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TOPMed Omics Support Table 

TOPMed 
Accession # 

Parent Study 
Short Name TOPMed Phase Omics Center Omics Support (WGS) 

phs000956 Amish 1 Broad Genomics 3R01HL121007-01S1 

phs001211 ARIC AFGen 1 Broad Genomics 3R01HL092577-06S1 

phs001211 ARIC 2 Baylor 3U54HG003273-12S2 / 
HHSN268201500015C 

phs001612 CARDIA 3 Baylor HHSN268201600033I 

phs000954 CFS 1 NWGC 3R01HL098433-05S1 

phs000954 CFS 3.5 NWGC HHSN268201600032I 

phs001368 CHS 3 Baylor HHSN268201600033I 

phs001368 CHS 5.5 Broad Genomics HHSN268201600034I 

phs001368 CHS VTE 2 Baylor 3U54HG003273-12S2 / 
HHSN268201500015C 

phs000951 COPDGene 1 NWGC 3R01HL089856-08S1 

phs000951 COPDGene 2 Broad Genomics HHSN268201500014C 

phs000951 COPDGene 2.5 Broad Genomics HHSN268201500014C 

phs000974 FHS AFGen 1 Broad Genomics 3R01HL092577-06S1 

phs000974 FHS 1 Broad Genomics 3U54HG003067-12S2 

phs000974 FHS pilot; 4.5, 5.5, 5.6 Broad Genomics HHSN268201600034I 

phs001218 GeneSTAR AA_CAC 2 Broad Genomics HHSN268201500014C 

phs001218 GeneSTAR legacy Illumina R01HL112064 

phs001218 GeneSTAR 2 Psomagen 3R01HL112064-04S1 

phs001345 GENOA 2 NWGC 3R01HL055673-18S1 

phs001345 GENOA AA_CAC 2 Broad Genomics HHSN268201500014C 

phs000964 JHS 1 NWGC HHSN268201100037C 

phs001416 MESA AA_CAC 2 Broad Genomics HHSN268201500014C 

phs001416 MESA 2 Broad Genomics 3U54HG003067-13S1 

phs001416 MESA pilot, 5.5, 8 Broad Genomics HHSN268201600034I 

phs001215 SAFS 1 Illumina 3R01HL113323-03S1 

phs001215 SAFS legacy Illumina R01HL113322 

phs001237 WHI 2 Broad Genomics HHSN268201500014C 
• Baylor = Baylor College of Medicine Human Genome Sequencing Center 
• Broad Genomics = Broad Institute Genomics Platform 
• Illumina = Illumina 
• NWGC = Northwest Genomics Center 
• Psomagen = Psomagen 

  



Supplemental Methods  
1. Study Descriptions 
Airwave 
The Airwave Health Monitoring Study was launched in 2004 with the aim to recruit over 60,000 participants from 
police forces in Great Britain by 2018. The study includes two phases. First, every employee receives the enrolment 
questionnaire via routine administration or the occupational health service. The second phase is a health screen 
performed locally by trained nurses using a standardised protocol (Fig. 1). Participants can attend the health 
screen irrespective of their participation in phase 1 and their Airwave usage. In phase 2, volunteers are recruited 
through general force-wide publicity (emails, wall posters, and articles in newsletters), word of mouth or direct 
contact if they request a health screen on their enrolment questionnaire. Blood and urine samples are obtained at 
the screening visit (with consent) and stored for future research use. The study has ethical approval from the 
National Health Service Multi-site Research Ethics Committee (MREC/13/NW/0588)1. 
 
AMISH 
The Amish Research Program, based at the University of Maryland, Baltimore, includes a set of large community-
based studies focused largely on cardiometabolic health carried out in the Old Order Amish (OOA) community of 
Lancaster County, Pennsylvania. Over 9,000 Amish have been recruited since 1995 into one or more protocols.  
The Lancaster Amish community is a founder population who immigrated to Pennsylvania from Western Europe in 
the early 1700’s, later expanding into other regions of the U.S. The Amish cohort participating in the TOPMed 
Consortium comprises 1,120 subjects ≥ 18 years of age from large multigenerational families who were recruited 
for specific protocols between 2001 and 2006.  Subjects have been extensively phenotyped for a range of 
cardiometabolic traits, including anthropometry, lipids, blood pressure, glucose and related measures, vascular 
imaging, and a range of other phenotypes.  DNA samples have been collected and serum and plasma samples 
biobanked.   
 
ARIC 
The Atherosclerosis Risk in Communities (ARIC) study recruited 15,792 adults aged 45 to 64 years in 1987 through 
1989 by probability sampling from Forsyth County, North Carolina; Jackson, Mississippi; suburbs of Minneapolis, 
Minnesota; and Washington County, Maryland2. The Jackson sample comprised African Americans only; the other 
three samples represent the ethnic mix of their communities. Extensive information was collected at baseline on 
cardiovascular risk factors. The ARIC study was approved by the institutional review board of each field center 
institute and participants gave informed consent including consent for genetic testing.  
 
CAERPHILLY 
The Caerphilly Prospective study (CaPs) was a cohort study of men, initially established to look at cardiovascular 
disease. The electoral roll and general practice lists were used to identify eligible participants (men aged 45 to 59 
years) from the town of Caerphilly and adjoining villages in South Wales, United Kingdom. Participation rate was 
89% and 2,512 men were examined in phase one from July 1979 until September 1983. Men were followed up 
around every 4 to 5 years for cardiovascular outcomes and later for dementia cognitive impairment and aging 
traits. Written informed consent was obtained from all participants. Approval for the original CaPS was obtained 
from the Research Ethics Committee in South Glamorgan, Wales. Approval for the phase five follow-up study 
was obtained from the Research Ethics Committee in Gwent, Wales.  
 
CARDIA 
The Coronary Artery Risk Development in Young Adults (CARDIA) Study is a prospective multicenter study with 
5115 Caucasian and African American participants ages 18-30 years at baseline, recruited from four centers. The 
recruitment was done from the total community in Birmingham, AL, from selected census tracts in Chicago, IL and 
Minneapolis, MN; and from the Kaiser Permanente health plan membership in Oakland, CA. The details of the 
study design for the CARDIA study have been published before3. Nine examinations have been completed since the 
baseline examination in 1985–1986, with follow-up examinations 2, 5, 7, 10, 15, 20, 25, 30 years after baseline. 



Written informed consent was obtained from participants at each examination and all study protocols were 
approved by the institutional review boards of the participating institutions. 
 
CFS 
The Cleveland Family Study (CFS) was designed to examine the genetic basis of sleep apnea in 2,534 African-
American and European-American individuals from 356 families. Index probands with confirmed sleep apnea were 
recruited from sleep centers in northern Ohio, supplemented with additional family members and neighborhood 
control families [{Redline1995}]. Four visits occurred between 1990 and 2006; in the first 3, data were collected in 
participants’ homes while the last occurred in a clinical research center (2000 - 2006). Measurements included 
sleep apnea monitoring, blood pressure, anthropometry, spirometry and other related phenotypes. Blood samples 
(overnight fasting, before bed and following an oral glucose tolerance test), nasal and oral ultrasound, and ECG 
were also obtained during the 4th exam. Institutional Review Board approval and signed informed consent was 
obtained for all participants. 
 
CHRIS 
The CHRIS study is a prospective study set up in 2011 in the Val Venosta/Vinschgau district, South Tyrol, Italy. 
Recruited into the study at baseline between 2011 and 2018 were 13,393 participants from 13 municipalities, each 
one characterized by a central town, small villages, and scattered mountain farms. Settlements are located at an 
altitude of 600 to 2000 m above sea level. Participants cover more than one-third of the target region population. 
A full description of the study has been previously published4. 
 
CHS 
The Cardiovascular Health Study (CHS) is a population-based cohort study of risk factors for CHD and stroke in 
adults ≥65 years conducted across 4 field centers5. The original predominantly Caucasian cohort of 5,201 persons 
was recruited in 1989-1990 from random samples of the Medicare eligibility lists; subsequently, an additional 
predominantly African American cohort of 687 persons was enrolled in 1992-1993 for a total sample of 5,888. DNA 
was extracted from blood samples drawn on all participants at their baseline examination and all participants 
provided informed consent for the use of their genetic data in analyses. After an 8-12-h fast, CHS participants 
underwent phlebotomy by atraumatic venipuncture with a 21-gauge butterfly needle connected to a Vacutainer 
(Becton Dickinson, Rutherford, NJ) outlet via a Luer adaptor6. 
 
COPDGene 
COPDGene (ClinicalTrials.gov: NCT00608764) is an ongoing study of over 10,000 non-Hispanic White and African 
American cigarette smokers. It was designed to investigate COPD and other smoking-related lung diseases7. As part 
of TOPMed freeze 6a, WGS was conducted on 10,372 subjects.  
 
CROATIA studies 
The CROATIA-Split study is a population-based, cross-sectional study in the Dalmatian City of Split in Croatia that 
includes 1000 examinees aged 18-95. Blood samples were collected in 2009 and 2010 along with many clinical and 
biochemical measures and lifestyle and health questionnaires. A detailed description of the study has been 
published elsewhere8. 
 
The CROATIA-Korcula study is a family-based, cross-sectional study in the isolated island of Korcula in Croatia that 
included 965 examinees aged 18-95. Blood samples were collected in 2007 along with many clinical and 
biochemical measures and lifestyle and health questionnaires. A detailed description of the study has been 
published elsewhere9. 
 
The CROATIA-Vis study is a family-based, cross-sectional study in the isolated island of Vis in Croatia that included 
1,056 examinees aged 18-93. Blood samples were collected in 2003 and 2004 along with many clinical and 
biochemical measures and lifestyle and health questionnaires. A detailed description of the study has been 
published elsewhere10. 
 
EPIC-Norfolk 



The European Prospective Investigation in Cancer (EPIC) Norfolk Study (EPIC-Norfolk) The EPIC-Norfolk GWAS 
consists of 1,284  obese individuals and 2,566 random subcohort in a case-cohort design randomly selected from 
the EPIC Norfolk Study, a population‐based cohort study of 25,663 men and women of European descent aged 39‐
79 years recruited in Norfolk, UK between 1993 and 199511. Height and weight were measured using standard 
anthropometric techniques. After quality controls, 3,552 individuals remained in the final sample. The Norwich 
Local Research Ethics Committee granted ethical approval for the study. All participants gave written informed 
consent.  
 
FHS   
The Framingham Heart Study (FHS) was started in 1948 with 5,209 randomly ascertained participants from 
Framingham, Massachusetts, US, who had undergone biannual examinations to investigate cardiovascular disease 
and its risk factors. In 1971, the Offspring cohort (comprising 5,124 children of the original cohort and the 
children's spouses) and in 2002, the Third Generation (consisting of 4,095 children of the Offspring cohort) were 
recruited. FHS participants in this study are of European ancestry. The methods of recruitment and data collection 
for the Offspring and Third Generation cohorts have been described12. 
 
GAIT2 
The Genetic Analysis of Idiopathic Thrombophilia(GAIT) project is a family based study where 935 subjects in 35 
extended pedigrees were collected 13,14. To be included in the study, a family was required to have at least 10 living 
individuals in 3 or more generations. Families were selected through a proband with idiopathic thrombophilia, 
which was defined as recurrent thrombotic events (at least one of which was spontaneous), a single spontaneous 
thrombotic episode plus a first-degree relative also affected, or onset of thrombosis before age 45. Thrombosis in 
these probands was considered idiopathic when biological causes as antithrombin deficiency, protein S and C 
deficiencies, activated protein C resistance, plasminogen deficiency, heparin cofactor II deficiency, Factor V Leiden, 
dysfibrinogenemia, lupus anticoagulant and antiphospholipid antibodies, were excluded. Subjects were 
interviewed by a physician to determine their health and reproductive history, current medications, alcohol 
consumption, use of sex hormones (oral contraceptives or hormonal replacement therapy) and their smoking 
history. The study was performed according to the Declaration of Helsinki. All procedures of the study were 
reviewed by the Institutional Review Board of the Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. Adult 
subjects gave informed consent for themselves and for their minor children. 
 
GeneSTAR  
GeneSTAR (Genetic Study of Atherosclerosis Risk) is an ongoing prospective family study begun in 1983 to 
determine environmental, phenotypic, and genetic causes of premature cardiovascular disease15. Briefly, probands 
with a premature coronary disease event prior to 60 years of age were identified at the time of hospitalization in 
any of 10 Baltimore area hospitals. Their apparently healthy 30-59 year old siblings without known CAD were 
recruited and underwent phenotypic measurement and characterization between 1983 and 2006; offspring of the 
siblings and probands, as well as the co-parent of these offspring, were recruited and assessed between 2003 and 
2006. All participants provided written informed consent. Participants are followed for coronary artery disease 
events at regular intervals.  
 
GENOA 
The Genetic Epidemiology Network of Arteriopathy (GENOA) study is one of four networks in the NHLBI Family-
Blood Pressure Program (FBPP)16. GENOA's long-term objective is to elucidate the genetics of target organ 
complications of hypertension, including both atherosclerotic and arteriolosclerotic complications involving the 
heart, brain, kidneys, and peripheral arteries. The longitudinal GENOA Study recruited European-American and 
African-American sibships with at least two individuals with clinically diagnosed essential hypertension before age 
60 years. All other members of the sibship were invited to participate regardless of their hypertension status. 
Exclusion criteria were secondary hypertension, alcoholism or drug abuse, pregnancy, insulin-dependent diabetes 
mellitus, or active malignancy. Study protocols were approved by the University of Michigan and Mayo Clinic 
Institutional Review Boards and participants gave written informed consent. 
 
GOYA  



The GOYA (Male) cohort is a longitudinal case-cohort (obese, non-obese) study comprising a randomly (1%) 
selected control group and all extremely overweight men identified among 362,200 Caucasian men examined at 
the mean age of 20 years at the draft boards in Copenhagen and its surrounding areas during 1943–1977. Obesity 
was defined as 35% overweight relative to a local standard in use at the time (mid 1970’s), corresponding to a BMI 
≥31.0 kg/m2, which proved to be above the 99th percentile. All of the obese and 50% of the random sampled 
controls, who were still living in the region, were invited to a follow-up survey in 1992–94 at the mean age of 46 
years, at which time the blood samples were taken and genotyping were performed for a total of 673 extremely 
overweight and 792 controls.(32) With a sampling fraction of 0.5% (50% of 1%), the controls represent about 
158,000 men among whom the case group was the most obese. 
 
HBCS 
The Helsinki Birth Cohort Study (HBCS) is composed of 8 760 individuals born between the years 1934-44 in one of 
the two main maternity hospitals in Helsinki, Finland.  Between 2001 and 2003, a randomly selected sample of 928 
males and 1 075 females participated in a clinical follow-up study with a focus on cardiovascular, metabolic and 
reproductive health, cognitive function and depressive symptoms. Detailed information on the selection of the 
HBCS participants and on the study design can be found elsewhere17–19. Research plan of the HBCS was approved 
by the Institutional Review Board of the National Public Health Institute and all participants have signed an 
informed consent. 
 
INTER99 
The Inter99 is a population-based cohort from 11 municipalities in the south-western part of Copenhagen. This 
population has been described in detail previously20. In brief, the Inter99 study is a randomized, non-
pharmacological intervention study for prevention of ischemic heart disease on more than 13,000 individuals 
between 30 and 60 years randomly selected from the Civil Registration System. Out of those, 6,784 participants 
attended the baseline health examination, of whom 6,127 had genotype information available. The study was 
conducted at the Research Centre for Prevention and Health in Glostrup, Denmark. 
 
JHS 
The Jackson Heart Study (JHS) is a longitudinal investigation of the genetic and environmental risk factors 
associated with cardiovascular disease in African Americans. JHS recruited 5306 African American residents living 
in the Jackson, Mississippi, metropolitan area of Hinds, Madison, and Rankin Counties from 2000-200421,22. The age 
at enrollment for the unrelated cohort was 35-84 years; the nested family cohort (1,498 members of 264 families) 
included related individuals >21 years old. Participants provided extensive medical, family, lifestyle, and 
psychosocial histories, had an array of physical and biochemical measurements and diagnostic procedures, and 
provided biospecimens for future research at baseline and two follow-up examinations (2005 –2008, and 2009 –
2013), with a third follow-up examination in progress23,24. Annual follow-up interviews and cohort surveillance for 
cardiovascular events and mortality are also ongoing25.  
 
KORA 
The Monitoring of Trends and Determinants in Cardiovascular Disease/Cooperative Health Research in the Region 
of Augsburg Study (KORA) consisted of a series of independent population-based epidemiological surveys of 
participants living in the region of Augsburg, Southern Germany26,27. All survey participants are residents of 
German nationality identified through the registration office and underwent standardized examinations including 
blood withdrawals for plasma and DNA. The presented data were derived from the KORA surveys S4 (conducted in 
1999-2001) and F4 (conducted in 2006-2008) and comprised 3,720 participants with available fibrinogen and DNA 
information. 
 
LBC studies 
The Lothian Birth Cohort (LBC) studies, LBC1936 & LBC1921, were ascertained as follows. The LBC1936 consists of 
1,091 relatively healthy individuals assessed on cognitive and medical traits at 70 years of age. They were born in 
1936, most took part in the Scottish Mental Survey of 1947, and almost all lived independently in the Lothian 
region of Scotland (Edinburgh City and surrounding area).  A full description of participant recruitment and testing 
can be found elsewhere28,29. The LBC1921 cohort consists of 550 relatively healthy individuals, 316 females and 



234 males, assessed on cognitive and medical traits at 79 years of age. They were born in 1921, most took part in 
the Scottish Mental Survey of 1932, and almost all lived independently in the Lothian region in Scotland. A full 
description of participant recruitment and testing can be found elsewhere28,30. Ethics permission for the study was 
obtained from the Multi-Centre Research Ethics Committee for Scotland (MREC/01/0/56) and from Lothian 
Research Ethics Committee (LBC1936: LREC/2003/2/29 and LBC1921: LREC/1998/4/183). The research was carried 
out in compliance with the Helsinki Declaration. All subjects gave written, informed consent. 
 
LURIC 
The Ludwigshafen Risk and Cardiovascular Health (LURIC) study is an ongoing prospective study of more than 
3,300 individuals of German ancestry in whom cardiovascular and metabolic phenotypes (CAD, MI, dyslipidemia, 
hypertension, metabolic syndrome and diabetes mellitus) have been defined or ruled out using standardized 
methodologies in all study participants. Inclusion criteria for LURIC were: German ancestry (limitation of genetic 
heterogeneity), clinical stability (except for acute coronary syndromes) and availability of a coronary angiogram. 
Exclusion criteria were: any acute illness other than acute coronary syndromes, any chronic disease where non-
cardiac disease predominated and a history of malignancy within the last five years. Genome-wide analyses using 
the Affymetrix 6.0 have been completed in all participants. A 10-year clinical follow-up for total and cause specific 
mortality has been completed. 
 
MARTHA 
The MARseille THrombosis Association (MARTHA) project has been previously described31. Briefly, MARTHA consist 
in two independent samples of VT patients, named MARTHA08 (N=1,006) and MARTHA10 (N=586). MARTHA 
patients are unrelated subjects of European origin, with the majority being of French ancestry, consecutively 
recruited at the Thrombophilia center of La Timone hospital (Marseille, France) between January 1994 and 
October 2005. All patients had a documented history of VT and free of well characterized genetic risk factors 
including AT, PC, or PS deficiency, homozygosity for FV Leiden or FII 20210A, and lupus anticoagulant. They were 
interviewed by a physician on their medical history, which emphasized manifestations of deep vein thrombosis and 
pulmonary embolism using a standardized questionnaire. The thrombotic events were confirmed by venography, 
Doppler ultrasound, spiral computed tomographic scanning angiography, and/or ventilation/perfusion lung scan. 
 
MESA 
The Multi-Ethnic Study of Atherosclerosis (MESA) is a cohort study designed to investigate the characteristics of 
subclinical cardiovascular disease and the risk factors that predict progression to clinically overt cardiovascular 
disease or progression of the subclinical disease. MESA comprises a diverse, population-based sample of 6,814 
asymptomatic men and women aged 45-84. Thirty-eight percent of the recruited participants are Caucasian, 28 
percent African-American, 22 percent Hispanic, and 12 percent Asian, predominantly of Chinese descent32. 
Participants were recruited from six field centers across the United States: Wake Forest University, Columbia 
University, Johns Hopkins University, University of Minnesota, Northwestern University and University of California 
- Los Angeles. In this study we included only European American participants. 
 
MVP 
The Veterans Affairs Million Veteran Program (MVP) started recruiting US military veterans from 63 Veterans 
Affairs (VA) facilities across the United States in 2011. Veterans aged 18 years and older are recruited into MVP 
where participants are linked to VA electronic health records (EHR), complete a questionnaire, and submit a blood 
sample at enrollment. The EHR includes information on inpatient International Classification of Disease (ICD) 
diagnosis codes, Current Procedural Terminology (CPT) procedure codes, and clinical laboratory measurements33. 
 
NEO 
The NEO was designed for extensive phenotyping to investigate pathways that lead to obesity-related diseases. 
The NEO study is a population-based, prospective cohort study that includes 6,671 individuals aged 45–65 years, 
with an oversampling of individuals with overweight or obesity. At baseline, information on demography, lifestyle, 
and medical history have been collected by questionnaires. In addition, samples of 24-h urine, fasting and 
postprandial blood plasma and serum, and DNA were collected. Genotyping was performed using the Illumina 
HumanCore Exome chip, which was subsequently imputed to the 1000 genome reference panel. Participants 



underwent an extensive physical examination, including anthropometry, electrocardiography, spirometry, and 
measurement of the carotid artery intima-media thickness by ultrasonography. In random subsamples of 
participants, magnetic resonance imaging of abdominal fat, pulse wave velocity of the aorta, heart, and brain, 
magnetic resonance spectroscopy of the liver, indirect calorimetry, dual energy X-ray absorptiometry, or 
accelerometry measurements were performed. The collection of data started in September 2008 and completed at 
the end of September 2012. Participants are currently being followed for the incidence of obesity-related diseases 
and mortality.  
 
NTR 
As part of a Netherlands Twin Registry (NTR) biobank project, 9,530 participants from 3,477 families were visited at 
home between January 2004 and July 2008 for collection of blood samples. Visits were scheduled between 7:00 
and 10:00 am and fertile women were bled on day 2–4 of the menstrual cycle, or in their pill-free week. Fertile 
women were bled on day 2–4 of the menstrual cycle, or in their pill-free week. Body composition was measured 
and information about physical health and lifestyle (e.g. smoking and drinking behavior, physical exercise, 
medication use) was obtained. For more detailed information about the methodology of the NTR Biobank study, 
see34. The NTR studies were approved by the Central Ethics Committee on Research involving human subjects of 
the VU University Medical Center, Amsterdam, an Institutional Review Board certified by the US Office of Human 
Research Protections (IRB number IRB-2991 under Federal wide Assurance-3703; IRB/institute codes, NTR 03-180). 
All subjects provided written informed consent. Valid GWA data were available for 6171 individuals. 
 
PROCARDIS 
The Precocious Coronary Artery Disease Study (PROCARDIS) consists of coronary artery disease (CAD) cases and 
controls from four European countries (UK, Italy, Sweden and Germany). CAD (defined as myocardial infarction, 
acute coronary syndrome, unstable or stable angina, or need for coronary artery bypass surgery or percutaneous 
coronary intervention) was diagnosed before 66 years of age and 80% of cases had a sibling fulfilling the same 
criteria for CAD. Subjects with self-reported non-European ancestry were excluded. Among the “genetically-
enriched” CAD cases, 70% had suffered myocardial infarction (MI).  
 
PROSPER 
PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) was a prospective multicenter randomized 
placebo-controlled trial to assess whether treatment with pravastatin diminishes the risk of major vascular events 
in elderly35,36. Between December 1997 and May 1999, we screened and enrolled subjects in Scotland (Glasgow), 
Ireland (Cork), and the Netherlands (Leiden). Men and women aged 70-82 years were recruited if they had pre-
existing vascular disease or increased risk of such disease because of smoking, hypertension, or diabetes. A total 
number of 5804 subjects were randomly assigned to pravastatin or placebo. A large number of prospective tests 
were performed including Biobank tests and cognitive function measurements. A detailed description of the study 
has been published elsewhere35,37. 
 
RETROVE 
RETROVE is a prospective case–control study that includes 400 consecutive patients with VTE (cancer associated 
thrombosis was excluded) and 400 healthy control volunteers38. All individuals were ≥ 18 years. The diagnosis was 
confirmed with Doppler ultrasonography, tomography, magnetic resonance, arteriography, phlebography or 
pulmonary gammagraphy. Blood samples from the patients were taken at least 6 months after thrombosis to 
minimize the influence of the acute phase. None of the participants was using oral anticoagulants, heparin, or 
antiplatelet therapy at the time of blood collection. Controls were selected according to the age and sex 
distribution of the Spanish population (2001 census). A total of 5 ml of blood was obtained in a Vacutainer tube 
(BD Vacutainer Becton Dickinson and Company, New Jersey, USA) containing EDTA as anticoagulant. All individuals 
were genotyped using Infinium Global Screening Array-24 v3.0 kit from Illumina. Written informed consent was 
obtained for all participants and all procedures were approved by the Institutional Review Board of the Hospital de 
la Santa Creu i Sant Pau (Barcelona). 
 
RS 



The Rotterdam Study (RS-I and RS-II) is a prospective, population-based cohort study of determinants of several 
chronic diseases in older adults39. RS-I comprised 7,983 inhabitants of Ommoord, a district of Rotterdam in the 
Netherlands, who were 55 years or over. The baseline examination took place between 1990 and 1993. In 1999, 
the cohort was extended to include 3011 inhabitants who reached the age of 55 years after the baseline 
examination and persons aged 55 years or older who migrated into the research area (RS-II). Subjects are of 
European ancestry based on their self-report.  
 
SardiNIA  
The SardiNIA study has been previously described40. Briefly, it is a large population-based study which consists of 
6,921 individuals, males and females, ages 14-102 y, and representing >60% of the adult population of four villages 
in the Lanusei Valley of Sardinia. Samples have been characterized for several quantitative traits and medical 
conditions, including fibrinogen. 
 
SAFS 
San Antonio Family Study (SAFS): The SAFS is a longitudinal study which began in 1991 and was designed to 
primarily investigate the genetics of cardiovascular disease and its risk factors in Mexican Americans. For this 
study, subjects from the SAFS included 1,431 individuals in 42 extended families at baseline, from the San Antonio 
Family Heart Study41. Ascertainment occurred by way of the random selection of an adult Mexican American 
proband, without regard to presence or absence of disease. 
 
SHIP 
The Study of Health in Pomerania (SHIP) is a longitudinal cohort study in West Pomerania, the north-east area of 
Germany and has been described previously42,43. From the entire study population of 212,157 inhabitants living in 
the area, a sample was selected from the population registration offices, where all German inhabitants are 
registered. Only individuals with German citizenship and main residency in the study area were included. A two-
stage cluster sampling method was adopted from the WHO MONICA Project Augsburg, Germany. In a first step, 
the three cities of the region (with 17,076 to 65,977 inhabitants) and the 12 towns (with 1,516 to 3,044 
inhabitants) were selected. Further 17 out of 97 smaller towns (with less than 1,500 inhabitants) were drawn at 
random. In a second step, from each of the selected communities, subjects were drawn at random, proportional to 
the population size of each community and stratified by age and gender. Finally, 7,008 subjects aged 20 to 79 years 
were sampled, with 292 persons of each gender in each of the twelve five-year age strata. In order to minimize 
drop-outs by migration or death, subjects were selected in two waves. The net sample (without migrated or 
deceased persons) comprised 6,267 eligible subjects. The SHIP population finally comprised 4,308 participants at 
baseline (corresponding to a final response of 68.8%). 
 
TwinsUK 
The TwinsUK cohort was derived from the UK adult twin registry based at King’s College London 
(www.twinsUK.ac.uk). These unselected twins have been recruited from the general population through national 
media campaigns in the United Kingdom and shown to be comparable to age-matched population singletons in 
terms of disease-related and lifestyle characteristics44. Informed consent was obtained from all participants and 
the study was approved by the St. Thomas' Hospital Ethics Committee. 
 
VIKING 
The Viking Health Study - Shetland (VIKING) is a family-based, cross-sectional study that seeks to identify genetic 
factors influencing cardiovascular and other disease risk in the population isolate of the Shetland Isles in northern 
Scotland45. 2,105 participants were recruited between 2013 and 2015, most having at least three grandparents 
from Shetland. Fasting blood samples were collected and many health-related phenotypes and environmental 
exposures were measured in each individual. Common and rare genetic variants reveal the gene pool to be distinct 
from the rest of the British Isles46,47, consistent with the high levels of endogamy historically.  All participants gave 
informed consent and the study was approved by the South East Scotland Research Ethics Committee, NHS Lothian 
(reference: 12/SS/0151). 
 
WGHS 



The Women’s Genome Health Study (WGHS) is a prospective cohort of initially healthy, female North American 
health care professionals at least 45 years old at baseline representing participants in the Women’s Health Study 
(WHS) who provided a blood sample at baseline and consent for blood-based analyses48. The WHS was a 2x2 trial 
beginning in 1992-1994 of vitamin E and low dose aspirin in prevention of cancer and cardiovascular disease with 
about 10 years of follow-up.  Since the end of the trial, follow-up has continued in observational mode. Additional 
information related to health and lifestyle were collected by questionnaire throughout the WHS trial and 
continuing observational follow-up. 
 
WHI 
The Women’s Health Initiative (WHI) is one of the largest (n=161,808) studies of women's health ever undertaken 
in the U.S.(57) There are two major components of WHI: (1) a Clinical Trial (CT) that enrolled and randomized 
68,132 women ages 50 – 79 into at least one of three placebo-control clinical trials (hormone therapy, dietary 
modification, and calcium/vitamin D); and (2) an Observational Study (OS) that enrolled 93,676 women of the 
same age range into a parallel prospective cohort study. DNA was extracted by the Specimen Processing 
Laboratory at the Fred Hutchinson Cancer research Center (FHCRC) using specimens that were collected at the 
time of enrollment. 

 
2. Fibrinogen Measurement 
Airwave 
Blood and urine samples for the Airwave Health Monitoring Study were obtained at the screening visit (with 
consent) and stored for future research use. Blood samples are spun at the clinics, stored in a thermoporter 
(Laminar Medica) and sent overnight from the clinics by courier to a dedicated laboratory for analysis. The blood 
samples are either analysed next day for haematology, coagulation and biochemistry tests or frozen for long-term 
storage. Blood and urine samples are stored at −80 °C at the laboratory, before being transferred to a bio-
repository facility at Hammersmith Hospital (London, United Kingdom) which is the primary long-term storage 
location for the samples. The samples are stored in vapour phase liquid nitrogen allowing long-term access for 
biochemical or genetic analysis. Samples for which consent has not been obtained for long-term storage are 
destroyed. All samples are stored in barcoded tubes. Fibrinogen was measured from sodium citrate plasma using 
either ACL 300 or 8000 analyser (Beckman Coulter)1. 
 
AMISH 
Fibrinogen was measured using the Clauss method49.  
 
ARIC   
Fibrinogen was measured at baseline in the entire ARIC cohort after an 8-hour fasting period. Circulating plasma 
fibrinogen was measured by the Clauss clotting rate method49. Participants whose fibrinogen measurement was 
off 6SD from the mean were also excluded. 
 
CAERPHILLY 
Blood was taken between 7 and 10 AM for 91% of the men. The blood was collected without venous stasis into 
evacuated containers with a 19-gauge butterfly needle and Sarstedt monovette adaptors. Centrifugation was 
performed within 1 hour.  Citrated plasma stored at 70°C was used for all samples assayed in the Department of 
Medicine, University of Glasgow, and fresh plasma samples anticoagulated with edetic acid (EDTA) were used for 
the measurement of nephelometric fibrinogen (Department of Hematology, Southmead Hospital, Bristol). Two 
assays for fibrinogen were used - Clauss and heat-nephelometry50.  
  
CARDIA 
Blood used for fibrinogen measurement was collected at the baseline exam. Participants were asked to fast for 12 
hours prior to blood draw. CARDIA measured fibrinogen by immunonephelometry. 
 
 



CFS 
Fibrinogen concentrations were quantified by the STa-R automated coagulation analyzer (Diagnostica Stago, 
Parsippany, NJ), which uses the clotting method developed by Clauss49 in which the level of fibrinogen is directly 
correlated with the clotting time of a diluted plasma sample in the presence of excess thrombin. 

CHRIS 
After overnight fasting, blood samples were collected between 08:00 AM and 10:00 AM at the study center. After 
pre-analytical sample processing, samples were shipped to the laboratory of the Merano hospital, Italy. There, two 
different systems were used to assess hemostatic factors using the Clauss method49 in an aliquot of citrated 
plasma: 1) ROCHE CA1500 system (between August 2011 and January 2014) and 2) Stago STA Compact max system 
(between February 2014 and December 2018).  
 
CHS 
After an 8-12-h fast, CHS participants underwent phlebotomy by atraumatic venipuncture with a 21-gauge 
butterfly needle connected to a Vacutainer (Becton Dickinson, Rutherford, NJ) outlet via a Luer adaptor6. For 
fibrinogen determination, an additional citrate-containing tube was processed at 4°C. The study measured 
fibrinogen levels using the Clauss method49.  
 
COPDGene 
Peripheral venous blood was collected into Vacutainer tubes, in the morning, after fasting overnight, at baseline 
and at the one year follow-up visit. Plasma (EDTA as the anticoagulant) was obtained by centrifugation at 2000 g 
for 10 to 15 minutes. Samples were stored at –80° until analyzed centrally. Fibrinogen (K-ASSAY fibrinogen test, 
Kamiya Biomedical Co., Seattle, WA, USA) levels were measured using immunoturbidometric assays validated for 
use with EDTA plasma. The lower limit of quantification (LLQ) for fibrinogen was 5.4 mg/dL, respectively51.  
 
CROATIA studies 
The CROATIA studies used the Clauss method for measuring plasma fibrinogen49. 
 
EPIC-Norfolk 
Fibrinogen concentration in g/L: A non-fasting blood sample (42 mL) was collected at baseline health check in 
1993-1997. Samples later used for fibrinogen analyses were collected in citrated bottles, stored in refrigerator at 
4°C overnight and transferred the following morning to the EPIC laboratory for processing. Plasma not required for 
immediate analysis was frozen in aliquots in liquid nitrogen at -196°C. Between 2000 and 2002 aliquots of plasma 
were retrieved from liquid nitrogen and thawed for fibrinogen analysis. Fibrinogen was measured by a functional 
assay based on the method of Clauss using the commercial kit Fibriquik (bioMerieux, Lyon, France) on an MDA180 
automated analyser (bioMerieux)49,52. 
 
FHS &FHS-omni 
Plasma fibrinogen levels were measured using the Clauss method49 for both FHS and FHS-omni. 
 
GAIT2 
Fibrinogen was measured by the Clauss method with thrombin from Diagnostica Stago (Ansières, France)49.  
 
GeneSTAR 
After an overnight fast, blood was obtained from venipuncture and collected into a vacutainer tube containing 
3.2% sodium citrate after the first 4 mL was discarded. Plasma fibrinogen was measured on an automated optical 
clot detection device (Behring Coagulation System; Dade-Behring, Newark, Del) using a modified Clauss method. 
Excess thrombin was added to the citrated plasma, and the time required for clot formation was recorded in 
seconds; clotting time was converted to mg/dL of fibrinogen by extrapolating the results from a standard 
fibrinogen curve. 
 
 
 



GENOA 
Blood was drawn after an overnight fast. Fibrinogen was measured from citrated blood by the Clauss (clotting 
time-based) method49. 
 
GOYA 
A functional photometric assay was employed to estimate fibrinogen concentration. The sample is mixed with a 
snake venom enzyme (Batroxobin) and fibrin formation is recorded turbidimetrically at 334 nm. Reaction 
conditions are such that a linear increase in absorbance is obtained over a concentration range of fibrinogen from 
80-700 mg/dl. Higher or lower ranges can be measured by adjusting the sample volume. Calibration is performed 
with a single standard53. 
 
HBCS 
Fibrinogen levels were measured using the Clauss method with an electrical impedance end point49.  
 
INTER99 
In the Inter99 study baseline fasting serum samples were collected and an ultrasensitive immunoassay was used to 
measure various candidate biomarkers including fibrinogen. Details regarding this assay have been described 
previously54. 
 
JHS 
Fibrinogen antigen assays were performed using a Siemens BNII nephelometer (Erlangen, Germany). 
 
LBC studies 
Fibrinogen levels were measured using HemosILTM based on the Clauss method49.  
 
LURIC 
Fasting blood samples were collected at baseline in the morning before angiography. Fibrinogen was measured in 
citrate plasma using the Clauss method (STA fibrinogen/STA Stago, Stago Diagnostica/Roche Mannheim, Germany) 
at the Haemostaseology Laboratory of the Ludwigshafen hospital on a daily basis49. 
 
MARTHA 
Blood samples were collected by antecubital venipuncture into Vacutainer® tubes 0.105 M trisodium citrate (ratio 
9:1, Becton Dickinson) for the coagulation test and the thrombin generation assay. Platelet-poor plasma (PPP) was 
obtained after double centrifugation of citrated blood (3000 g for 10 min at 25°C) and kept frozen at -80°C until 
analysis. Fibrinogen levels were measured using the Clauss method on STAR automatic coagulomater49. 
 
MESA 
Fasting blood samples were collected, processed, and stored using standardized procedures. Fibrinogen antigen 
was measured using the BNII nephelometer (N Antiserum to Human Fibrinogen; Dade Behring Inc., Deerfield, IL). 
The assay was performed at the Laboratory for Clinical Biochemistry Research (University of Vermont, Burlington, 
VT). Intra- and inter-assay analytical coefficients of variation were 2.7% and 2.6%, respectively.  
 
NEO 
After 5 minutes rest, fasting blood samples were collected from the antecubital vein. Serum, heparin‐plasma, 
citrated‐plasma, and EDTA‐plasma were collected from the blood samples. Plasma was obtained by centrifugation 
at 2500 g for 10 minutes at room temperature and stored in aliquots at −80°C until testing. Blood samples for 
measurements of coagulation factors activity were drawn into tubes containing 0.106M trisodium citrate 
(Sarstedt). Fasting fibrinogen levels were measured according to the method of Clauss49.  
 
NTR 
Fibrinogen was measured in a 4.5 ml CTAD tube that was stored during transport in melting ice and upon arrival at 
the laboratory, centrifuged for 20 minutes at 2000x g at 4° C, after which citrated plasma was harvested, aliquoted 



(0.5 ml), snapfrozen in dry ice, and stored at –30° C. Fibrinogen levels were determined using the Clauss method49 
on a STA Compact Analyzer Diagnostica Stago, France), using STA Fibrinogen (Diagnostica Stago, France). 
 
PROCARDIS 
Blood samples were drawn between 8.00 and 11.00 a.m.at the time of recruitment of cases and controls.  
Plasma fibrinogen concentrations for the Procardis-clauss sub-sample were measured in fasting citrate plasma 
samples by the Clauss method using the IL Test Fibrinogen C kit and IL Test Calibration Plasma, on the ACL-9000 
coagulometer (all from Instrumentation Laboratory Spa, Milan, Italy)49. The inter-assay CV was 7% (n=106). For the 
Procardis-immunonephelometric, fibrinogen was measured in EDTA plasma samples using Dade Behring reagents 
on the Dade-Behring Nephelometer II analyzer (Dade-Behring, Marburg, Germany). The inter-assay CV was 5.5%.    
 
PROSPER 
Fibrinogen levels were measured by the Clauss method using aMDA180 coagulometer (Trinity Biotech; calibrant 
9th British standard National Institute for Biological Standards and Control)49. 
 
RETROVE 
A total of 5 ml of blood was obtained in a Vacutainer tube (BD Vacutainer Becton Dickinson and Company, New 
Jersey, USA) containing citrate as anticoagulant. Fibrinogen was measured by the Clauss method with thrombin 
from Diagnostica Stago (Ansières, France) and expressed in g/l49. 
 
RS 
In RS-I, fibrinogen levels were derived at baseline (RS-I-1) from the clotting curve of the prothrombin time assay 
using Thromborel S as a reagent on an automated coagulation laboratory 300 (ACL 300, Instrumentation 
Laboratory, Zaventem, Belgium). At the second follow up of RS-I (RS-I-3) and the baseline visit of RS-II, fibrinogen 
levels were derived from the clotting curve of the prothrombin time assay using Thromborel S (Behringwerke, 
Marburg, Germany) as a reagent on an automated coagulation analyzer (Sysmex CA-500 Series Systems, Siemens, 
Breda, the Netherlands).      
 
SAFS 
Fibrinogen levels were measured using an automated clot-rate assay based upon the original method of Clauss55 
on the ST4 Instrument (Diagnostica Stago), with standardization with the College of American Pathologists (CAP) 
reference material. 
 
SardiNIA 
 Fibrinogen levels were measured using the Clauss method49. 
 
SHIP 
A non-fasting blood sample was drawn from the antecubital vein in the supine position and immediately analyzed 
or stored at -80°C. Plasma fibrinogen concentrations were assayed according to Clauss using an Electra 1600 
analyzer (Instrumentation Laboratory, Barcelona, Spain)49. Coagulation time is measured and transferred into the 
result in g/L by applying a reference curve calculated in the laboratory. The assay proves linearity between 0.7 – 7 
g/L. The analytical sensitivity of the assay was 0.7 g/L. Internal quality control measures were performed daily 
using two levels of manufacturers’ control materials. External quality control measures were performed on a 
regular basis by participating in analysis programs. The inter-assay coefficients of variation were 4.61 % at low 
levels (mean value = 0.95 g/L) and 1.82% at high levels (mean value = 3.22 g/L) of control material. 
 
TwinsUK 
Fasting blood samples was taken from samples into 0.13 trisodium citrate containers (Becton Dickinson, Oxford, 
United Kingdom) at room temperature, centrifuged at 2560g for 20 minutes to obtain platelet-poor plasma within 
1 hour of collection and stored at –40°C until analysis. Fibrinogen levels were determined using the Clauss 
method49,56. 
 
 



VIKING 
Blood samples were drawn into sodium citrate tubes (Sarstedt) after an overnight fast. After centrifugation at 4°C, 
plasma was aliquoted and frozen at -40°C until analysis. Fibrinogen was measured using the Clauss assay49. 
 
WGHS 
Fibrinogen in plasma from the baseline blood sample was measured by a mass-based immunoturbidimetric assay 
(DiaSorin) with reproducibility of 5.20% and 3.99% at concentrations of 0.99 and 2.74 g/L respectively. 
 
WHI 
Fibrinogen measurement in WHI was performed using a STA-R coagulation analyzer from Diagnostica Stago 
(16.6%),  optical clot detection (80.1%), BNII nephelometer utilizing a particle enhanced immunoepholometric 
assay (1.4%), or an unknown method (1.9%).  

 

 
3. TOPMed Phenotype Harmonization 
Measures of plasma fibrinogen for TOPMed participants with WGS data were harmonized to ensure that 
they were in the same units (g/L) and did not have unexpected distributions or an excess of outliers. 
Harmonization was performed for all participants of each study, not just those sequenced. After 
harmonization, duplicated samples (as identified by the TOPMed Data Coordinating Center (DCC)) were 
removed. These included technical replicates, within and between study duplicates, and monozygotic 
twins. Individuals without WGS data or with missing covariate information were also removed. 
Harmonized phenotypes were then uploaded to the Analysis Commons57 for centralized genetic 
analysis.  

 
4. Whole-genome Sequencing of TOPMed Participants  
TOPMed WGS methods have been described previously58. In brief, WGS was conducted at six 
sequencing centers at a mean depth of >30X using Illumina HiSeq X Ten instruments. Joint variant 
discovery and genotype calling were conducted by the TOPMed Informatics Research Center (IRC) across 
all TOPMed studies using the GotCloud pipeline, resulting in a single genotype call set encompassing all 
of TOPMed (TOPMed Freeze 6). Variant quality control performed by the TOPMed IRC consisted of the 
removal of variants failing the support vector machine filter, with excess heterozygosity or Mendelian 
inconsistencies, overlapping centromeric or other low complexity regions, or with missingness greater 
than 5%. Autosomal variants with mean sequencing depth < 10 were excluded. Sample quality control 
was performed by the TOPMed Data Coordinating Center (DCC) and consisted of the removal of 
duplicate samples, samples with sex discrepancies, misidentified samples, samples with consent issues, 
and samples with poor quality based on concordance of WGS and genotyping array data.   

  
5. Genotype Imputation of non-TOPMed Studies  
Genotype array data for CHARGE studies and unsequenced TOPMed study participants were imputed to 
the densest available imputation panel. A total of 35 studies imputed to the TOPMed Freeze 6 reference 
panel58 and four to the Haplotype Reference Consortium (HRC) reference panel59. Imputation was 
performed by each study individually using standard methods and following instructions provided 



centrally by the CHARGE Hemostasis Working Group based on the recommendations of the TOPMed 
DCC. HRC positions were mapped to hg19 and TOPMed Freeze 6 was hg38 therefore variant positions 
for studies with HRC imputation were converted to hg38 using liftOver60 after genetic association 
analysis but prior to results quality control.  

 
6. Genome-wide Association Analyses and Meta-analyses  
TOPMed WGS genetic analyses were conducted using inverse normalized and rescaled residuals 
adjusting for age, sex, population group*study, TOPMed sequencing phase, study-specific parameters, 
11 ancestry informative principal components, and a kinship matrix. Single variant and aggregate gene-
based tests were implemented using the SMMAT function of GENESIS with the Analysis Commons cloud 
computing platform57,61. Aggregate tests included only variants with minor allele frequency (MAF) <5% 
and minor allele count (MAC) ≥1 and used 3 strategies for variant selection: (1) loss of function (LOF), (2) 
LOF and deleterious missense (LDM), and (3) coding, enhancer, and promoter variants.  
  
Studies without sequencing data undertook single variant analyses only within each population group 
using their software of preference and the same model described above. Summary statistics were 
provided for central meta-analysis.  
  
Quality control of the single variant GWAS summary statistics was undertaken using the EasyQC package 
for R62. Variants were removed based on the following filtering criteria:  estimated minor allele count 
(minor allele count x imputation quality; eMAC) < 6, absolute effect size (beta) > 5, standard error > 10, 
sample size < 30, or imputation quality < 0.30.   
 
Meta-analysis was completed using GWAMA63. Genomic control was applied to each study individually 
but not to the meta-analysis results. Meta-analysis was completed (i) within each population group for 
just the CHARGE studies, (ii) just the TOPMed WGS studies, as well as (iii) the full TOPMed+CHARGE 
multi-population mega-analysis. 26,873,415 SNPs were included in the TOPMed+CHARGE multi-
population mega-analysis and statistical significance was set at p<5.0E-0964. 

 
7. Post-GWAS analysis  
a. Conditional analysis 
For all genome-wide significant regions from the TOPMED+CHARGE mega-analysis, conditional analyses 
were undertaken using “cojo-slct”65 within GCTA66. All TOPMed WGS samples that contributed to the 
GWAS were used for the linkage disequilibrium (LD) reference panel. Options for cojo-slct were as 
follows: (i) minor allele frequency (MAF) cutoff = 0.0001, (ii) window size = 10 MB, (iii) collinearity 
cutoff=0.9, (iv) frequency difference threshold = 0.2, and (v) p-value threshold = 5.0E-09. Cojo-slct 
analysis was attempted using AFR-only and EUR-only ancestry-specific mega-analysis results and LD 
panels but power was severely reduced for AFR due to the small sample size, so results were not 
informative. 
 



b. Variance Explained  
Percent variance explained was estimated with summary level data reported by GCTA66 for the 69 
conditionally independent SNPs from the TOPMed+CHARGE mega-analysis, using the approximation 
derived by Shim et al67 (see Supplemental Materials S1 of Shim et al).    

 
8. Functional Annotation of Fibrinogen-Associated Variants  
a. Variant Effect Prediction  
Proxy variants based on linkage disequilibrium (LD) were obtained for the 69 conditionally independent 
SNPs from the TOPMed+CHARGE mega-analysis using TOP-LD58,68 
(http://topld.genetics.unc.edu/about.php)  European and African ancestry reference panels (r^2>0.8). 
rsIDs for our SNPs and their LD-proxies in each region were uploaded to Ensembl Variant Effect Predictor 
(VEP)69 (https://asia.ensembl.org/info/docs/tools/vep/index.html) to determine the nearest gene and 
the top Ensembl-predicted consequence for each variant. CADD PHRED70,71 and LoFTool72 predicted 
impact scores were obtained for all variants through VEP. For predicted coding variants, InterPro 
predicted position and amino acid substitution73, SIFT74, and PolyPhen75,76 scores were obtained through 
VEP.   
  

b. Overlap of Fibrinogen Signals to GWAS Catalog Associations  
The NHGRI-EBI GWAS catalog v1.0.2, containing lead, significant (5.0E-08) variants from each uploaded 
GWAS study was downloaded October 29, 2022 (https://www.ebi.ac.uk/gwas/downloads). The same set 
of SNPs used for VEP annotation were queried in the GWAS catalog by rsID. We manually assessed all 
mapped traits to generate broad categories - we considered regions with a GWAS catalog signal for 
alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl 
transferase, albumin, or sex hormone-binding globulin - as broadly overlapping with “liver enzymes”. 
Similarly, we considered regions with a GWAS catalog signal for platelet count, leukocyte count, 
neutrophil count, erythrocyte count, lymphocyte count, mean corpuscular hemoglobin concentration, 
mean corpuscular volume, myeloid white cell count, glycoprotein measurement, hematocrit, 
hemoglobin measurement, lymphocyte percentage of leukocytes, mean corpuscular hemoglobin, 
plateletcrit, red blood cell density measurement, neutrophil percentage of leukocytes, red blood cell 
distribution width, granulocyte count, HbA1c measurement, neutrophil count and basophil count, 
neutrophil count and eosinophil counts, neutrophil percentage of granulocytes, reticulocyte count, 
reticulocyte measurement, soluble triggering receptor expressed on myeloid cells 2 measurement, 
and/or total blood protein measurement as overlapping with “blood cell traits”.   
  

c. Regulatory Annotation  
All conditionally independent SNPs and their LD proxies were also queried by position (hg38) for overlap 
with Genehancer v5.12 regions, downloaded from Genecards on November 13, 202277 
(https://www.genecards.org/).   
  



To further assess which variants overlap with regions of open chromatin in liver tissue, we aligned 
variants to previously reported ATACseq (assay for transposase-accessible chromatin with high-
throughput sequencing) consensus peaks determined using 20 healthy liver tissue samples by Currin et 
al78. ATACseq consensus peak regions (regions of DNA with an ATACseq peak in 3 or more samples) were 
downloaded from the Gene Expression Omnibus GSE164942. All SNPs and LD-proxies identified in our 
study were converted to hg19 coordinates using liftOver within the UCSC Genome Browser60, then 
aligned with the ATACseq consensus peaks. We further compared our SNPs and LD-proxies to liver 
chromatin accessibility quantitative trait loci (caQTL) with effects in cis- (1 kb of target peak center) or 
trans- (within 100 kb of target peak center), as reported in Currin et al78.  
  
GTEx v8 conditionally independent expression QTL (eQTL) and splicing QTL (sQTL) datasets, mapped 
using stepwise regression, were obtained from the GTEx portal (https://gtexportal.org/home/datasets), 
and used to assess whether any fibrinogen lead variants or LD-proxy were predicted to alter expression 
or splicing of genes across all tissues mapped in GTEx.    

  
9. Transcription-wide Association Studies  
We performed transcriptome-wide association study (TWAS) analysis using S-PrediXcan79 to identify 
associations between cis-genetic components of gene expression and plasma levels of fibrinogen in 
mechanistically related tissues, namely artery (aorta, coronary, or tibial), liver, and whole blood. We used 
the prebuilt prediction models that were based on GTEx v8 multivariate adaptive shrinkage in R to 
estimate variants’ weight on gene expression levels in chosen tissues79–81. Given that the reference models 
were created based on the European-ancestry population, we limited the analysis to GWAS results of 
European-ancestry individuals only. S-PrediXcan results of chosen tissues were then be leveraged using S-
MultiXcan82. We determined significant TWAS signals using Bonferroni correction for the total number of 
genes in all models.    

  
10. Fine-mapping  
We performed TWAS fine mapping using FOCUS in order to avoid false TWAS signals caused by co-
regulation and the pleiotropic effects of SNPs at GWAS risk loci83. FOCUS models marginal TWAS z-scores 
of all genes in the same region considering SNP LD correlations and tagged pleiotropic effects of SNPs on 
the trait. Given generated z-scores, posterior inclusion probability (PIP) for a gene to be causal is derived 
and then used to form a credible set of putative causal genes. In this analysis, we used GTEx v8 MASH-R 
models as the source of eQTL weights and the European-based PROCARDIS database as the reference for 
LD correlations. PIP ≥ 0.95 was used as the threshold to determine putative causal genes in FOCUS results.  

  
11. Colocalization  
We performed colocalization to identify shared variants between eQTL studies and GWAS to support 
gene-trait associations using fastENLOC. fastENLOC uses a Bayesian hierarchical model to generate SNP-
level colocalization probabilities (SCP) and regional colocalization probabilities (RCP)84,85 We took the pre-



computed GTEx multiple-tissue eQTL annotations and fibrinogen GWAS PIP input to perform fastENLOC 
for each of the 4 chosen tissues. We considered RCP > 0.5 as strong evidence of colocalization.  

  
12. VA Million Veteran Program (MVP) Phenome-wide Association Study (PheWAS) & 
Polygenic Risk Scores (PRS) analysis  
Polygenic risk scores were derived using the independent variants identified by the GCTA analysis listed 
above. Three scores were derived, (i) weighting by the variant beta from the multi-population mega-
analysis, (ii) weighting by the variant beta from the EUR-only meta-analysis, and (iii) weighting by the 
variant beta from the AFR-only meta-analysis. PRS were then standardized to standard deviation units. A 
phenome-wide association study (PheWAS) was performed for each of the three PRS within EUR and 
AFR participants of the VA Million Veteran Program33 (MVP), for any ICD-based PheCode86 that had 
more than 500 cases and controls. Logistic regression models were adjusted for age, sex, and the first 
five population-specific principal components. For sex-specific PheCodes, sex was removed from the 
model and values for the opposite sex were set to “NA”. The number of independent PheCodes was 
calculated for each population (AFR=690; EUR=965) and Bonferroni threshold then applied to determine 
significance (AFR = 0.05/690 = 7.25E-05; EUR=0.05/965=5.18E-05). Additional sensitivity analyses were 
completed by creating the PRSs removing SNPs in the FGG gene region (rs2066874, rs148685782, 
rs28577061, rs149748987, rs6536024), or the fibrinogen gene cluster region (rs2227401, rs6054 + FGG 
SNPs). 

 

13. Determination of Independent PheCodes in VA Million Veteran Program 
In order to determine the number of independent PheCodes tested, the phenotypic correlations were 
calculated for the PheCodes used in the MVP PheWAS. Principal components (PCs) were calculated from 
the correlations as well as the variance explained by each of the PCs. The number of independent 
PheCodes was determined by the number of PCs required to get a variance explained of 0.99. 

 

 

  
 

  



Supplemental Figures 
Supplemental Figure 1 – Phenotype Harmonization in TOPMed 

 

  



Supplemental Figure 2 – Genetic Analysis Composition, Sample Size, and Workflow 

 

WGS = Whole Genome Sequencing; AFR = African or African American; ASN = Asian and Asian American; 
EUR = European or European American; HIS = Hispanic 

  



Supplemental Figure 3 – Workflow for GCTA conditional analysis and MVP Phenome-wide 
Association Study (PheWAS) 

 

LD = linkage disequilibrium;  PheWAS = Phenome-wide Association Study; MVP = Million Veteran 
Program; HARE= Harmonized Ancestry and Race/Ethnicity; PRS = polygenic Risk Score; AFR = African 
American; EUR = European American 



Supplemental Figure 4 – MetaXcan Results from Various Tissues 
A. All Tissues (MEGA) 

 
 

B. All Tissues (CHARGE-EUR) 

 



C. Artery - Aorta (MEGA) 

 
 
D. Artery - Aorta (CHARGE-EUR) 

 
  



E. Artery - Coronary (MEGA) 

 
 
F. Artery - Coronary (CHARGE-EUR) 

  



G. Artery - Tibial (MEGA) 

 
 
H. Artery - Tibial (CHARGE-EUR) 

  



I. Liver (MEGA) 

 
 
J. Liver (CHARGE-EUR) 

 
  



K. Whole Blood (MEGA) 

 
 
L. Whole Blood (CHARGE-EUR) 
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