Identifying older adults at risk for Alzheimer's Disease based on smartphone data obtained during wayfinding in the real world

Jonas Marquardt, Priyanka Mohan, Myra Spiliopoulou, Michaela Butryn, Wenzel Glanz, Stefanie Schreiber, Esther Kühn, Anne Maas & Nadine Diersch

Supplementary Information

Supplementary Figure 1. Movement trajectories of the three participant groups (red: younger adults; blue: healthy older adults; yellow: older adults with subjective cognitive decline) on (a) track 1; (b) track 2; (c) track 3; (d) track 4; (e) track 5 of the mobile wayfinding task.

Supplementary Figure 2. Number of orientation stops on each track in healthy older adults (blue) and older adults with subjective cognitive decline (yellow). The boxplot denotes the lower and upper quartile of the measure; center line the median; whiskers the 1.5x interquartile range; dots the individual data points; diamond shape the mean.

Supplementary Figure 3. Spatial memory test implemented in the familiarity questionnaire to assess the participants' prior knowledge of the campus area in three sub-tests (maximum score: 28). (a) Recognition test: First, participants had to indicate from a list of pictures showing 12 campus buildings (including the 5 Pols of the mobile wayfinding task), which of the buildings they recognize (shown are 4 example buildings). (b) Distance estimation test: Next, they saw 4 triplets of the 12 buildings and were asked to indicate, which of the two buildings in the lower row lies closer to the reference building in the upper row (shown is one example triplet). (c) Map test: Finally, for the buildings they knew, they had to assign the buildings from the recognition test to dots on a map of the campus, in this way identifying their location.

Fixed Effects							
	Est/Beta	SE	95% CI	t-value	р		
Intercept	5.368	0.184	5.007 ; 5.729	29.136	< .001		
Group YA	-0.127	0.052	-0.230 ; -0.024	-2.427	.018		
Group SCD	0.071	0.055	-0.038 ; 0.179	1.273	.208		
Familiarity	-0.003	0.003	-0.009 ; 0.002	-1.241	.219		
Gender Female	0.102	0.002	0.016 ; 0.188	2.333	.023		
Random Effects							
Variance SD							
Participant		0.003	0.055				
Track		0.154	0.393				
Model fit							
AIC	Ва	sic Model	Final Model		Delta AIC		
		370.34	361.09		-9.25		
R ²			Marginal		Conditional		
			0.033		0.530		

Supplementary Table 1. Results of the linear mixed effect model estimating the fixed effects of group, campus familiarity, and gender on the log-transformed wayfinding distance. Random intercepts were estimated per participant and track. P-values for fixed effects were calculated using the Satterthwaite's approximation for degrees of freedom (bold font indicates significant effects). Confidence intervals were calculated using the Wald method. Model equation: log(wayfinding distance) – group + familiarity + gender + (1|participant) + (1|track).

Fixed Effects							
	Est/Beta	SE	95% CI	t-value	р		
Intercept	5.120	0.178	4.771 ; 5.468	28.802	< .001		
Group YA	-0.283	0.070	-0.420 ; -0.146	-4.042	< .001		
Group SCD	0.128	0.074	-0.017 ; 0.273	1.733	.088		
Familiarity	-0.008	0.004	-0.015 ; -0.001	-2.114	.038		
Gender Female	0.139	0.058	0.025 ; 0.253	2.391	.020		
Random Effects							
Variance SD							
Participant		0.022	0.148				
Track		0.130	0.361				
Model fit							
AIC	Ba	sic Model	Final Model		Delta AIC		
		483.35	458.01		-25.34		
R ²			Marginal		Conditional		
			0.108		0.512		

Supplementary Table 2. Results of the linear mixed effect model estimating the fixed effects of group, campus familiarity, and gender on the log-transformed wayfinding duration. Random intercepts were estimated per participant and track. P-values for fixed effects were calculated using the Satterthwaite's approximation for degrees of freedom (bold font indicates significant effects; italic font indicates statistical trends). Confidence intervals were calculated using the Wald method. Model equation: $log(wayfinding duration) \sim group + familiarity + gender + (1|participant) + (1|track).$

Fixed Effects							
	Est/Beta	SE	95% CI	t-value	р		
Intercept	1.310	0.058	1.196 ; 1.424	22.504	< .001		
Group YA	0.223	0.051	0.123 ; 0.323	4.375	< .001		
Group SCD	-0.048	0.053	-0.153 ; 0.056	-0.901	.371		
Familiarity	0.006	0.003	0.001 ; 0.011	2.206	.031		
Gender Female	-0.054	0.042	-0.137 ; 0.029	-1.285	.203		
Random Effects							
Variance SD							
Participant		0.028	0.168				
Track		0.002	0.130				
Model fit							
AIC	Ва	asic Model	Final Model		Delta AIC		
		-229.02	-252.34		-23.32		
R ²			Marginal		Conditional		
			0.277		0.742		

Supplementary Table 3. Results of the linear mixed effect model estimating the fixed effects of group, campus familiarity, and gender on the movement speed. Random intercepts were estimated per participant and track. P-values for fixed effects were calculated using the Satterthwaite's approximation for degrees of freedom (bold font indicates significant effects). Confidence intervals were calculated using the Wald method. Model equation: movement speed – group + familiarity + gender + (1lparticipant) + (1ltrack).

Fixed Effects							
	Est/Beta	SE	95% CI	z-value	р		
Intercept	-0.655	0.506	-1.646 ; 0.336	-1.296	.195		
Group YA	-1.243	0.514	-2.251 ; -0.236	-2.418	.016		
Group SCD	0.820	0.435	-0.033 ; 1.672	1.885	.059		
Familiarity	-0.048	0.025	-0.010 ; -0.000	-1.960	.050		
Gender Female	0.183	0.367	-0.537 ; 0.903	0.499	.618		
Random Effects							
	Variance SD						
Participant	1.246		1.116				
Track	0.003		0.063				
Model fit							
AIC	Ва	sic Model	Final Model		Delta AIC		
		661.5	647.4		-14.1		
Pseudo R ²			0.265				

Supplementary Table 4. Results of the generalized mixed effect model estimating the fixed effects of group, campus familiarity, and gender on the number of map views during walking. Random intercepts were estimated per participant and track. The model was estimated using the maximum likelihood estimation (bold font indicates significant effects; italic font indicates statistical trends). A zero-inflated negative binomial distribution of the data was assessed and a log link function applied. Confidence intervals were calculated using the Wald method. Pseudo R² was calculated by: $1-e^{(-2/n*logL(x)-logL(0)))}$, where logL(x) is the is the log-likelihood of the final model and logL(0) the log-likelihood of an intercept only model. Model equation: number of map views \sim group + familiarity + gender + (1lparticipant) + (1ltrack).

Fixed Effects							
	Est/Beta	SE	95% CI	z-value	р		
Intercept	0.187	0.291	-0.384 ; 0.758	0.641	.521		
Group YA	-0.919	0.281	-1.470 ; -0.369	-3.274	.001		
Group SCD	0.670	0.248	0.184 ; 1.157	2.702	.006		
Familiarity	-0.007	0.013	-0.033 ; 0.019	-0.531	.595		
Gender Female	0.301	0.207	-0.105 ; 0.707	1.453	.146		
Random Effects							
	Variance SD						
Participant	0.402		0.634				
Track		0.000	0.000				
Model fit							
AIC	Ba	sic Model	Final Model		Delta AIC		
		1020.1	994.1		-25.94		
Pseudo R ²			0.268				

Supplementary Table 5. Results of the generalized mixed effect model estimating the fixed effects of group, campus familiarity, and gender on the number of orientation stops. Random intercepts were estimated per participant and track. The model was estimated using the maximum likelihood estimation (bold font indicates significant effects). A zero-inflated poisson distribution of the data was assessed and a log link function applied. Confidence intervals were calculated using the Wald method. Pseudo R² was calculated by: $1-e^{((-2/n*logL(x)-logL(0)))}$, where logL(x) is the is the log-likelihood of the final model and logL(0) the log-likelihood of an intercept only model. Model equation: number of orientation stops – group + familiarity + gender + (1lparticipant) + (1ltrack).

CERAD Subtest	r	p-value
Verbal Fluency (animals)	10	.640
Boston Naming Test	.20	.371
Mini-Mental Status Examination	33	.122
Word List Learning	26	.228
Word List Recall	18	.412
Word List Savings	.03	.901
Word List Discrimination	.14	.524
Constructional Praxis Drawing	.21	.332
Constructional Praxis Recall	32	.136
Constructional Praxis Savings	31	.144
Verbal Fluency (words) ^a	.16	.494
Trail Making Test A	07	.756
Trail Making Test B	29	.184
Trail Making Test A/B	39	.068

Supplementary Table 6. Pearson product-moment correlation coefficients (df = 21) between the number of orientation stops and the age-, gender-, and education-corrected z-scores from all available subtests of the CERAD test battery in older adults with subjective cognitive decline (SCD). ^a three missing values for Verbal Fluency (words), df = 18.

	YA	OA	SCD
n	23	20	18
Age	24.4 ± 2.29	66.0 ± 3.79	65.2 ± 6.87
No of female	12	9	10
Campus familiarity (max. score: 28)	12.9 ± 9.30	13.4 ± 8.40	9.2 ± 6.59
Life-Space Assessment (max. score: 120)	81.3 ± 12.3	84.8 ± 16.1	83.4 ± 14.1
Cognitive screening		MoCA: 28.4 ± 1.09	MMSE: 29.0 ± 1.19
500,05			CERAD: 0.24 ± 0.54 min = -0.75

Supplementary Table 7. Sample characteristics (descriptives, mean scores \pm SD) of the three participant groups (YA: younger adults; OA: healthy older adults; SCD: older adults with subjective cognitive decline), when only considering those individuals who completed all five tracks in the mobile wayfinding task (N = 61). The CERAD composite score was calculated using the age-, gender-, and education-corrected z-scores from six different subtests (Boston Naming Test, verbal fluency, word list learning, word list recall, word list savings, and constructional praxis, see Chandler et al., 2005). The groups did not differ in the listed attributes, all p \geq .272 (age differences were only tested between healthy older adults and older adults with SCD).

References

Chandler, M. J., Lacritz, L. H., Hynan, L. S., Barnard, H. D., Allen, G., Deschner, M., Weiner, M. F., & Cullum, C. M. (2005). A total score for the CERAD neuropsychological battery. *Neurology*, *65*(1), 102–106. https://doi.org/10.1212/01.wnl.0000167607.63000.38