Discovering Social Determinants of Health from Case Reports using Natural Language Processing: Algorithmic Development and Validation

Shaina Raza 1,2*; Elham Dolatabadi 1,3, Nancy Ondrusek1,2, , Laura Rosella2, Brian Schwartz1,2

1 Public Health Ontario (PHO), Toronto, ON, Canada.
2 Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
3 Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON,  Canada.

Corresponding Author:
Shaina Raza, PhD
Email: shaina.raza@utoronto.ca 

Appendix A
Table S1: Search Query
	("2022/01/01"[Date - Publication] : "2022/06/30"[Date - Publication]) AND
English[Language] AND
(("6"[Age] : "12"[Age]) OR
("13"[Age] : "18"[Age]) OR
("19"[Age] : "44"[Age]) OR
("45"[Age] : "64"[Age]) OR
("65"[Age] : "120"[Age])) AND
"Case Reports"[Publication Type]




Table S2: Entities
	To better organize these entities, we can categorize them into distinct clinical and non-clinical (including SDOHs) categories. 

Non-Clinical Entities (including SDOHs)
1. Demographics: Gender, Age, Race/Ethnicity
2. Biometric factors: Height, Weight
3. Temporal Factors: Date, Relative Date, Duration, Time
4. Lifestyle Factors: Smoking, Alcohol, Substance Use
5. Socioeconomic Factors: Employment
6. Healthcare System Interaction: Admission/Discharge, Vaccination
7. 
Clinical Entities
1. Cardiovascular Conditions: Heart Disease, Hypertension, Hyperlipidemia
2. Metabolic Conditions: Diabetes, Obesity, BMI
3. Renal Conditions: Kidney Disease
4. Oncological Conditions: Oncological
5. Respiratory Conditions: Respiration
6. Injury or Poisoning
7. Psychological Conditions
8. Symptoms
9. Internal Body Parts
10. External Body Parts
11. Treatment Procedures: Treatment, Procedure
12. Clinical Measures: Blood Pressure, Dosage, Pulse, Test
13. Medications: Drug Name, Vaccine
14. Clinical Department
15. Death Entity



Figure S1: Named entities extracted from the case report (1).
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Table S3: Benchmark datasets used.
	[bookmark: _heading=h.1t3h5sf]Corpus
	Entity types
	Data size

	[bookmark: _heading=h.4d34og8]NCBI-Disease 47
	Diseases
	793 Pubmed abstracts

	BC5CDR 48
	Diseases and diseases
	1500 Pubmed articles

	tmVar 50
	Disease-related mutation
	500 PubMed articles

	BC4CHEMD 51
	Chemicals
	10,000 Pubmed abstracts

	BC2GM 52
	Gene/Proteins
	20,000 sentences

	JNLBPA 53
	Genes, proteins
	2404 abstracts

	i2b2-Clinical 54
	Problem, Treatment, and Test.
	426 discharge summaries



Table S4: Baseline methods used.
	Baseline method
	Description 

	BiLSTM-CRF (2)
	This is a neural network model that combines Bidirectional Long Short-Term Memory (BiLSTM) and Conditional Random Fields (CRF) for sequence prediction tasks like NER.

	BILSTM-CNN-Char (3)
	This model combines BiLSTM, Convolutional Neural Network (CNN), and Character Embedding for more effective sequence prediction tasks. It leverages both word-level and character-level representations.

	BiLSTM-CRF-MTL (4)
	This is a model that combines BiLSTM, CRF, and Multi-Task Learning (MTL). MTL helps the model to learn and generalize better by training it on multiple related tasks concurrently.

	Doc-Att-BiLSTM-CRF (5),
	This model uses Document Attention mechanism along with BiLSTM and CRF for sequence prediction tasks. The attention mechanism helps the model to focus on more relevant parts of the input data.

	CollaboNet (6)
	This model uses Document Attention mechanism along with BiLSTM and CRF for sequence prediction tasks. The attention mechanism helps the model to focus on more relevant parts of the input data.

	BLUE-BERT (7)
	This is a version of the BERT model pre-trained on both clinical and biomedical text corpus for improved performance on healthcare related Natural Language Processing tasks.

	ClinicalBERT (8)
	This is a variant of the BERT model pre-trained specifically on clinical text to perform various tasks in medical natural language processing.

	BioBERT (9)
	This is a domain specific language representation model pre-trained on large-scale biomedical corpora. It is designed for biomedical text mining tasks such as disease name recognition, species recognition, and chemical compound and drug name recognition.

	BioBERT+CRF (10)
	This model leverages the powerful language representation abilities of BioBERT and combines it with the sequence prediction capabilities of CRF for tasks like ner in biomedical text.

	BioBERT+MLP (11)
	This model uses BioBERT for extracting robust language representations and a Multi-Layer Perceptron (MLP) for final prediction tasks. The combination helps to adapt to various tasks in biomedical NLP.



Table S5: General Hyperparameters used along with best value and range in parenthesis.
	Hyperparameter
	Value 

	LSTM state size
	200 [200 - 300]

	dropout rate
	0.5 [0.2 - 0.7]

	Epochs
	40 [20- 80]

	Batch size
	16 [8 - 128]

	Learning rate (lr)
	1.e-05 [1.e-9 – 1.e-2]

	lr  decay coefficient (po)
	0.005 [0.001, 0.01]

	Warmup steps
	10,000 

	Optimizer
	ADAM (12), β1=0.9 and β2=0.999

	Word dimension
	300  [50 – 450]

	Hidden size LSTM
	300

	Gradient clipping 
	5.0

	The fine-tuning transformer-based architectures (BioBERT and others) are maximum sequence length of 128, number of layers as 12, number of attention heads also 12 and embedding size as 768. For different datasets, the fine-tuning takes different hours (2 hours, 3 hours, 4 hours and 10 hours for our dataset). In the NER task, we fixed the length of sentences to 512. Other hyperparameters used in the paper are given in Table 2.
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