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Abstract 

Mutational analyses of tumor DNA guide the use of targeted therapies and checkpoint inhibitors 

in management of solid tumors. Reducing false positive mutation calls without compromising 

sensitivity as gene panels increase in size, and whole exome and genome sequencing enters clinical 

use, remains a major challenge. Aiming for robust somatic mutation analyses in the clinical setting, 

we have developed VARify, an integrated, accurate and computationally efficient software for 

cancer genome analyses encompassing all steps from pre-processing of sequencing reads to 

mutation identification. Benchmarking to two state-of-the-art open-source somatic mutation 

analysis pipelines demonstrated accurate detection of clinically actionable point mutations, all 

while strongly reducing the number of false positive mutations reported, at comparable or faster 

speed. Further, the VARify output classified microsatellite unstable colorectal cancers by tumor 

mutation burden better than the other pipelines. In comparisons where the same tumors were 

subjected to different panel enrichment and sequencing technologies, VARify had the most 

consistent intersection of consensus mutations. False positive calls were produced when the same 

data was used as tumor and reference by the other pipelines, while VARify did not produce such 

calls. The calling uniformity across sequencing technologies of VARify and its tumor-only 

analysis derivative pipeline ALTOmate was also demonstrated. Taken together, these two novel 

pipelines can improve clinical mutation analysis to the benefit of cancer patients.  
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Background 

The discovery of the genetic basis of cancer spurred the development of oncogene-targeted 

therapies, with notable examples in sotorasib (KRAS), vemurafenib (BRAF), dacomitinib (EGFR) 

or ensartinib (ALK) for lung cancer (1) or cetuximab (EGFR) for colorectal cancer (2). Further, 

checkpoint blockade immunotherapies have entered routine oncology (3, 4). The clinical use of 

these therapies requires companion diagnostics that can detect somatic mutations with high 

sensitivity and specificity in patient tumors (4). Typically, tumor tissue used in diagnostic gene 

sequencing is composed not only of tumor cells but also of other cell types, including normal 

epithelial, stromal and inflammatory cells, and can therefore have a low tumor cell fraction (5, 6). 

Samples often fail to meet inclusion criteria based on low tumor cell content and DNA yield, but 

are still analyzed due to lack of other samples of sufficient quality (7, 8). The combination of 

insufficient tumor purity, high tumor heterogeneity, and the allelic imbalances in cancer genomes, 

can result in sequencing data that is difficult to interpret and report mutations from with a high 

degree of confidence (9, 10). Thus, mutational analyses of tumor tissues have challenges beyond 

those encountered in analyses of constitutional DNA (11–13). 

A systematic review of next-generation sequencing (NGS) in the molecular pathology setting 

revealed that 83% of successfully analyzed samples had at least one mutation detected by gene 

panel sequencing of 50 to 500 genes (14). The use of comprehensive gene panels over single gene 

analysis is cost-effective (15), as improved detection of actionable biomarkers and better 

therapeutic guidance benefits patients (16). Therefore, targeted gene panels for cancer diagnostics 

are continuously increasing in size, yielding large amounts of sequencing data covering many 

genes and detection of many putative mutations of unknown significance. These challenges 

compound when analyzing whole exomes and whole genomes of tumors. The value of false 

positive reduction from sequencing also a patient-matched normal DNA sample is supported by 

recent studies (17, 18), but the vast majority of molecular pathology analyses are still performed 

using only a tumor sample. In all, clinical sequencing of solid tumors beyond hotspot mutation 

detection has demands that are partially unmet by the current state-of-art in molecular pathology. 

Enrichment technologies coupled with NGS have increased the sensitivity of mutation detection 

by enabling sampling of genomic regions of interest to thousand-fold depths. The sequenced reads 

are then trimmed of non-target sequences, for example using Cutadapt (19), and then aligned to a 

reference genome sequence using software such as BWA (20). Next, one or more of several tools 

for single nucleotide variant and indel detection, including Strelka2 (21), Mutect2 (22), VarScan2 

(23) and others (24), is used to identify variant bases. The output from secondary sequence analysis 

is then further interpreted by annotation software and molecular diagnostic experts. As clinical 

sequencing now matures into a routine diagnostic activity, increasing regulatory authority 

demands create a need for validated software pipelines that integrate the tasks of read trimming, 

alignment, and mutation calling (25). These functionalities are today often performed by 

independent software packages of different origins combined into a pipeline (26). To ensure that 

these functionalities perform optimally as a unit, and in compliance with regulatory requirements, 

there is a need for full integration. It is also important to eliminate unnecessary or untestable 

assumptions from analysis models to ensure diagnostic performance under any condition and 

facilitate regulatory approval.  

In light of the above, the ideal analysis software should operate from targeted panels to whole 

exomes and whole genomes, handle sequence data of several different vendor origins including 
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long-read sequencing, show consistency when re-analyzing a sample, and meet requirements for 

regulatory approval. Here, we describe an integrated solution for read trimming, read alignment 

and mutation calling developed specifically for clinical sequencing of solid tumors. We 

benchmark each key functionality and the integrated solution to widely used reference software, 

and compare mutation detection performance in presence and absence of normal tissue reference. 
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Methods 

Tumor and patient-matched normal sequence datasets. The mutational analyses of patient 

samples were approved by the Ethical Review Board (EPN Uppsala, C116/2007). Genomic DNA 

from 107 CRC patients (matched tumor and normal specimens) was subjected to target enrichment 

of the coding sequence of 676 cancer-related genes and gene families using a custom-designed 

Haloplex panel (Agilent) and sequenced on a HiSeq 2000 platform (Illumina) to >1000-fold 

average read depth in regions of interest for both tumor and normal samples (27). In addition, 

DNA from 4 of the 107 T/N pairs was subjected to library preparation using TruSight Oncology 

500 and sequenced on NextSeq 550 platform (Illumina), and prepared with Core Exome (Twist 

Biosciences) library panel followed by sequencing on NovaSeq 6000 (Illumina). The 4 tumor 

samples were comprised of one microsatellite instability-high (MSI-High), one microsatellite 

instability-low (MSI-Low) and two microsatellite stable (MSS) samples, to represent all three 

types of instability phenotypes from the complete benchmarking dataset. The same samples used 

for comparing different Illumina sequencing platforms were re-sequenced using ion-

semiconductor sequencing technology (IonTorrent, Thermo Fisher Scientific). Unfortunately, the 

paired normal of one case (MSI-High) was no longer available, which limited some parts of the 

analysis for this sample. All data produced in the present study are available upon reasonable 

request to the authors. 

Sequencing and Quality Control Phase 2 dataset. The Somatic Mutation Working Group of the 

SEQC2 consortium, led by the US Food and Drug Administration (FDA), has released datasets 

for benchmarking somatic mutation calling pipelines (28). The genomic reference sample 

SRP292966 provided by SEQC2 was accessed from the SRA archive (29). The dataset included 

several technical repeats of whole-exome sequenced (WES) reference material by three different 

sequencing protocols based on library preparation kits from Roche Sequencing Solutions, 

Integrated DNA technologies or Agilent Technologies and subjected to sequencing by ligation 

(Illumina) (30). Further, there are 220 true positive mutation calls in the SEQC2 dataset, which 

have all been orthogonally validated by ddPCR (30). From 284 randomly selected putative calls, 

only 220 are true positives, while the remaining 64 are false positives with the mutation present in 

the normal tissue, thus constituting germline variants as opposed to somatic mutations (30).  

State-of-the-art software benchmarks. Two commonly used open-sourced pipelines for somatic 

mutation detection were used for benchmarking. The adapter trimming in both was performed by 

Cutadapt v.4.0 (19). The trimmed sequencing reads were aligned with BWA-MEM v.0.7.17 over 

the GRCh37 reference human assembly and the output sam-files were processed with Samtools 

v.1.15 prior calling. The software used for somatic mutation identification was either Mutect v.2 

from GATK 4.1.3 (in the CBSM pipeline, Figure 1A) or Strelka v.2.9.10 (in the CBSS pipeline, 

Figure 1B). Both pipelines were executed with default settings in somatic mode according to best 

practices and recommendations in their documentation. 

Novel mutation analysis pipeline. To maximize efficiency, we developed a tightly integrated 

software incorporating the necessary components of a somatic mutation analysis pipeline in a 

single package termed VARify. Thus, conceptually discrete steps in the analysis such as the read 

trimmer and/or cutter, read aligner, variant caller and the necessary input/output operations can be 

perceived as functionalities, rather than as separate executables. To enhance performance, we 

minimized intermediate file output/sorting and implemented task parallelism in all the different 

functionalities. 
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The leading sequencing platforms (Illumina, MGI, PacBio and IonTorrent) output sequencing data 

in the de facto standard FASTQ file format (31), therefore, the input functionality (IF) supports 

FASTQ format in single-read or pair-end mode. The read trimming functionality (RTF), provided 

with an input adapter sequence, performs exact or partial matching of the adapter to the read 

sequence. If an exact match is not found, a full-length Smith-Waterman gapped alignment of the 

adapter and the read sequence is performed in an affine gap model. If the gap-tolerant match is 

supported by >90% identity, a 3´-adapter trimming is performed on the read with minimum 

trimming length of three nucleotides. The RTF can also be instructed to cut a fixed-length 

sequence from the 5′- and/or 3′-end of the sequencing read in both single-read and paired-end 

modes in a read cutting functionality. The resulting sequence post trimming and/or cutting is 

directly processed in memory by the read-aligner functionality (RAF). The custom hash-based 

aligner performs indel-tolerant read mapping to the entire human reference genome usually 

resulting in several potential genome loci for the read placement. For all putative loci, a full-length 

Smith-Waterman alignment with affine gaps is performed and the top-scoring alignment for the 

read location is reported. The pipeline is capable of pair-end read alignment or single read mode. 

To eliminate erroneous support for somatic mutations coming from uncertainties in structural 

variation of the human reference sequence, the RAF was designed to not report alignment if 

members of a read pair map to different chromosomes. To achieve full freedom of mapping, the 

reads in a pair are mapped independently of each other but paired alignments are given priority by 

the RAF. If one of the reads in a pair fails to map, alignment in the vicinity of the other member 

of the pair is not enforced, but the aligned read is reported as a singleton. The insertions and 

deletions events reported by RAF are left aligned to fulfill the criteria for normalization when the 

variant is reported as fully left-aligned and parsimonious (32). Next, the variant calling 

functionality (VCF) groups the reads with overlapping coordinates in structures termed read 

chunks. Each chunk is delimited from the neighboring chunks by genome positions, where there 

is no coverage of the reference sequence. The mutation calling is performed in chunks by 

evaluating the probabilities of the base being correctly sequenced and mapped. The base quality 

score reported by the sequencing instrument is a measure of the probability of the base being 

correctly sequenced. The mapping quality score of a sequence read is assigned by the RAF to 

represent the probability of the read to be correctly placed over the genome. The pattern 

recognition distance metric Poisson-Binomial radius (PBR) is used to perform statistical 

evaluation of every putative mutation (33). Based on mapping qualities of included reads, the PBR 

is computed to quantify the non-overlap of the reference allele probability distributions, along 

with a sequence error corrected approximation of the mean reference allele ratio difference 

between tumor and normal sample. Given non-identically distributed sets of reference allele 

probabilities in the matched tumor and normal sample, the PBR value is the number of joint 

confidence intervals that do not include 0. Thus, a higher PBR value translates to a higher 

likelihood of a true somatic mutation. The advantage of PBR to calculations of exact confidence 

intervals of reference allele ratios is computational speed. The difference between the arithmetic 

means of the reference allele probabilities in tumor and normal sample (M) can be thought of as 

a sequence error corrected variant allele frequency (VAF) value. VARify by default allows ≤1% 

mutant allele in the normal sample to avoid discarding true positive mutations because of 

sequencing errors in the normal sample. The final result from mutational analysis is reported by 

the output functionality in the standard Variant Calling file format (.vcf) (34).  

Paired-sample test based on identical samples. The sequencing reads of a normal NCI SEQC2 

sample (29) (Normal) were copied and the read IDs altered in one symbol to avoid any possible 
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computational mix-up of samples. The sequencing data and base qualities were identical in both 

samples. The FASTQ copy was labelled altered normal (aNormal) and the pair aNormal-Normal 

was analyzed as a tumor-normal pair with VARify, CBSM and CBSS pipelines. 

Statistical analyses and data visualization. The categorization of CRC samples into MSS and 

MSI-High cases, based on the number of mutations was evaluated by Mann-Whitney U test with 

Bonferroni correction (pandas 1.5.3, matplotlib 3.5.1, seaborn 0.11.2) and the respective p-values 

were used. Cohen’s d was used to estimate the effect size in each comparison. The ROC analysis 

of the same experiment was performed in R v.4.1.3 using pROC package v.1.18.0. The Matplotlib 

v.3.5.1 library in Python v.3.8.10 was used to generate plots. Figures were prepared with Inkscape 

v.1.2.2. 
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Results 

Colorectal cancers are well suited for calibration and benchmarking of mutational analysis 

software, as there are frequently mutated genes with mutation hotspots (KRAS and BRAF), a tumor 

suppressor gene with well-known spectrum and prevalence of driver mutations (TP53), and a 

tumor suppressor gene inactivated by nonsense as well as frameshifting indel mutations (APC). A 

subset of CRCs has mismatch repair deficiency, manifesting in large numbers of indels in 

polymeric base contexts, and are likely to respond to checkpoint inhibitor treatment. Furthermore, 

diagnostic mutational analyses of solid tumors currently rely on enrichment panels of 50-500 

genes sequenced to ~1000-fold depth, and occasionally the whole human exome at ~200-fold 

depth. Therefore, we used the following three sequencing protocols for benchmarking: (i) a custom 

designed Haloplex panel (Agilent) of 676 genes (PCR-based target enrichment) sequenced on 

Illumina HiSeq 2000 (Haloplex/HiSeq), (ii) the TruSight Oncology 500 gene panel (hybrid-

capture target enrichment) sequenced on Illumina NextSeq 550 (TSO500/NextSeq) and (iii) the 

TWIST core exome panel (PCR-free target capture) sequenced on Illumina NovaSeq 6000 

(TWIST/NovaSeq). 

Efficient and robust software for clinical mutation analyses in cancer. Combinations of 

different, and independently developed software for read trimming, alignment and mutation 

calling remains the state-of-the-art for mutational analysis in many research and clinical 

laboratories. Two commonly used pipelines are Cutadapt-BWA-MuTect2 (CBSM) and Cutadapt-

BWA-Strelka2 (CBSS) (Figure 1A and B). Tight integration between the sequential steps of read 

trimming, alignment and somatic mutation analysis is required to enable parallel and rapid 

execution to enable the user to assume full responsibility for the output. We therefore developed 

VARify, a rigorous software pipeline, de novo with sole focus on optimal tumor-normal 

mutational analyses of cancers (Figure 1C). A derivative pipeline, ALTOmate, was developed for 

situations where no patient-matched reference sample is available (Figure 1D). Both VARify and 

ALTOmate accept for input the standard single-read or paired-end FASTQ files from the major 

sequencing providers (Illumina, MGI, IonTorrent or Pacific Biosciences) and output mutation 

calls in VCF format. Both pipelines consist of three functionalities, namely read trimming 

functionality (RTF), read alignment functionality (RAF), and variant calling functionality, 

integrated in a single executable. 

Read trimming functionality. If adapter sequences are provided, the RTF of VARify and 

ALTOmate will perform 3′ adapter detection and trimming in paired-end mode. The output of the 

RTF closely matched the output from Cutadapt v.4.0 with disagreement in on average 1/10,000 

processed reads (Suppl. Table 1A). The difference stemmed from the alignment models used prior 

to trimming; RTF performed full-length Smith-Waterman alignment, whereas Cutadapt relied on 

semi-global alignment (19). When compared in 107 tumor and normal samples from the CRC set 

sequenced in pair-end mode, the RTF output was identical to Cutadapt in average 99.98% of the 

reads (Suppl. Table 1A). Both agreed on the presence of adapter sequence in 17.66% of the 

remaining reads, but the trimmed sequence differed (Suppl. Table 1A). The proportion of 

trimming decisions identical for both software was similar for read1 and read2 (99.98% in both), 

despite the difference in the length of the adapters to align (34 and 58 nucleotides for the first and 

second adapter respectively), suggesting that the alignment length is not important for the adapter 

detection and trimming decision. The RTF aims to identify and remove most of the adapter 

sequences while preserving most of the original sequencing data. Therefore, following adapter 

trimming, the RTF preserved slightly more (0.003% on average) of the original sequence 
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compared to Cutadapt (Suppl. Table 1A). The VARify RTF was more than three times as fast as 

Cutadapt v.4.0 (Suppl. Table 1C). Since efficiency can be a reason to use faster read-trimming 

tools in clinical practice, we benchmarked to the ultra-fast trimming solution fastp v.0.20.0 (35). 

In the CRC dataset, fastp discarded ~4.09% of the read pairs (~8% of the data) which did not pass 

its internal quality threshold, so a direct comparison between fastp and either Cutadapt or RTF 

resulted in low concordance. If considering only the reads processed by fastp, trimming decisions 

by RTF and fastp were identical in ~96.15% of the reads (Suppl. Table 1 B). In the remaining 

3.85% of the reads, the adapter was detected but processed differently in ~3.90% of the reads, and 

in another ~90.19% of reads, the trimming decision involved <=5 nucleotides by either software 

Thus, the total concordance between fastp and RTF in the reads processed by fastp was >99.62% 

(Suppl. Table 1B). The RTF had two times faster execution speed than fastp (Suppl. Table 1C). 

Together, a read trimming functionality superseding the current state-of-the-art in speed and 

amount of sequence retained, all while implementing conservative choices in the alignment model, 

was developed.  

Read alignment functionality. Next, the RTF output of VARify or ALTomate is processed by the 

RAF while in operational memory to avoid inefficient local or network storage operations. To 

evaluate its performance, we compared mapping and alignment to that of the BWA-MEM aligner 

(Suppl. Table 2A). Comparing total mapability in the CRC Haloplex panel set, the VARify RAF 

mapped on average 98.78% of the reads compared to 99.32% for BWA-MEM (Suppl. Table 2A). 

Interestingly, 63.94% of the average 0.37% of total reads mapped by BWA-MEM but not RAF 

had PHRED score 0, interpreted as a 100% probability that the alignment is wrong. On average 

65.85% of the reads, which were mapped, paired and assigned to different chromosomes by BWA-

MEM were not mapped by RAF. Alignment as a proper pair or singletons was reported by RAF 

in 21.83% of the inter-chromosomal BWA-MEM read pairs. From all mapped reads, RAF outputs 

0.35% singletons compared to 0.10% for BWA-MEM. Similarly, proper pairs (98.9% in BWA-

MEM vs. 98.19% in RAF) were not forced over non-proper pairs (1.14% in BWA-MEM vs. 

1.81% in RAF). The concordance between BWA-MEM and RAF in reported mapping coordinates 

was on average 97.24%. When the mapping quality (MAQ) score of the concordant reads was 

compared, BWA-MEM assigned higher MAQ than RAF, with >5 PHRED units. The mean MAQ 

reported by BWA-MEM was 59.66 and by RAF 54.28 (Suppl. Table 2A). When excluding reads 

with MAQ of 0, meaning reads which are wrongly placed with 100% probability, BWA-MEM 

alignment missed on average more than six targets compared to RAF in every sample evaluated 

(Suppl. Table 2A). In all, the RAF aligned 0.5% less reads than BWA-MEM in the CRC set, 

primarily by not placing reads with ambiguous mapping or rejecting inter-chromosomal pairs. 

When performing alignment comparison in the TSO500 and TWIST datasets, the differential in 

mapability between RAF and BWA-MEM increased, however most of the reads mapped by 

BWA-MEM, but not RAF were with MAQ=0 (93% and 95% respectively). When excluding the 

zero quality reads, BWA-MEM missed on average more targets in comparison to RAF, 21 in the 

TSO500 and 1496 in the TWIST datasets (Suppl. Table 2B and 2C). Together, the RAF is more 

conservative than BWA-MEM as it avoids assigning ambiguous pairs and reads.  

Variant calling functionality. For benchmarking of the variant calling functionality of VARify, 

we compared pipeline performance on data from 676 genes sequenced in 82 MSS and 21 MSI 

CRC cases using Haloplex gene panel enrichment and Illumina HiSeq 2000 sequencing. When 

analyzing the somatic mutations reported for each sample by the three different pipelines, 

consecutive filters were applied to facilitate the interpretation. The CBSS, CBSM and VARify 
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reported on average 4,318, 779 and 331 total mutations, of which 4,252, 753 and 321 on-target 

mutations, and 602, 190 and 208 mutations on average, respectively, passed all pipeline filters 

(PASS) (Suppl. Table 3). The calls of the three pipelines over CRC driver genes sequenced by the 

Haloplex panel were collated (Figure 2A and Suppl. Figure 1A). Thus, there is an overall 

consensus between the report of the three pipelines, with a tendency towards overcalling by CBSS 

and good agreement between CBSM and VARify.     

Classification of CRC as MSI or MSS and determination of tumor mutation burden. The total 

number of mutations reported by CBSM and VARify, but not by CBSS, correlated with MSI status 

of the sample (CBSS p = 2.568e-01 with Cohen’s d = -0.4057, CBSM p = 5.881e-10 with Cohen’s 

d = 2.2643, VARify p = 5.930e-12 with Cohen’s d = 3.6573, Mann-Whitney U test) (Suppl. Figure 

1B). If considering only mutations passing all filters (PASS), there was apparent statistical 

significance for all pipelines, but CBSS suffered from effect size, as suggested by Cohen’s d 

(Figure 2B). Further, these correlations improved if only the number of PASS InDels were 

compared (CBSS p = 4.435e-12 with Cohen’s d = 3.9200, CBSM p = 5.018e-12 with Cohen’s d 

= 3.9728, VARify p = 5.449e-12 with Cohen’s d = 3.5759) (Suppl. Figure 1C). The ROC analysis 

of MSI status classification by each pipeline revealed that CBSS and CBSM gradually improved 

when total mutations, PASS mutations or only PASS InDels were considered. VARify had the 

highest sensitivity and specificity when the total and PASS mutations were used for classification 

(Suppl. Figure 1D Figure 2C). When only the PASS InDels were considered, all three pipelines 

accurately classified the samples (Suppl. Figure 1E). Thus, VARify provided superior 

classification of MSI and MSS tumors as compared to other commonly used pipelines.  

Mutational analysis of cancer genes. In a manually-curated set of previously reported somatic 

mutations (27), the overall recall was 96%, 94% and 91% for VARify, CBSS and CBSM pipelines. 

The mutations observed in KRAS were mainly located in known hotspots. For all samples having 

sufficient read depth for analysis (coverage ≥30 reads), all KRAS mutations in codon 12, 13 and 

61 observed by pyrosequencing (36) were detected by all pipelines. Two transforming hotspot 

mutations at p.A146T (37), an oncogenic p.T74P mutation (37, 38), an oncogenic p.K117N 

mutation (37, 39), a potentially pathogenic p.D119H mutation (40, 41) and several novel mutations 

(p.E91D, p.A11D and p.I93N) were also detected by VARify. In BRAF, all V600E mutations 

detected a priori by pyrosequencing and covered with ≥30 reads were reported by VARify (27). 

Driver somatic mutations in TP53 have been characterized and annotated (42) and 70% of CRC 

cell lines had non-synonymous or truncating mutations (43). Here, 63% of the CRC tumors had at 

least one TP53 mutation in the protein coding sequence, which is in agreement with prior 

knowledge (44), and 97% of non-synonymous, nonsense and indel mutations reported here had 

previously been reported in the UMD TP53 database (45). Of the latter, 73% were missense, 15% 

nonsense, and 11% frameshifting indels, in agreement with previous reports (44, 46). In 82% of 

the MSS cases, APC had inactivation mutations. Of these, 55% (45/82) had one mutation and 45% 

(37/82) had two different mutations, with 80% of all mutations located in the mutation cluster 

region (MCR) and 98% of total observed somatic alterations being truncating (41 small indels and 

55 stop-gain SNVs). The distribution and prevalence of somatic APC mutations was in agreement 

with previous reports that the tumor suppressor APC is inactivated by somatic mutations in the 

vast majority of MSS CRC cases with a proportion of small indels to stop-gain SNVs near 1:1 and 

the majority of mutations observed in the mutation cluster region (47, 48). Of the nonsense 

mutations, 92% were previously reported in the UMD APC database (49) or COSMIC (50). 
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Together, the results from analyses of known cancer genes demonstrate the ability of VARify to 

accurately detect driver somatic SNVs as well as indels in deep sequenced human solid tumors. 

Consistency of mutation reports across different sequencing and enrichment technologies. One 

strategy to validate true somatic mutations and exclude sequencing artifacts is to subject the same 

sample to conceptually different enrichment and sequencing technologies. To probe the calling 

consistency of the three pipelines over three different library preparations and sequencing 

instruments, we used materials from the same DNA extraction performed on 4 pairs of tumor and 

patient-matched normal samples (MSS-1, MSS-2, MSI-Low and MSI-High). Consistent calling 

with sufficient sensitivity over all three panels required that the evidence for a prospective call by 

VARify exceeded 2 PBR units. Overall, the three pipelines and sequencing platforms agreed on 

very few somatic events in exons covered by all three libraries (Suppl. Table 4). In the intersection 

of the sequencing targets for each library, all pipelines reported the same 4 mutations in MSS-1, 

5 mutations in MSS-2, 17 mutations in MSI-Low and 31 mutations in MSI-High (Table 1 and 

Suppl. Table 4). Although VARify is agnostic to target definitions, it reports the fewest total 

mutations (Suppl. Table 3) and very few mutations outside of the consensus with 3, 7, 12 and 5 

mutations for MSS-1, MSS-2, MSI-Low and MSI-High respectively (Figure 3A). In comparison, 

CBSM had tens of additional calls (12, 53, 22 and 27), while CBSS had hundreds (343, 518, 289 

and 293) (Figure 3A). The core consensus set of mutations per sample (Figure 3A) represents the 

molecular profile of driver events in MSS and MSI tumors, and the numbers of mutations correlate 

with the subtype of CRC (Table 1). The number of reported mutations by VARify correlated with 

the MSI status of the sample, and VARify reported the least putative calls compared to CBSM and 

CBSS.  In a side-by-side comparison, VARify was faster than CBSM or CBSS pipelines in the 

Haloplex set and faster than CBSM in TSO500 and Twist exome analysis (Figure 3B). The speed 

enhancement primarily stems from tight integration of the different functionalities, elimination of 

intermediate steps, and multiprocessing.  Together, VARify produced consistent results with less 

outside the consensus of the three pipelines in the same target across different sequencing 

technologies.  

Quantification of false positive and true positive mutation calls. The appearance of mutations in 

normal-normal calling can be explained by somatic mosaicism or artifacts in re-sequencing the 

same sample (51). The idea of using technical replicates of a NGS sequenced normal sample for 

evaluation of somatic mutation performance is in pre-print (52). The SEQC2 dataset is a manually 

curated reference for identification of false positive and true positive calls (30), that we used here. 

To eliminate biological sources of variants in the scoring of false positive mutations, we first 

limited the analysis to pairs of identical data. Thereby, the calling test directly scores false positive 

somatic mutations, with a baseline at zero. Calling a SEQC2 aNormal-Normal data pair, VARify 

reported no somatic mutations while the CBSM pipeline reported on average 120,411 putative 

events of which average 1,041 were PASS somatic mutations and the CBSS pipeline reported 

200,219 putative events scored as possible somatic mutations with the LowEVS filter (Suppl. 

Table 5A). The CBSM yielded different output when analyzing aNormal vs Normal or Normal vs 

aNormal, whereas the CBSS and VARify output was independent of the direction of the pair. 

Many of these erroneous calls were present in the tumor-normal calling of the same pair, average 

9,879 for CBSS and 13,332 for CBSM (up to 8 PASS) (Suppl. Table 5B). Finally, we performed 

Normal-Normal calling without any alteration with samples that come from different sequencing 

experiments, resulting on average in 57,638, 19,310 and 600 PASS mutations for CBSS, CBSM 

and VARify respectively (Suppl. Table 5C). The CBSS, CBSM and VARify pipelines were 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2023. ; https://doi.org/10.1101/2023.06.08.23291143doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.08.23291143
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

compared with respect to the false positive mutations in manually curated SEQC2 dataset (Suppl. 

Table 6). False positive calls were defined as all reported mutations with genome coordinates 

falling in the list of known negative positions evaluated by SEQC2. On average CBSS, CBSM 

and VARify reported 2,282,443, 970,491 and 129,598 total calls per sample, from which 

respectively 48,037, 44,569 and 15 were in the known negative list. If considering only PASS 

calls, CBSS, CBSM and VARify reported on average 508,125, 186,636 and 60,112 calls, with 

19,151, 1,760 and 4 in the known negative list. In addition to the 284 putative calls for the SEQC2 

dataset, 39 on-purpose selected true-negatives were also probed by ddPCR. The mutation report 

of CBSS, CBSM and VARify did not include any true negatives. All pipelines reported 220 true 

positives, however there was a difference between the pipelines in reporting of the 64 false positive 

calls. Respectively, CBSS and CBSM reported in total 57 and 3 of the false positive mutations 

(none were PASS), while VARify did not report any false positive event either in the raw or the 

PASS output (Figure 3C). Taken together, VARify produces less false positive mutation calls than 

the state-of-art. 

Recall of the consensus mutations in IonTorrent data. The CBSS and CBSM pipelines are not 

optimized to handle ion semiconductor data and benchmarking to them was therefore not possible. 

However, it was possible to employ ALTOmate, the tumor-only derivative pipeline of VARify, 

when only the tumor sample is sequenced. Although the target space for Illumina and IonTorrent 

technology differed, VARify and ALTOmate re-called all mutations in the cross-section in the 

IonTorrent data from the four pairs of tumor and patient-matched normal samples (Suppl. Table 

7). Thus, ALTOmate and VARify can be applied also to analysis of IonTorrent data. 
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Discussion 

In the diagnostic setting, high precision is equally important as high sensitivity. However, most 

software for mutational analyses was originally developed for scientific use in constitutional 

genomics where sensitivity may be more of a priority than specificity. This leaves the diagnostic 

specialist, e.g. the molecular pathologist, with uncertainty as to the reliability of mutation detection 

and thereby tends to limit the interpretation of sequence data outside of established hotspot or 

recurring mutations in the case of cancer specimens. The demand on sequencing technologies for 

more uniform and higher average sequencing depth is likely to provide better calling breadth and 

sensitivity, but also demands high precision for the mutation calling (53, 54). A clinical report 

with fewer false positive mutations requires a shorter time for interpretation and validation. 

Therefore, the goal of the current clinical protocols is to enhance precision, while keeping high 

sensitivity. VARify provides such a balance between high precision and high sensitivity, reporting 

the disease-relevant mutations with the lowest background of false-positive mutations. 

Mutation interpretation and therapy selection should rely on a robust and consistent mutation 

report across different sequencing panels and technologies, without loss of sensitivity. Here, we 

compared three separate gene panels and sequencing protocols and demonstrated higher 

consistency of the VARify mutation report compared to CBSS and CBSM. While all three 

pipelines uncovered the key CRC driver mutations, the background in CBSS and CBSM was two 

orders of magnitude higher than VARify. This translates to reduced efforts in manual removal of 

false positive mutations using VARify. The false positives mutations generated by CBSS and 

CBSM were evident in the analysis of identical sequencing datasets, whereas VARify did not 

produce such calls. Further, CBSM showed an unexpected stochastic behavior, with differences 

in the mutation reports when the direction of the identical samples was mirrored, which is 

undesired in a clinical setting where reproducibility is crucial. To evaluate the impact of false 

positives in the analysis of identical sequencing data by CBSS and CBSM, the calls were traced 

in the output of a tumor-normal analysis. While in the mutation report of CBSS all such events 

were filtered out, several false positive mutations reported by CBSM passed all filters. This fact 

makes it imperative to run identical dataset analysis by CBSS and CBSM side by side to the real 

tumor-normal analysis to remove such artifacts, while the analysis of VARify does not report this 

class of false positive mutations. When two independent sequencing experiments of the same 

normal DNA sample were compared there are calls to be expected due to somatic mosaicism or 

technical artifacts (51). However, in favor of VARify, the number of reported events passing all 

filters differed in several orders of magnitude between the pipelines. Deviations in each analyzed 

sample pair from the average number of passed mutations may be attributed to the quality of a 

sequenced samples, however, the general tendency in the number of reported events was consistent 

for each pipeline. A substantial part of these calls is due to somatic mosaicism, sequencing artifacts 

or limitations in the analysis, but the number of such calls were 11.3%, 10.3% and 1% of the PASS 

mutations for CBSM, CBSS and VARify respectively, indicating that the vast majority are false 

positive mutation calls. Combined with the larger mutation outputs of CBSS and CBSM in 

comparison to VARify, the number of putative events may require a large validation and tedious 

manual curation effort.    

Immunotherapy treatment decisions incorporate information from complex biomarkers, such as 

TMB and MSI status. However, correct interpretation requires an accurate mutation report, where 

the false positives currently constitute a huge obstacle. Here, VARify stratified tumors by MSI 

status already in the raw unfiltered mutation report, and still outperformed the alternative pipelines 
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using filtered output. If only the small base insertions and deletions are considered, all pipelines 

agree, which poses a question if the substitutions are relevant for such analyses. The correlation 

between the total number of mutations and the MSI status suggests that substitutions are not 

critical for the analysis by VARify, although somewhat challenging for CBSS and CBSM at this 

relatively small sequence target of ~5,2 Mb. Together, it is evident that the omission of 

substitutions improves the correlation for all pipelines in this target space. 

The VARify pipeline is based on comparison of T/N samples, which are often not available in a 

clinical setting, or if available, not sequenced due to higher cost and perceived requirement of 

double the analysis per patient. The higher cost of performing two analyses can potentially be 

justified by the reduced cost of treating patients with targeted therapies because of false positive 

mutations. Another current challenge for clinical laboratories is to analyze and compare genetic 

data based on several different sequencing platforms, often including legacy technologies. Current 

diagnostic protocols rely on ion semiconductor sequencing or sequencing by synthesis, which in 

turn rely on analysis software that supports the one, but not the other technology. The CBSS and 

CSSM pipelines are tailored towards paired-end sequencing by synthesis, while the IonReporter 

pipeline only functions with the native single-read mode of the ion semiconductor sequencing. In 

contrast, both VARify and ALTOmate successfully processed data from both sequencing 

technologies. The long-read sequencing technologies of Pacific Biosciences or Oxford Nanopore 

have great potential to answer complex clinical questions beyond the somatic SNV calling and 

may enter routine practice in the coming years. VARify have been designed with long-read data 

in mind, and the underlying algorithms were already exploited for PacBio analysis in a research 

setting (55). Thus, VARify and ALTOmate can utilize the input from various sequencing vendors 

to produce accurate mutation reports in a format suitable for clinical interpretation, streamlining 

of clinical sequencing pipelines and facilitating inter- or intra-lab comparisons for a robust cancer 

precision medicine.   
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Figure 1. VARify and ALTOmate are integrated high-performance pipelines for mutational 

analysis in cancer. The four pipelines accept sequencing data input in FASTQ file format and 

output raw somatic calls in the VCF file format. (A) Pipeline based on Cutadapt, BWA-MEM, 

Samtools and Strelka2 (CBSS) (B) Pipeline based on Cutadapt, BWA-MEM, Samtools and 

Mutect2 (CBSM). (C) The VARify pipeline, processing the raw sequencing data of tumor and 

patient-matched normal sample into a standard variation report. (D) The ALTOmate pipeline, 

processing tumor-only sequencing data into a standard variation report. Intermediate input/output 

files, generated to interface the separate software applications in CBSS and CBSM are shown.        

* An additional step of Picard Tools is necessary to filter Mutect2 mutations. T, tumor sample, N, 

normal sample. 
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Figure 2. Accurate mutation calling and superior distinction of microsatellite instability in 

colorectal cancer by VARify. A total of 676 genes in 82 microsatellite-stable (MSS) and 21 

microsatellite instability-high (MSI-High) colorectal cancer cases were enriched using a custom 

Haloplex panel and sequenced on Illumina HiSeq 2000. (A). The calling consensus over the top 

33 driver genes for CRC, according to the mutation reports of CBSS (yellow), CBSM (magenta) 

and VARify (blue). (B). The microsatellite instability (MSI) status was determined using MSI 

Analysis System, v1.2 (Promega). The tumors were plotted in two bins according to their MSI-

status; microsatellite stable (MSS) (open circles), and microsatellite instable MSI-High (salmon 

circles). The number of PASS mutations by each pipeline is plotted on a logarithmic scale. The 

targeted sequencing space was 5,240,231 bases. The p-values of Mann-Whitney U test with 

Bonferroni correction for comparison of the MSS and MSI-High sets is shown by pipeline, CBSS, 

CBSM and VARify. (C). The ROC-curve analysis of classification into MSS and MSI-High based 

on the number of PASS mutations, for CBSS (yellow), CBSM (magenta) and VARify (blue). 
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Figure 3. The VARify pipeline provides rapid, specific and consistent somatic mutation 

detection across three different sequencing platforms and panel enrichment technologies. 

(A) The consensus of each of the three pipelines evaluated (CBSS, CBSM and VARify) in the 

intersection of the target space for Haloplex/HiSeq (⸱⸱⸱), TSO500/NextSeq (---) and 

TWIST/NovaSeq (⸻) in four colorectal cancer DNA samples from tumors with different 

microsatellite instability phenotype (MSS-1, MSS-2, MSI-Low and MSI-High). The consensus of 

each pipeline over the three sequencing platforms is compared to the consensus of other pipelines 

in each central Venn (filled). CBSS (yellow), CBSM (magenta) and VARify (blue). (B) The 

average processing time for one million read pairs from 4 samples sequenced with 

Haloplex/HiSeq, TSO500/NextSeq and TWIST/NovaSeq and analyzed with CBSS (yellow), 

CBSM (magenta) and VARify (blue). Mean and SD. (C) The error rate determined as the number 

of erroneous mutations per 1000 PASS positions reported by CBSS (yellow), CBSM (magenta) 

and VARify (blue) pipelines in the 18 WES samples of the SECQC2 dataset (logarithmic scale). 
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Table 1. Mutation consensus reported by CBSM, CBSS and VARify pipelines in four 

samples sequenced by Haloplex/HiSeq, TSO500/NextSeq and TWIST/NovaSeq. For each 

sample pair, the alteration in the gene transcript and protein sequence is shown, together with the 

genome coordinates of the mutation (GRCh37 as reference), the reference and the alternative 

allele, type of mutation (n, nonsense; m, missense; f.d, frameshift deletion; f.i, frameshift insertion; 

n.d, non-frameshift deletion; s, synonymous), COSMIC ID (if available) and the interpretation in 

ClinVar database (P, Pathogenic; LP, Likely Pathogenic; LB, Likely Benign; US, Unknown 

Significance). 

Sample 
ID 

Gene transcript and protein alteration Type COSMIC ID 
Interpre-

tation 
(ClinVar) 

Evidence for 
relevance in 
colorectal 

cancer 

M
S

S
-1

 NM_000038(APC):c.C2413T:p.R805X n COSV57322578 P Yes 

NM_000038(APC):c.G3964T:p.E1322X n COSV57325414 
 

Yes 

NM_005211(CSF1R):c.G1082A:p.R361K m N/A 
 

 
NM_000546(TP53):c.G796C:p.G266R m COSV52751844 P Yes 

M
S

S
-2

 

NM_000038(APC):c.C2240A:p.S747X n COSV57366696 P Yes 

NM_000038(APC):c.4653_4654del:p.K1551fs f.d N/A P  

NM_004985(KRAS):c.G35T:p.G12V m COSV55497419 P Yes 

NM_020975(RET):c.C2905T:p.R969W m COSV60698790 LP Yes 

NM_000546(TP53):c.455dupC:p.P152fs f.i COSV52712544 P Yes 

M
S

I-
L
o
w

 

NM_000038(APC):c.C1495T:p.R499X n COSV57322064 P Yes 

NM_000038(APC):c.4385_4386del:p.K1462fs f.d N/A P  

NM_006015(ARID1A):c.G4502A:p.R1501H m COSV61383485 
 

Yes 

NM_006015(ARID1A):c.5542dupG:p.G1847fs f.i N/A 
 

 
NM_017519(ARID1B):c.3978delA:p.P1326fs f.d N/A 

 
 

NM_005188(CBL):c.G2350A:p.V784M m COSV104569033 
 

Yes 

NM_001349798(FBXW7):c.C1393T:p.R465C m COSV55891008 P Yes 

NM_002019(FLT1):c.T3524C:p.I1175T m N/A 
 

 
NM_005544(IRS1):c.A2492G:p.H831R m N/A 

 
 

NM_000249(MLH1):c.G299A:p.R100Q m N/A US  

NM_006206(PDGFRA):c.C1248T:p.S416S s N/A 
 

 
NM_006218(PIK3CA):c.325_327del:p.109_109del n.d N/A 

 
 

NM_006219(PIK3CB):c.G2985A:p.R995R s N/A 
 

 
NM_000314(PTEN):c.1036dupT:p.L345fs f.i N/A P  

NM_002850(PTPRS):c.C1763T:p.T588M m N/A 
 

 
NM_020975(RET):c.C1423T:p.R475W m COSV60701868 US Yes 

NM_139276(STAT3):c.T877C:p.Y293H m N/A     

M
S

I-
H

ig
h
 

NM_000489(ATRX):c.C3734T:p.S1245L m COSV64872646 
 

 
NM_006015(ARID1A):c.5542delG:p.G1848fs f.d N/A 

 
 

NM_004333(BRAF):c.T1799A:p.V600E m COSV56056643 P Yes 

NM_001238(CCNE1):c.C1053T:p.G351G s COSV52904377 
 

 
NM_004439(EPHA5):c.C141T:p.C47C s N/A 

 
 

NM_001349798(FBXW7):c.2001delG:p.G667fs f.d COSV55893496 
 

Yes 

NM_000141(FGFR2):c.T1265C:p.I422T m N/A 
 

 
NM_182925(FLT4):exon5:c.C565T:p.R189W m COSV56101712 

 
Yes 

NM_005544(IRS1):c.C2512T:p.Q838X n N/A 
 

 
NM_005544(IRS1):c.G879A:p.P293P s N/A 

 
 

NM_014727(KMT2B):c.6408delC:p.L2136fs f.d N/A P  

NM_170606(KMT2C):c.C14493T:p.N4831N s N/A 
 

 
NM_003482(KMT2D):c.15545delG:p.G5182fs f.d COSV56411353 P Yes 

NM_003482(KMT2D):c.5687dupA:p.K1896fs f.i N/A 
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NM_130799(MEN1):c.T1306C:p.W436R m COSV53648263 P  

NM_004958(MTOR):c.G6398A:p.C2133Y m N/A 
 

 
NM_001042492(NF1):c.C35A:p.A12D m N/A US  

NM_006180(NTRK2):c.1892delT:p.M631fs f.d N/A 
 

 
NM_002530(NTRK3):c.G205A:p.A69T m N/A 

 
Yes 

NM_006206(PDGFRA):c.G1323A:p.P441P s COSV57273304 LB  

NM_006218(PIK3CA):c.1317dupA:p.G439fs f.i N/A 
 

 
NM_181523(PIK3R1):c.T252C:p.P84P s N/A 

 
 

NM_005027(PIK3R2):c.C345T:p.P115P s N/A 
 

 
NM_002834(PTPN11):c.T177C:p.T59T s COSV61007975 

 
 

NM_002850(PTPRS):c.G4955A:p.G1652D m N/A 
 

 
NM_002850(PTPRS):c.C2130T:p.P710P s N/A 

 
 

NM_007050(PTPRT):c.4044delC:p.P1348fs f.d N/A 
 

 
NM_001288718(STAT5A):c.C1906T:p.P636S m COSV61807845 

 
Yes 

NM_001367943(TCF7L2):c.1033_1035del:p.345_345del n.d N/A 
 

 
NM_004612(TGFBR1):c.C1380T:p.S460S s N/A 

 
 

NM_000548(TSC2):c.G3476A:p.R1159Q m COSV54771335 US Yes 
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Supplementary Figure 1. The total mutation report of VARify is sufficient to accurately 

classify CRC samples by their MSI status. DNA of 107 CRC cases was enriched for a set of 

676 genes using a custom Haloplex panel and sequenced on Illumina HiSeq 2000. The 

microsatellite instability (MSI) status was determined using MSI Analysis System, v1.2 

(Promega).  (A) The calling consensus over the top 33 driver genes for CRC in four microsatellite 

instability-low (MSI-Low) samples, according to the mutation reports of CBSS (yellow), CBSM 

(magenta) and VARify (blue). The total number of reported mutations (B) and the number of 

InDels passing all filters (C) by each pipeline is plotted in a logarithmic scale. The p-values of 

Mann-Whitney U test with Bonferroni correction for comparison of the MSS and MSI-High sets 

is shown by pipeline, CBSS, CBSM and VARify. The ROC-curve analysis of classification into 

MSS and MSI-H based on the total number of mutations (D) and the number of InDels passing all 

filters (E), for CBSS (yellow), CBSM (magenta) and VARify (blue). 
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