic Obstructive Lung Disease, n (%) 1,815 (27) 569(25) 
Ischemic Heart Disease, n (%) 4,533 (67) 1,492 (65) 
BMI, mean (SD) 28 (6) 27 (6) 
Heart failure subtype, n (%)   
  HFrEF (≤ 40%) 1,954 (29) 750 (33) 
  HFmrEF (41%-49%) 529 (8) 222 (10) 
  HFpEF (≥ 50%) 2,809 (42) 970 (42) 
Sodium, mean (SD), meq/L 138 (4) 137 (4) 
Creatinine, mean (SD), mg/dL 1.5 (1.4) 1.5(1.3) 
Albumin, mean (SD), g/dL 3.6 (0.6) 3.6(0.6) 
MARKER-HF Risk Score, mean (SD) -0.3 (0.2) -0.2 (0.3) 
Seattle Heart Failure Risk Score, mean (SD) 0.97 (0.7) 1.1 (0.7) 
MAGGIC Heart Failure Risk Score, mean (SD) 22.2 (6.7) 22.2 (7.1) 

MARKER-HF=Machine learning Assessment of RisK and EaRly mortality in Heart Failure 
MAGGIC=Meta‐Analysis Global Group in Chronic  
HFrEF=Heart failure with reduced ejection fraction 
HFmrEF=Heart failure with mildly reduced ejection fraction 
HFpEF=Heart failure with preserved ejection fraction 
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Figure 1: Flowchart for Cohort Identification in a Large, Regional Health System 

 
 
 
 
 

 

 

 

 

 

 

Patients, ages 18-89, meeting HF diagnosis criteria 
with at least one cardiology or primary care visit from 

1/1/2010 to 12/30/2018
N=13,500

Cohort meeting study inclusion and exclusion criteria
N=9,231

Excluded if missing more than:
-1 variable for MARKER-HF (n=1,776)
-4 variables* for SHFM (n=1,701)
-3 variables† for MAGGIC (n=573)

Analytical cohort with minimum set of data 
completeness of predictor variables and follow-up

N=6,764

Excluded if:
-Less than 1 year of follow-up (n=3,352)
-LVAD/Heart Transplant code present 
during study period (n=415)
-EHR data quality issues (n=502)

*Includes New York Heart Association Class, which  was 
missing for all 
† Includes New York Heart Association Class and Heart 
failure first diagnosed ≥18 months ago, which was 
missing for all
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Figure 2: Cohort size by number of missing variables in 9,231 patients meeting study 
criteria 
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Figure 3: Receiver operating curve and corresponding area under the curve from 3 models 
(MARKER-HF, SHFM and MAGGIC) of 1-year survival in heart failure patients in a 
large, regional US health system 
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Figure 4: Calibration of 3 models (MARKER-HF, SHFM and MAGGIC) of 1-year survival 
in heart failure patients in a large, regional US health system. A) MARKER-HF; B) 
SHFM; and C) MAGGIC 
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