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Abstract 

Introduction.  

Coronavirus disease 2019 (COVID-19) survivors can develop residual lung abnormalities consistent 

with lung fibrosis. A shared genetic component between COVID-19 and idiopathic pulmonary fibrosis 

(IPF) has been shown. However, genetic overlap studies of IPF and COVID-19 have primarily 

concentrated on the IPF genome-wide significant risk variants that have been previously identified, 

rather than combined into a genome-wide polygenic risk. Here we used IPF genome-wide association 

study (GWAS) results to calculate polygenic risk scores (PRSs) and study their association with COVID-

19 severity.  

Methods.  

We used results from the largest meta-GWAS of clinically defined IPF risk (base dataset; n=24,589) 

and individual-level imputed data from the SCOURGE study of patients with COVID-19 (target dataset; 

n=15,024). We calculated IPF PRSs using PRSice-2 and assessed their association with COVID-19 

hospitalisation, severe illness, and critical illness. We also evaluated the effect of age and sex 

stratification. Results were validated using an independent PRS method. Enrichment analyses and 

pathway-specific PRSs were performed to study biological pathways associated with COVID-19 

severity. 

Results.  

IPF PRSs were significantly associated with COVID-19 hospitalisation and severe illness. The strongest 

association was found in patients aged <60 years, especially among younger males (OR=1.16; 

95%CI=1.08-1.25; p=6.39x10-5). A pathway enrichment analysis of the variants included in the best 

model fit and subsequent pathway-specific PRSs analyses supported the link of Cadherin and Integrin 

signalling pathways to COVID-19 severity when stratified by age and sex. 

Conclusion.  

Our results suggest that there is genome-wide genetic overlap between IPF and severe COVID-19 that 

is dependent on age and sex and adds further support that the pathogenesis of both IPF and severe 

COVID-19 share underlying biological mechanisms. This could imply that individuals with a high IPF 

genetic risk are at an overall increased risk of developing lung sequelae resulting from severe COVID-

19. 

 

293/350 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.23291269doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.12.23291269
http://creativecommons.org/licenses/by/4.0/


3 
 

Introduction 

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). Recent studies have shown that patients hospitalised by 

COVID-19 can develop residual lung abnormalities, including lung fibrosis [1, 2], although biological 

mechanisms underlying this process remain unclear. Idiopathic pulmonary fibrosis (IPF) is a chronic, 

progressive rare lung disease with a median survival of 3 years after diagnosis [3]. IPF has been shown 

to be an important risk factor for COVID-19 severity [4]. Additionally, studies have reported clinical 

and radiological similarities between severe COVID-19 and IPF [5]. Thus, there may be specific 

biological pathways that are common to the pathophysiology of both IPF and severe COVID-19. 

Previous genetic studies have reported a shared causal genetic aetiology between IPF and COVID-19 

severity [4, 6]. Out of the 19 common genetic variants previously reported for IPF risk, four of them 

were also associated with COVID-19 hospitalisation and severity, either increasing or decreasing 

disease risk, depending on the specific variant [6]. These include the most strongly associated IPF risk 

variant in genome-wide association studies (GWAS), located at the promoter of MUC5B, which 

displays an opposite direction of effect in IPF and COVID-19 (i.e., the IPF risk allele was protective for 

COVID-19). Interestingly, a mendelian randomisation (MR) analysis based on 15 genome-wide 

significant IPF risk variants known at the time revealed that, when the MUC5B locus was excluded, IPF 

had a causal effect on COVID-19 severity [4].  

Prior studies assessing genetic overlap between IPF and COVID-19 have been based on sentinel 

variants associated with IPF susceptibility at the genome-wide significance level (p<5x10-8) in 

published GWAS. However, to date, no studies have evaluated the effect of combined whole-genome 

polygenic risk score (PRS) for IPF on COVID-19 severity. With the aim of identifying shared genes and 

biological pathways involved in the pathophysiology of both diseases, here we used a whole-genome 

PRS model to evaluate the genetic overlap between IPF and COVID-19 severity at genome-wide level 

and to assess if associations were age and/or sex dependent. 

 

Methods 

Study design and sample 

We used IPF GWAS results (base dataset) to calculate PRSs for each individual in the COVID-19 dataset 
(target dataset) and tested the association of the PRSs with COVID-19 severity.  
 
For IPF, we used publicly available summary statistic results from a large meta-GWAS of clinically 
defined IPF susceptibility comprising 4,125 IPF cases and 20,464 population controls of European 
ancestry from five different studies from UK, US, and Spain 
(https://github.com/genomicsITER/PFgenetics) [7]. All IPF cases were diagnosed according to the 
American Thoracic Society and European Respiratory Society guidelines [8, 9]. 
 
For COVID-19, we used individual-level genetic data (Single Nucleotide Polymorphism [SNP] arrays) 
from 11,939 individuals with a positive diagnosis of COVID-19 from the Spanish Coalition to Unlock 
Research on Host Genetics on COVID-19 (SCOURGE) study [10]. Patients were recruited between 
March and December 2020 and had not been vaccinated at the time of sample collection. Their data 
was collected and managed using REDCap electronic data capture tools hosted at Centro de 
Investigación Biomédica en Red (CIBER) [11, 12] (Supplemental Notes). We considered three 
previously defined COVID-19 phenotypes as cases to evaluate the response to COVID-19 infection: 
hospitalisation, severe illness (patients in scales 3 and 4), and critical illness (patients in scale 4), as per 
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the severity scale defined by the SCOURGE consortium [10] (Table 1). We assigned as controls all other 
COVID-19 patients not satisfying the case condition, plus a total of 5,943 population controls from the 
Spanish DNA biobank (https://www.bancoadn.org) and GR@ACE consortium (Genome Research at 
Fundació ACE) [13]. Genotyping and quality control procedures have been previously described [10]. 
SNP Imputation was performed using the TOPMed version r2 reference panel (GRCh38) in the 
TOPMed Imputation Server [14, 15], and variants with a minor allele frequency (MAF)<1% or low 
imputation quality (Rsq<0.3) were filtered out. The SCOURGE study was performed in accordance with 
the Declaration of Helsinki and approved by the Galician Ethical Committee Ref 2020/197.  
 
Detailed information about both IPF and COVID-19 datasets can be found in the original publications 

describing the studies [7, 10]. 

 

PRS modelling and statistical analyses 

We used PRSice-2 [16] to calculate PRSs for each individual in the COVID-19 dataset. PRSs were 

estimated as the sum of risk alleles from the IPF GWAS variants weighted by their effect sizes:  

PRS = ∑ 𝛽𝑖𝐺𝑖

𝑛

𝑖=1

 

Where β is the weight or log Odds Ratio (OR) for variant i, G is the number of risk alleles carried at 

variant i and n is the number of variants included in the score. Briefly, PRSice-2 performs clumping to 

remove SNPs in high linkage disequilibrium (parameters were set at threshold R2= 0.1 for a 250 kb 

window for clumping), derives PRSs at different P-value thresholds in the base GWAS, tests the 

association of each of the PRS in the target dataset, and predicts the best model fit of the phenotype 

(i.e., the most significant model).   

All PRSs were standardised as z-scores using the formula:  

PRSz = 
𝑃𝑅𝑆 − 𝑚𝑒𝑎𝑛(𝑃𝑅𝑆)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(PRS)
 

Binomial logistic regression was performed with R v4.0.3 [17] to assess the association of the individual 

PRS with COVID-19 hospitalisation, severe illness, and critical illness separately. To account for 

ascertainment bias, we considered a prevalence of COVID-19 hospitalisation of 0.5% according to 

previous estimates in the SCOURGE cohort [10]. Prevalence of severe illness (59% of hospitalised 

patients in the SCOURGE cohort) and critical illness (19% of hospitalisations) were estimated to be 

0.295% and 0.095%, respectively [10]. We also performed stratifications by sex (male, female), age 

(<60 years, ≥60 years; to align with previous studies [4, 10, 18], and sex and age (male <60 years, male 

≥60 years, female <60 years, female ≥60 years). All models were adjusted for the first 10 principal 

components (PC) for genetic ancestry and, whenever necessary, for age and sex. Significance was 

declared at p≤1.8x10-3 to control type-I error in the 27 comparisons (Bonferroni correction for nine 

models for three outcomes).  

In addition, we performed the following as sensitivity analyses. To confirm the robustness of the PRS 

estimates in the significant comparisons, we calculated the individual PRSs using an alternative 

method with megaPRS [19], whose algorithm is based on variational Bayes. We also performed 

analyses excluding patients with a clinical history of chronic respiratory diseases or using only at-risk 

controls (i.e., non-hospitalised COVID-19 patients) as the control group. Additionally, we studied the 

predictive capacity of the PRSs on 90-day COVID-19 mortality (Bonferroni corrected p 
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threshold=0.05/9=5.6x10-3). Finally, we compared the effect of whole-genome PRS calculated from 

genome-wide variants with a PRS obtained from only the 19 previously published genome-wide 

significant IPF common risk variants (sentinels PRS) (Table S1) [7]. These comparisons were also tested 

excluding the MUC5B locus, the strongest genetic risk factor for IPF, either by excluding the MUC5B 

promoter variant (Table S1) from the sentinels PRS model or by excluding all the variants in the 1 Mb 

flanking regions from the whole-genome PRS model. 

 

Pathway-specific PRS analyses  

We first used the online data tool GREAT [20] to obtain the list of genes that were experimentally or 

computationally linked through regulatory annotations to the genetic variants included in the best 

PRS model of COVID-19 hospitalisation for the entire study sample (i.e., the variants selected by 

PRSice-2 for providing the Best P-value Threshold, Table 2). We then performed a gene set enrichment 

analysis with ShinyGO 0.77 [21] to assess if the obtained gene list was enriched in genes involved in 

certain biological pathways (False Discovery Rate (FDR)< 0.05). For the top five pathways 

overrepresented in the gene list, we calculated pathway-specific PRSs by including only the variants 

associated with each of the five pathways separately in the PRS computation, and then studied their 

association with COVID-19 hospitalisation. Significance was declared at p<0.05.    

 

Results 

The COVID-19 SCOURGE dataset comprised a total of 15,024 individuals of European genetic ancestry. 

Sample sizes for each COVID-19 phenotype and stratification category are summarised in Table 2. A 

total of 308,260 clumped variants from the IPF meta-GWAS were used for PRS analyses with PRSice-

2.  

IPF whole-genome PRS were found to be associated with COVID-19 hospitalisation (OR= 1.08; 95% 

Confidence Interval [CI]=1.04-1.12; p=7.90x10-5), severe illness (OR=1.08; 95% CI=1.04-1.13; 

p=2.57x10-4), and critical illness (OR=1.12; 95% CI=1.06-1.20; p=2.49x10-4). Stratifying by age and/or 

sex, the strongest association was found in hospitalised younger individuals (<60 years), especially 

among younger males (Table 2). Among these categories, the lowest number of IPF genetic variants 

that were needed to calculate the best performing whole-genome PRS was 2,939 variants, all of them 

reaching a p-value threshold of 2.10x10-3 in the GWAS of IPF (Table 2, Figure S1). A validation of the 

significant PRSs associations based on megaPRS estimations supported the robustness of associations 

of the IPF whole-genome PRS with COVID-19 hospitalisation and severe illness (Table S2). The 

validation results for critical illness were inconsistent, potentially attributed to the limited sample size 

available for this particular phenotype. 

Post-hoc analyses excluding 892 patients with a clinical history of chronic respiratory diseases 

supported the robustness of the results in the significant hospitalisation categories (Table S3). When 

comparing hospitalised COVID-19 patients with individuals with COVID-19 who were not hospitalised, 

association results were consistent across all categories (Table S4). IPF whole-genome PRSs did not 

show an association with 90-day COVID-19 mortality in the SCOURGE study for any of the best models 

in each category (Table S5). 

The exclusion of the MUC5B locus (promoter variant and variants in the 1 Mb flanking regions) from 

the IPF PRS modelling resulted in a stronger association of the IPF whole-genome PRS with COVID-19 
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hospitalisation (Table S6). When using sentinels PRSs calculated from the previously known IPF risk 

variants, the association with COVID-19 hospitalisation was only significant for models where the 

MUC5B locus had been excluded (Table S6). We next compared the results of the IPF whole-genome 

PRS to those of the sentinels PRS excluding the MUC5B locus. When considering all individuals or all 

younger (<60 years old) individuals, the effect for COVID-19 hospitalisation was larger when whole-

genome PRSs were used (Table S6). However, among males, the effect size was bigger when excluding 

MUC5B from the sentinels PRS. The effect didn’t differ in <60 years old males. 

A gene set enrichment analysis was performed to identify the biological processes that may be related 

to both IPF and COVID-19 hospitalisation. We focused on the 3,471 genes linked through experimental 

and computational regulatory annotations by GREAT to the 2,939 SNPs included in the whole-genome 

PRS model associated with COVID-19 hospitalisation in the whole sample (Table 2). Results showed a 

significant enrichment in genes involved in Cadherin, Wnt and Integrin signalling pathways, among 

others (Figure S2A). Results were similar when the 19 IPF common loci (sentinels 1MB) were 

excluded from the analysis (Figure S2B) and when we used the list of 5,660 SNPs used to calculate the 

best-fit PRS associated with COVID-19 hospitalisation in <60 years males (Table 2, Figure S3). Pathway-

specific PRSs analyses revealed that the PRS including the Integrin pathway variants was significantly 

associated with COVID-19 hospitalisation in patients younger than 60 years (p=7.0x10-3) (Table S7). 

Additionally, the Cadherin pathway PRS was associated with COVID-19 hospitalisation in males 

(p=0.028) (Table S7). No significant associations were observed for the remaining pathways. 

 

 

Discussion 

We performed a PRS-based association analysis to study the genetic overlap between IPF and the 

severity of COVID-19. Our results show that IPF PRSs obtained from genome-wide variants were 

significantly associated with COVID-19 hospitalisation and severe illness, suggesting that IPF and 

severe COVID-19 could share certain biological mechanisms. Our results were also robust when using 

an alternate method to estimate the PRSs, excluding patients with previously reported chronic 

respiratory diseases and using non-hospitalised COVID-19 patients as controls (instead of relying on 

population-based controls with uncertain SARS-CoV-2 exposure at the time of data collection). 

The most robust associations of IPF PRS models with COVID-19 were found for the hospitalised 

patients who were younger (<60 years old), particularly in younger males. These results agree with 

Fadista and colleagues’ findings, who showed a modest protective effect of the IPF risk-allele at 

MUC5B for COVID-19 hospitalisation in >60 years old individuals [4]. Additionally, Nakanishi and 

colleagues [22] reported that the effects of carrying common genetic risk factors of severe COVID-19 

were stronger in individuals younger than 60 years. Cruz and colleagues also showed that the genetic 

risk score combining the main COVID-19 genetic risk factors had a higher predictive capability among 

the <60 years old males from the SCOURGE study [10]. Taken together, this reinforces the existence 

of biological mechanisms shared between IPF and severe COVID-19 pathogenesis and supports that 

the presence of genetic risk factors that affect disease severity would be more evident among younger 

patients, while severe COVID-19 in older individuals (≥60 years old) might be more influenced by non-

genetic factors such as comorbidities and immunological defects [23].  

The existence of genetic factors shared between IPF and COVID-19 had already been described by 

several studies [4, 6]. However, here we suggest that the number of overlapping variants underlying 

IPF risk and severe COVID-19 could be larger than previously reported. In fact, the sentinels PRS 
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calculated based on only the previously reported IPF risk variants was not significantly associated with 

severe COVID-19 in our data. However, when the strongest known IPF genetic risk factor at MUC5B 

was excluded from the sentinels PRS model, the effect on COVID-19 hospitalisation was stronger, as 

previously reported by Fadista and colleagues [4]. This could be explained by the different direction 

of effect that the MUC5B variant has for IPF and COVID-19 [4, 6]. After excluding the MUC5B locus, 

the effect for COVID-19 hospitalisation was larger in all and <60 years old patients when using whole-

genome PRSs compared to sentinels PRSs results. Nevertheless, the effect on COVID-19 hospitalisation 

was similar with both approaches in males and younger males. This could also be attributed to the 

arbitrary linkage disequilibrium clumping method that was used to select variants to be included in 

the whole-genome PRS models, compared to the refined selection of the 19 IPF risk variants involved 

in the sentinels PRS models. 

Our gene set enrichment and pathway-specific PRS analyses suggest that Integrin and Cadherin 

signalling pathways, previously related to fibrosis and lung repair processes, could have a role in 

COVID-19 severity. These could be of special interest among young (<60 years) patients and males 

based on our results. Integrins are considered key regulators during fibrogenesis, and integrin 

inhibitors are currently being investigated as anti-fibrotic strategies for IPF treatment, including and 

inhaled inhibitor of the αvβ6 integrin [24, 25]. Additionally, several studies have reported the role of 

integrins in facilitating the cellular entry of SARS-CoV-2 [26, 27]. Therefore, this pathway could have 

significant potential as a key target for the treatment of both SARS-CoV-2 infection and post-COVID-

19 pulmonary fibrosis. Signalling through cadherins has also been suggested to be involved in lung 

fibrosis [28]. Cadherin-11 may play an important role in the pathogenesis of IPF, possibly through the 

regulation of epithelial to mesenchymal transition (EMT) in alveolar epithelial cells [29], again pointing 

to this protein activity as a potential therapeutic target. Recent studies suggest that the EMT process 

could also be key in post-COVID-19 lung fibrosis [30].  

Despite the evidence supporting the genetic overlap of IPF risk and severe COVID-19 [4, 6], the main 

limitations of the study are: i) the lack of an independent cohort study to validate the association of 

IPF PRS with severe COVID-19; and ii) the lack of genetic diversity in SCOURGE since it is composed 

primarily of European genetic ancestry patients. This makes it difficult to anticipate the generalisability 

of findings to populations of other genetic ancestries. Among the strengths, it is worth highlighting 

that COVID-19 participants of SCOURGE were recruited before vaccines were widely available for the 

community, reducing potential biases caused by disease severity misclassification. Furthermore, 

contrary to previous studies, the whole-genome PRS approach enables inclusion of genetic variants 

associated with IPF that have not yet been reported due to limitations of statistical power and strict 

significance thresholds necessitated by multiple testing corrections. 

In summary, the use of a whole-genome PRS approach supported the existence of thousands of shared 

common genetic risk factors underlying the pathogenesis of both IPF and severe COVID-19. This 

comprehensive approach was more effective in capturing the severity of COVID-19 compared to an 

IPF-sentinels only approach. According to our results, overlapping variants could be involved in 

biological processes such as Integrin and Cadherin signalling pathways. Furthermore, we observed 

that the association of the polygenic risks of IPF with COVID-19 hospitalisation was age- and sex- 

dependent. Given that an increased genetic risk for IPF is associated with a higher risk of severe COVID-

19, and that severe COVID-19 also increases risk of post COVID-19 lung sequelae among survivors [2], 

individuals at high IPF genetic risk could be at an overall increased risk of developing post-COVID-19 

lung fibrotic sequelae. This could provide valuable insights for shaping future therapeutic strategies in 

managing COVID-19. Further studies will be needed to evaluate this possibility. 
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Tables 

Table 1. Classification of COVID-19 patients from SCOURGE into levels of severity. 

Level Clinical findings 

Severity 0 
(asymptomatic) 

Asymptomatic 

Severity 1 (mild) With symptoms, but without pulmonary infiltrates or need of oxygen therapy 

Severity 2 (moderate) 
With pulmonary infiltrates affecting <50% of the lungs or need of supplemental oxygen 
therapy 

Severity 3 (severe) 

Hospitalized with any of the following criteria: 

● PaO2 < 65 mmHg or SaO2 < 90% 

● PaO2/FiO2 <300 

● SaO2/FiO2 <440 

● Dyspnoea 

● Respiratory frequency ≥ 22 rpm 

● Infiltrates affecting >50% of the lungs 

Severity 4 (critical) Admission to the ICU or need of mechanical ventilation (invasive or non-invasive) 

FiO2: Fraction of inspired oxygen; PaO2: Partial pressure of oxygen in arterial blood; SaO2: Saturation of oxygen in 
arterial blood.  
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Table 2. Association of IPF PRS models with COVID-19 severity 

COVID-19 
severity 

Category Covariates Cases/Controls* PT Num_SNP OR (95%CI) P-Value† 
H

o
sp

it
al

is
at

io
n

 

All individuals Age, Sex, 10PC 5,968/9056 2.10x10-3 2,939 
1.08 

(1.04,1.12) 
7.90x10-5 

Males Age, 10PC 3,441/3,958 7.85x10-3 8,686 
1.09 

(1.04,1.16) 
1.28x10-3 

Females Age, 10PC 2,525/5,096 2.25x10-3 3,083 
1.08 

(1.02,1.14) 
6.44x10-3 

≥60 years Sex, 10PC 4,328/2,355 7.50x10-4 1,330 
1.06 

(1.01,1.12) 
0.026 

<60 years Sex, 10PC 1,607/6,457 4.70x10-3 5,660 
1.12 

(1.06,1.19) 
3.44x10-5 

≥60 years Males 10PC 2,436/878 7.85x10-3 8,686 
1.06 

(0.98,1.15) 
0.123 

≥60 years Females 10PC 1,892/1,477 7.50x10-4 1,330 
1.09 

(1.01,1.17) 
0.021 

<60 years Males 10PC 987/2,904 4.70x10-3 5,660 
1.16 

(1.08,1.25) 
6.39x10-5 

<60 years Females 10PC 619/3,551 0.070 51,746 
1.13 

(1.04,1.23) 
6.04x10-3 

Se
ve

re
 il

ln
es

s 

All individuals Age, Sex, 10PC 3,502/10,846 6.65x10-3 7,566 
1.08 

(1.04,1.13) 
2.57x10-4 

Males Age, 10PC 2,109/4,897 6.40x10-3 7,331 
1.08 

(1.02,1.14) 
6.05x10-3 

Females Age, 10PC 1,393/5,949 0.014 13,949 
1.09 

(1.02,1.16) 
7.93x10-3 

≥60 years Sex, 10PC 2,543/3,834 0.014 14,289 
1.05 

(1.00,1.11) 
0.057 

<60 years Sex, 10PC 959/7,012 3.30x10-3 4,198 
1.14 

(1.07,1.22) 
1.53x10-4 

≥60 years Males 10PC 1,526/1,631 1.00 308,260 
1.06 

(0.99,1.14) 
0.095 

≥60 years Females 10PC 1,017/2,203 0.014 13,949 
1.08 

(1.00,1.17) 
0.047 

<60 years Males 10PC 583/3,266 5.05x10-3 6,009 
1.16 

(1.06,1.27) 
9.98x10-4 

<60 years Females 10PC 376/3,746 0.073 53,482 
1.15 

(1.03,1.28) 
0.010 

C
ri

ti
ca

l i
lln

es
s 

All individuals Age, Sex, 10PC 1,124/13,224 0.014 13,828 
1.12 

(1.06,1.20) 
2.49x10-4 

Males Age, 10PC 815/6,191 1.90x10-3 2,728 
1.12 

(1.04,1.21) 
2.10x10-3 

Females Age, 10PC 309/7,033 0.053 41,838 
1.23 

(1.10,1.39) 
3.67x10-4 

≥60 years Sex, 10PC 776/5,601 0.014 13,949 
1.13 

(1.04,1.21) 
2.36x10-3 

<60 years Sex, 10PC 348/7,623 0.047 37,678 
1.16 

(1.04,1.30) 
6.83x10-3 

≥60 years Males 10PC 554/2,603 3.10x10-3 3,961 
1.15 

(1.05,1.26) 
2.92x10-3 

≥60 years Females 10PC 222/2,998 0.053 41,863 
1.18 

(1.03,1.36) 
0.017 

<60 years Males 10PC 261/3,588 7.45x10-3 8,328 
1.11 

(0.98,1.26) 
0.090 

<60 years Females 10PC 87/4,035 0.129 84,188 
1.44 

(1.16,1.78) 
8.97x10-4 

*A total of 281 individuals had missing data for sex (n=4) and age (n=277).  
†Association results for the best prediction model resulting from PRSice-2 in each category (the PRS includes all variants reaching the best 
P-value threshold in the IPF GWAS). Significance declared at p≤1.85x10-3 after Bonferroni correction.  
PC: Principal Components, PT: Best fit P-value Threshold; Num_SNP: Number of SNPs included in the best model. 
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